Search results for: 3d finite element model
8077 Simulation of Focusing of Diamagnetic Particles in Ferrofluid Microflows with a Single Set of Overhead Permanent Magnets
Authors: Shuang Chen, Zongqian Shi, Jiajia Sun, Mingjia Li
Abstract:
Microfluidics is a technology that small amounts of fluids are manipulated using channels with dimensions of tens to hundreds of micrometers. At present, this significant technology is required for several applications in some fields, including disease diagnostics, genetic engineering, and environmental monitoring, etc. Among these fields, manipulation of microparticles and cells in microfluidic device, especially separation, have aroused general concern. In magnetic field, the separation methods include positive and negative magnetophoresis. By comparison, negative magnetophoresis is a label-free technology. It has many advantages, e.g., easy operation, low cost, and simple design. Before the separation of particles or cells, focusing them into a single tight stream is usually a necessary upstream operation. In this work, the focusing of diamagnetic particles in ferrofluid microflows with a single set of overhead permanent magnets is investigated numerically. The geometric model of the simulation is based on the configuration of previous experiments. The straight microchannel is 24mm long and has a rectangular cross-section of 100μm in width and 50μm in depth. The spherical diamagnetic particles of 10μm in diameter are suspended into ferrofluid. The initial concentration of the ferrofluid c₀ is 0.096%, and the flow rate of the ferrofluid is 1.8mL/h. The magnetic field is induced by five identical rectangular neodymium−iron− boron permanent magnets (1/8 × 1/8 × 1/8 in.), and it is calculated by equivalent charge source (ECS) method. The flow of the ferrofluid is governed by the Navier–Stokes equations. The trajectories of particles are solved by the discrete phase model (DPM) in the ANSYS FLUENT program. The positions of diamagnetic particles are recorded by transient simulation. Compared with the results of the mentioned experiments, our simulation shows consistent results that diamagnetic particles are gradually focused in ferrofluid under magnetic field. Besides, the diamagnetic particle focusing is studied by varying the flow rate of the ferrofluid. It is in agreement with the experiment that the diamagnetic particle focusing is better with the increase of the flow rate. Furthermore, it is investigated that the diamagnetic particle focusing is affected by other factors, e.g., the width and depth of the microchannel, the concentration of the ferrofluid and the diameter of diamagnetic particles.Keywords: diamagnetic particle, focusing, microfluidics, permanent magnet
Procedia PDF Downloads 1338076 Research on Audiovisual Perception in Stairway Spaces of Mountain City Parks Based on Real-Scene EEG Monitoring
Authors: Yang Xinyu, Gong Cong, Hu Changjuan
Abstract:
Stairway spaces are a crucial component of the pathway systems and vertical transportation networks in mountain city parks. These spaces are closely integrated with the undulating terrain of mountain environments, resulting in continuously changing spatial conditions that can significantly influence participants' behavioral characteristics, thereby affecting their perception. EEG signals, which have been proven to reflect various non-attentive physiological activities in the brain, are widely used in studies related to stress recovery effects and emotional perception. Existing research predominantly examines the impact of spatial characteristics and landscape elements of trails and greenways in plain cities on participants' perception, utilizing EEG signals in laboratory-simulated environments. These studies have preliminarily revealed the relationship between spatial environments and perception preferences. However, on-site ergonomics research in mountain environments remains relatively underdeveloped. To address this gap, the Stairway spaces in Pipashan Park, Chongqing, were selected as the research object. Wearable hydrogel EEG devices were employed to monitor participants' EEG data in real environments, and a Generalized Linear Mixed Model (GLMM) was constructed to explore differences in participants' perception under different paths and modes of movement, as well as the impact of visual and auditory environmental elements within each path on their perception. The model analysis results indicate significant differences in EEG data across different paths and movement modes. Additionally, typical mountainous spatial characteristics, such as openness, green view index, and elevation difference, are identified as key factors influencing participants' EEG data. Higher levels of natural sound and green view index were shown to effectively alleviate participants' stress perception in mountain stairway spaces. The findings reveal the intrinsic connections between environment, behavior, and perception in stairway spaces of mountain city parks, providing a theoretical basis for optimizing the design of stairway spaces in mountain cities.Keywords: audio-visual perception, EEG monitoring, mountain city park, real environment, stairway space
Procedia PDF Downloads 238075 Temperature Dependence of Photoluminescence Intensity of Europium Dinuclear Complex
Authors: Kwedi L. M. Nsah, Hisao Uchiki
Abstract:
Quantum computation is a new and exciting field making use of quantum mechanical phenomena. In classical computers, information is represented as bits, with values either 0 or 1, but a quantum computer uses quantum bits in an arbitrary superposition of 0 and 1, enabling it to reach beyond the limits predicted by classical information theory. lanthanide ion quantum computer is an organic crystal, having a lanthanide ion. Europium is a favored lanthanide, since it exhibits nuclear spin coherence times, and Eu(III) is photo-stable and has two stable isotopes. In a europium organic crystal, the key factor is the mutual dipole-dipole interaction between two europium atoms. Crystals of the complex were formed by making a 2 :1 reaction of Eu(fod)3 and bpm. The transparent white crystals formed showed brilliant red luminescence with a 405 nm laser. The photoluminescence spectroscopy was observed both at room and cryogenic temperatures (300-14 K). The luminescence spectrum of [Eu(fod)3(μ-bpm) Eu(fod)3] showed characteristic of Eu(III) emission transitions in the range 570–630 nm, due to the deactivation of 5D0 emissive state to 7Fj. For the application of dinuclear Eu3+ complex to q-bit device, attention was focused on 5D0 -7F0 transition, around 580 nm. The presence of 5D0 -7F0 transition at room temperature revealed that at least one europium symmetry had no inversion center. Since the line was unsplit by the crystal field effect, any multiplicity observed was due to a multiplicity of Eu3+ sites. For q-bit element, more narrow line width of 5D0 → 7F0 PL band in Eu3+ ion was preferable. Cryogenic temperatures (300 K – 14 K) was applicable to reduce inhomogeneous broadening and distinguish between ions. A CCD image sensor was used for low temperature Photoluminescence measurement, and a far better resolved luminescent spectrum was gotten by cooling the complex at 14 K. A red shift by 15 cm-1 in the 5D0 - 7F0 peak position was observed upon cooling, the line shifted towards lower wavenumber. An emission spectrum at the 5D0 - 7F0 transition region was obtained to verify the line width. At this temperature, a peak with magnitude three times that at room temperature was observed. The temperature change of the 5D0 state of Eu(fod)3(μ-bpm)Eu(fod)3 showed a strong dependence in the vicinity of 60 K to 100 K. Thermal quenching was observed at higher temperatures than 100 K, at which point it began to decrease slowly with increasing temperature. The temperature quenching effect of Eu3+ with increase temperature was caused by energy migration. 100 K was the appropriate temperature for the observation of the 5D0 - 7F0 emission peak. Europium dinuclear complex bridged by bpm was successfully prepared and monitored at cryogenic temperatures. At 100 K the Eu3+-dope complex has a good thermal stability and this temperature is appropriate for the observation of the 5D0 - 7F0 emission peak. Sintering the sample above 600o C could also be a method to consider but the Eu3+ ion can be reduced to Eu2+, reasons why cryogenic temperature measurement is preferably over other methods.Keywords: Eu(fod)₃, europium dinuclear complex, europium ion, quantum bit, quantum computer, 2, 2-bipyrimidine
Procedia PDF Downloads 1848074 Value Co-Creation in Used-Car Auctions: A Service Scientific Perspective
Authors: Safdar Muhammad Usman, Youji Kohda, Katsuhiro Umemoto
Abstract:
Electronic market place plays an important intermediary role for connecting dealers and retail customers. The main aim of this paper is to design a value co-creation model in used-car auctions. More specifically, the study has been designed in order to describe the process of value co-creation in used-car auctions, to explore the co-created values in used-car auctions, and finally conclude the paper indicating the future research directions. Our analysis shows that economic values as well as non-economic values are co-created in used-car auctions. In addition, this paper contributes to the academic society broadening the view of value co-creation in service science.Keywords: value co-creation, used-car auctions, non-financial values, service science
Procedia PDF Downloads 3688073 Predictive Analytics for Theory Building
Authors: Ho-Won Jung, Donghun Lee, Hyung-Jin Kim
Abstract:
Predictive analytics (data analysis) uses a subset of measurements (the features, predictor, or independent variable) to predict another measurement (the outcome, target, or dependent variable) on a single person or unit. It applies empirical methods in statistics, operations research, and machine learning to predict the future, or otherwise unknown events or outcome on a single or person or unit, based on patterns in data. Most analyses of metabolic syndrome are not predictive analytics but statistical explanatory studies that build a proposed model (theory building) and then validate metabolic syndrome predictors hypothesized (theory testing). A proposed theoretical model forms with causal hypotheses that specify how and why certain empirical phenomena occur. Predictive analytics and explanatory modeling have their own territories in analysis. However, predictive analytics can perform vital roles in explanatory studies, i.e., scientific activities such as theory building, theory testing, and relevance assessment. In the context, this study is to demonstrate how to use our predictive analytics to support theory building (i.e., hypothesis generation). For the purpose, this study utilized a big data predictive analytics platform TM based on a co-occurrence graph. The co-occurrence graph is depicted with nodes (e.g., items in a basket) and arcs (direct connections between two nodes), where items in a basket are fully connected. A cluster is a collection of fully connected items, where the specific group of items has co-occurred in several rows in a data set. Clusters can be ranked using importance metrics, such as node size (number of items), frequency, surprise (observed frequency vs. expected), among others. The size of a graph can be represented by the numbers of nodes and arcs. Since the size of a co-occurrence graph does not depend directly on the number of observations (transactions), huge amounts of transactions can be represented and processed efficiently. For a demonstration, a total of 13,254 metabolic syndrome training data is plugged into the analytics platform to generate rules (potential hypotheses). Each observation includes 31 predictors, for example, associated with sociodemographic, habits, and activities. Some are intentionally included to get predictive analytics insights on variable selection such as cancer examination, house type, and vaccination. The platform automatically generates plausible hypotheses (rules) without statistical modeling. Then the rules are validated with an external testing dataset including 4,090 observations. Results as a kind of inductive reasoning show potential hypotheses extracted as a set of association rules. Most statistical models generate just one estimated equation. On the other hand, a set of rules (many estimated equations from a statistical perspective) in this study may imply heterogeneity in a population (i.e., different subpopulations with unique features are aggregated). Next step of theory development, i.e., theory testing, statistically tests whether a proposed theoretical model is a plausible explanation of a phenomenon interested in. If hypotheses generated are tested statistically with several thousand observations, most of the variables will become significant as the p-values approach zero. Thus, theory validation needs statistical methods utilizing a part of observations such as bootstrap resampling with an appropriate sample size.Keywords: explanatory modeling, metabolic syndrome, predictive analytics, theory building
Procedia PDF Downloads 2838072 Prediction of Alzheimer's Disease Based on Blood Biomarkers and Machine Learning Algorithms
Authors: Man-Yun Liu, Emily Chia-Yu Su
Abstract:
Alzheimer's disease (AD) is the public health crisis of the 21st century. AD is a degenerative brain disease and the most common cause of dementia, a costly disease on the healthcare system. Unfortunately, the cause of AD is poorly understood, furthermore; the treatments of AD so far can only alleviate symptoms rather cure or stop the progress of the disease. Currently, there are several ways to diagnose AD; medical imaging can be used to distinguish between AD, other dementias, and early onset AD, and cerebrospinal fluid (CSF). Compared with other diagnostic tools, blood (plasma) test has advantages as an approach to population-based disease screening because it is simpler, less invasive also cost effective. In our study, we used blood biomarkers dataset of The Alzheimer’s disease Neuroimaging Initiative (ADNI) which was funded by National Institutes of Health (NIH) to do data analysis and develop a prediction model. We used independent analysis of datasets to identify plasma protein biomarkers predicting early onset AD. Firstly, to compare the basic demographic statistics between the cohorts, we used SAS Enterprise Guide to do data preprocessing and statistical analysis. Secondly, we used logistic regression, neural network, decision tree to validate biomarkers by SAS Enterprise Miner. This study generated data from ADNI, contained 146 blood biomarkers from 566 participants. Participants include cognitive normal (healthy), mild cognitive impairment (MCI), and patient suffered Alzheimer’s disease (AD). Participants’ samples were separated into two groups, healthy and MCI, healthy and AD, respectively. We used the two groups to compare important biomarkers of AD and MCI. In preprocessing, we used a t-test to filter 41/47 features between the two groups (healthy and AD, healthy and MCI) before using machine learning algorithms. Then we have built model with 4 machine learning methods, the best AUC of two groups separately are 0.991/0.709. We want to stress the importance that the simple, less invasive, common blood (plasma) test may also early diagnose AD. As our opinion, the result will provide evidence that blood-based biomarkers might be an alternative diagnostics tool before further examination with CSF and medical imaging. A comprehensive study on the differences in blood-based biomarkers between AD patients and healthy subjects is warranted. Early detection of AD progression will allow physicians the opportunity for early intervention and treatment.Keywords: Alzheimer's disease, blood-based biomarkers, diagnostics, early detection, machine learning
Procedia PDF Downloads 3298071 On the Utility of Bidirectional Transformers in Gene Expression-Based Classification
Authors: Babak Forouraghi
Abstract:
A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of the flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on the spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts, as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with an attention mechanism. In previous works on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work, with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on the presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.Keywords: machine learning, classification and regression, gene circuit design, bidirectional transformers
Procedia PDF Downloads 668070 Boosting Project Manager Retention: Lessons from the Volunteering Sector
Authors: Julia Wicker, Alexander Lang
Abstract:
The shortage of skilled workers is no longer unique to Europe; Australia now faces similar challenges, particularly in the field of project management. Project managers, essential to the success of a wide range of industries, frequently operate under intense stress and, as a result, may choose to leave their positions before the completion of their projects. This trend poses significant risks to project continuity, budget stability, and the long-term success of organizations. Consequently, it is crucial to explore strategies aimed at improving the retention of project managers, with a specific focus on fostering intrinsic motivation -an essential factor for achieving sustained success and commitment within project-based roles. The aim of this paper is to investigate retention strategies from other industries to identify effective practices that could be adapted to the unique challenges faced by project managers. In particular, the paper draws inspiration from the volunteer sector, an industry also heavily reliant on intrinsic motivation to drive commitment and performance. By examining how the volunteer sector sustains retention through a focus on intrinsic motivation, this paper seeks to highlight potential parallels and offer actionable insights for improving the retention of project managers. The paper includes an overview of the current landscape of retention challenges in project management, highlighting key factors that contribute to early departures and their impacts on organizations. This is followed by an analysis of interviews conducted with both active volunteers and those who have left their roles, leading to the development of a model that categorizes different types of volunteers and explores their behaviours. The model identifies specific reasons for volunteer terminating their assignments and proposes strategies to mitigate these issues. The paper then adapts these volunteer retention strategies to address the challenges faced by project managers, concluding with actionable recommendations for fostering an intrinsically motivated and resilient project management workforce. Ultimately, this research aims to contribute to broader efforts in mitigating skilled workforce shortages by offering sustainable retention strategies.Keywords: skilled workforce shortages, retention challenges in project management, retention strategies in the volunteering sector, retention strategies for project managers
Procedia PDF Downloads 148069 Intracellular Sphingosine-1-Phosphate Receptor 3 Contributes to Lung Tumor Cell Proliferation
Authors: Michela Terlizzi, Chiara Colarusso, Aldo Pinto, Rosalinda Sorrentino
Abstract:
Sphingosine-1-phosphate (S1P) is a membrane-derived bioactive phospholipid exerting a multitude of effects on respiratory cell physiology and pathology through five S1P receptors (S1PR1-5). Higher levels of S1P have been registered in a broad range of respiratory diseases, including inflammatory disorders and cancer, although its exact role is still elusive. Based on our previous study in which we found that S1P/S1PR3 is involved in an inflammatory pattern via the activation of Toll-like Receptor 9 (TLR9), highly expressed on lung cancer cells, the main goal of the current study was to better understand the involvement of S1P/S1PR3 pathway/signaling during lung carcinogenesis, taking advantage of a mouse model of first-hand smoke exposure and of carcinogen-induced lung cancer. We used human samples of Non-Small Cell Lung Cancer (NSCLC), a mouse model of first-hand smoking, and of Benzo(a)pyrene (BaP)-induced tumor-bearing mice and A549 lung adenocarcinoma cells. We found that the intranuclear, but not the membrane, localization of S1PR3 was associated to the proliferation of lung adenocarcinoma cells, the mechanism that was correlated to human and mouse samples of smoke-exposure and carcinogen-induced lung cancer, which were characterized by higher utilization of S1P. Indeed, the inhibition of the membrane S1PR3 did not alter tumor cell proliferation after TLR9 activation. Instead, according to the nuclear localization of sphingosine kinase (SPHK) II, the enzyme responsible for the catalysis of the S1P last step synthesis, the inhibition of the kinase completely blocked the endogenous S1P-induced tumor cell proliferation. These results prove that the endogenous TLR9-induced S1P can on one side favor pro-inflammatory mechanisms in the tumor microenvironment via the activation of cell surface receptors, but on the other tumor progression via the nuclear S1PR3/SPHK II axis, highlighting a novel molecular mechanism that identifies S1P as one of the crucial mediators for lung carcinogenesis-associated inflammatory processes and that could provide differential therapeutic approaches especially in non-responsive lung cancer patients.Keywords: sphingosine-1-phosphate (S1P), S1P Receptor 3 (S1PR3), smoking-mice, lung inflammation, lung cancer
Procedia PDF Downloads 2038068 Top Management Characteristics and Adoption of Internet Banking: Case Study of the Tunisian Banking Sector
Authors: Dorra Gherib
Abstract:
This article explores in depth the technological innovations by the Top Managements of banks in the Tunisian banking sector. The framework of this research is based on an amalgamation of four theories related to the decision of adopting technological innovations: The Theory of Reasoned Action (TRA), the Theory of Planned Behaviour (TPB), Technology Acceptance Model (TAM), and Diffusion of Innovation (DI). The result of our qualitative study highlights four variables which influence the attitude of the Top Managements towards the adoption of internet banking: Relative advantage, Perceived Ease of Use, compatibility and Perceived risk.Keywords: top management, attitude, internet banking, TRA, TAM, TPB, DI
Procedia PDF Downloads 4758067 Vibroacoustic Modulation of Wideband Vibrations and its Possible Application for Windmill Blade Diagnostics
Authors: Abdullah Alnutayfat, Alexander Sutin, Dong Liu
Abstract:
Wind turbine has become one of the most popular energy productions. However, failure of blades and maintenance costs evolve into significant issues in the wind power industry, so it is essential to detect the initial blade defects to avoid the collapse of the blades and structure. This paper aims to apply modulation of high-frequency blade vibrations by low-frequency blade rotation, which is close to the known Vibro-Acoustic Modulation (VAM) method. The high-frequency wideband blade vibration is produced by the interaction of the surface blades with the environment air turbulence, and the low-frequency modulation is produced by alternating bending stress due to gravity. The low-frequency load of rotational wind turbine blades ranges between 0.2-0.4 Hz and can reach up to 2 Hz for strong wind. The main difference between this study and previous ones on VAM methods is the use of a wideband vibration signal from the blade's natural vibrations. Different features of the vibroacoustic modulation are considered using a simple model of breathing crack. This model considers the simple mechanical oscillator, where the parameters of the oscillator are varied due to low-frequency blade rotation. During the blade's operation, the internal stress caused by the weight of the blade modifies the crack's elasticity and damping. The laboratory experiment using steel samples demonstrates the possibility of VAM using a probe wideband noise signal. A cycle load with a small amplitude was used as a pump wave to damage the tested sample, and a small transducer generated a wideband probe wave. The received signal demodulation was conducted using the Detecting of Envelope Modulation on Noise (DEMON) approach. In addition, the experimental results were compared with the modulation index (MI) technique regarding the harmonic pump wave. The wideband and traditional VAM methods demonstrated similar sensitivity for earlier detection of invisible cracks. Importantly, employing a wideband probe signal with the DEMON approach speeds up and simplifies testing since it eliminates the need to conduct tests repeatedly for various harmonic probe frequencies and to adjust the probe frequency.Keywords: vibro-acoustic modulation, detecting of envelope modulation on noise, damage, turbine blades
Procedia PDF Downloads 1028066 The Impacts of Technology on Operations Costs: The Mediating Role of Operation Flexibility
Authors: Fazli Idris, Jihad Mohammad
Abstract:
The study aims to determine the impact of technology and service operations flexibility, which is divided into external flexibility and internal robustness, on operations costs. A mediation model is proposed that links technology to operations costs via operation flexibility. Drawing on a sample of 475 of operations managers of various service sectors in Malaysia and South Africa, Structural Equation Modeling (SEM) was employed to test the relationship using Smart-PLS procedures. It was found that a significant relationship was established between technologies to operations costs via both operations flexibility dimensions. Theoretical and managerial implications are offered to explain the results.Keywords: Operations flexibility, technology, costs, mediation
Procedia PDF Downloads 6178065 An Experimental Study of Diffuser-Enhanced Propeller Hydrokinetic Turbines
Authors: Matheus Nunes, Rafael Mendes, Taygoara Felamingo Oliveira, Antonio Brasil Junior
Abstract:
Wind tunnel experiments of horizontal axis propeller hydrokinetic turbines model were carried out, in order to determine the performance behavior for different configurations and operational range. The present experiments introduce the use of two different geometries of rear diffusers to enhance the performance of the free flow machine. The present paper reports an increase of the power coefficient about 50%-80%. It represents an important feature that has to be taken into account in the design of this kind of machine.Keywords: diffuser-enhanced turbines, hydrokinetic turbine, wind tunnel experiments, micro hydro
Procedia PDF Downloads 2828064 Realization and Characterization of TiN Coating and Metal Working Application
Authors: Nadjette Belhamra, Abdelouahed Chala, Ibrahim Guasmi
Abstract:
Titanium nitride coatings have been extensively used in industry, such as in cutting tools. TiN coating were deposited by chemical vapour deposition (CVD) on carbide insert at a temperature between 850°C and 1100°C, which often exceeds the hardening treatment temperature of the metals. The objective of this work is to realize, to characterize of TiN coating and to apply it in the turning of steel 42CrMo4 under lubrification. Various experimental techniques were employed for the microstructural characterization of the coatings, e. g., X-ray diffraction (XRD), scanning electron microscope (SEM) model JOEL JSM-5900 LV, equipped with energy dispersive X-ray (EDX). The results show that TiN-coated demonstrate a good wear resistance.Keywords: hard coating TiN, carbide inserts, machining, turning, wear
Procedia PDF Downloads 5618063 Designing Form, Meanings, and Relationships for Future Industrial Products. Case Study Observation of PAD
Authors: Elisabetta Cianfanelli, Margherita Tufarelli, Paolo Pupparo
Abstract:
The dialectical mediation between desires and objects or between mass production and consumption continues to evolve over time. This relationship is influenced both by variable geometries of contexts that are distant from the mere design of product form and by aspects rooted in the very definition of industrial design. In particular, the overcoming of macro-areas of innovation in the technological, social, cultural, formal, and morphological spheres, supported by recent theories in critical and speculative design, seems to be moving further and further away from the design of the formal dimension of advanced products. The articulated fabric of theories and practices that feed the definition of “hyperobjects”, and no longer objects describes a common tension in all areas of design and production of industrial products. The latter are increasingly detached from the design of the form and meaning of the same in mass productions, thus losing the quality of products capable of social transformation. For years we have been living in a transformative moment as regards the design process in the definition of the industrial product. We are faced with a dichotomy in which there is, on the one hand, a reactionary aversion to the new techniques of industrial production and, on the other hand, a sterile adoption of the techniques of mass production that we can now consider traditional. This ambiguity becomes even more evident when we talk about industrial products, and we realize that we are moving further and further away from the concepts of "form" as a synthesis of a design thought aimed at the aesthetic-emotional component as well as the functional one. The design of forms and their contents, as statutes of social acts, allows us to investigate the tension on mass production that crosses seasons, trends, technicalities, and sterile determinisms. The design culture has always determined the formal qualities of objects as a sum of aesthetic characteristics functional and structural relationships that define a product as a coherent unit. The contribution proposes a reflection and a series of practical experiences of research on the form of advanced products. This form is understood as a kaleidoscope of relationships through the search for an identity, the desire for democratization, and between these two, the exploration of the aesthetic factor. The study of form also corresponds to the study of production processes, technological innovations, the definition of standards, distribution, advertising, the vicissitudes of taste and lifestyles. Specifically, we will investigate how the genesis of new forms for new meanings introduces a change in the relative innovative production techniques. It becomes, therefore, fundamental to investigate, through the reflections and the case studies exposed inside the contribution, also the new techniques of production and elaboration of the forms of the products, as new immanent and determining element inside the planning process.Keywords: industrial design, product advanced design, mass productions, new meanings
Procedia PDF Downloads 1278062 Groundwater Quality Assessment in the Vicinity of Tannery Industries in Warangal, India
Authors: Mohammed Fathima Shahanaaz, Shaik Fayazuddin, M. Uday Kiran
Abstract:
Groundwater quality is deteriorating day by day in different parts of the world due to various reasons, toxic chemicals are being discharged without proper treatment into inland water bodies and land which in turn add pollutants to the groundwater. In this kind of situation, the rural communities which do not have municipal drinking water have to rely on groundwater though it is polluted for various uses. Tannery industry is one of the major industry which provides economy and employment to India. Since most of the developed countries stopped using chemicals which are toxic, the tanning industry which uses chromium as its major element are being shifted towards developing countries. Most of the tanning industries in India can be found in clusters concentrated mainly in states of Tamilnadu, West Bengal, Uttar Pradesh and limited places of Punjab. Limited work is present in the case of tanneries of Warangal. There exists 18 group of tanneries in Desaipet, Enamamula region of Warangal, out of which 4 are involved in dry process and are low responsible for groundwater pollution. These units of tanneries are discharging their effluents after treatment into Sai Cheruvu. Though the treatment effluents are being discharged, the Sai Cheruvu is turned in to Pink colour, with higher levels of BOD, COD, chromium, chlorides, total hardness, TDS and sulphates. An attempt was made to analyse the groundwater samples around this polluted Sai Cheruvu region since literature shows that a single tannery can pollute groundwater to a radius of 7-8 kms from the point of disposal. Sample are collected from 6 different locations around Sai Cheruvu. Analysis was performed for determining various constituents in groundwater such as pH, EC, TDS, TH, Ca+2, Mg+2, HCO3-, Na+, K+, Cl-, SO42-, NO3-, F and Cr+6. The analysis of these constitutes gave values greater than permissible limits. Even chromium is also present in groundwater samples which is exceeding permissible limits People in Paidepally and Sardharpeta villages already stopped the usage of groundwater. They are buying bottle water for drinking purpose. Though they are not using groundwater for drinking purpose complaints are made about using this water for washing also. So treatment process should be adopted for groundwater which should be simple and efficient. In this study rice husk silica (RHS) is used to treat pollutants in groundwater with varying dosages of RHS and contact time. Rice husk is treated, dried and place in a muffle furnace for 6 hours at 650°C. Reduction is observed in total hardness, chlorides and chromium levels are observed after the application RHS. Pollutants reached permissible limits for 27.5mg/l and 50 mg/l of dosage for a contact time of 130 min at constant pH and temperature.Keywords: chromium, groundwater, rice husk silica, tanning industries
Procedia PDF Downloads 2048061 The Road Ahead: Merging Human Cyber Security Expertise with Generative AI
Authors: Brennan Lodge
Abstract:
Amidst a complex regulatory landscape, Retrieval Augmented Generation (RAG) emerges as a transformative tool for Governance Risk and Compliance (GRC) officers. This paper details the application of RAG in synthesizing Large Language Models (LLMs) with external knowledge bases, offering GRC professionals an advanced means to adapt to rapid changes in compliance requirements. While the development for standalone LLM’s (Large Language Models) is exciting, such models do have their downsides. LLM’s cannot easily expand or revise their memory, and they can’t straightforwardly provide insight into their predictions, and may produce “hallucinations.” Leveraging a pre-trained seq2seq transformer and a dense vector index of domain-specific data, this approach integrates real-time data retrieval into the generative process, enabling gap analysis and the dynamic generation of compliance and risk management content. We delve into the mechanics of RAG, focusing on its dual structure that pairs parametric knowledge contained within the transformer model with non-parametric data extracted from an updatable corpus. This hybrid model enhances decision-making through context-rich insights, drawing from the most current and relevant information, thereby enabling GRC officers to maintain a proactive compliance stance. Our methodology aligns with the latest advances in neural network fine-tuning, providing a granular, token-level application of retrieved information to inform and generate compliance narratives. By employing RAG, we exhibit a scalable solution that can adapt to novel regulatory challenges and cybersecurity threats, offering GRC officers a robust, predictive tool that augments their expertise. The granular application of RAG’s dual structure not only improves compliance and risk management protocols but also informs the development of compliance narratives with pinpoint accuracy. It underscores AI’s emerging role in strategic risk mitigation and proactive policy formation, positioning GRC officers to anticipate and navigate the complexities of regulatory evolution confidently.Keywords: cybersecurity, gen AI, retrieval augmented generation, cybersecurity defense strategies
Procedia PDF Downloads 1018060 Laser Cooling of Internal Degrees of Freedom of Molecules: Cesium Case
Authors: R. Horchani
Abstract:
Optical pumping technique with laser fields combined with photo-association of ultra-cold atoms leads to control on demand the vibrational and/or the rotational population of molecules. Here, we review the basic concepts and main steps should be followed, including the excitation schemes and detection techniques we use to achieve the ro-vibrational cooling of Cs2 molecules. We also discuss the extension of this technique to other molecules. In addition, we present a theoretical model used to support the experiment. These simulations can be widely used for the preparation of various experiments since they allow the optimization of several important experimental parameters.Keywords: cold molecule, photo-association, optical pumping, vibrational and rotational cooling
Procedia PDF Downloads 3068059 Production of Ferroboron by SHS-Metallurgy from Iron-Containing Rolled Production Wastes for Alloying of Cast Iron
Authors: G. Zakharov, Z. Aslamazashvili, M. Chikhradze, D. Kvaskhvadze, N. Khidasheli, S. Gvazava
Abstract:
Traditional technologies for processing iron-containing industrial waste, including steel-rolling production, are associated with significant energy costs, the long duration of processes, and the need to use complex and expensive equipment. Waste generated during the industrial process negatively affects the environment, but at the same time, it is a valuable raw material and can be used to produce new marketable products. The study of the effectiveness of self-propagating high-temperature synthesis (SHS) methods, which are characterized by the simplicity of the necessary equipment, the purity of the final product, and the high processing speed, is under the wide scientific and practical interest to solve the set problem. The work presents technological aspects of the production of Ferro boron by the method of SHS - metallurgy from iron-containing wastes of rolled production for alloying of cast iron and results of the effect of alloying element on the degree of boron assimilation with liquid cast iron. Features of Fe-B system combustion have been investigated, and the main parameters to control the phase composition of synthesis products have been experimentally established. Effect of overloads on patterns of cast ligatures formation and mechanisms structure formation of SHS products was studied. It has been shown that an increase in the content of hematite Fe₂O₃ in iron-containing waste leads to an increase in the content of phase FeB and, accordingly, the amount of boron in the ligature. Boron content in ligature is within 3-14%, and the phase composition of obtained ligatures consists of Fe₂B and FeB phases. Depending on the initial composition of the wastes, the yield of the end product reaches 91 - 94%, and the extraction of boron is 70 - 88%. Combustion processes of high exothermic mixtures allow to obtain a wide range of boron-containing ligatures from industrial wastes. In view of the relatively low melting point of the obtained SHS-ligature, the positive dynamics of boron absorption by liquid iron is established. According to the obtained data, the degree of absorption of the ligature by alloying gray cast iron at 1450°C is 80-85%. When combined with the treatment of liquid cast iron with magnesium, followed by alloying with the developed ligature, boron losses are reduced by 5-7%. At that, uniform distribution of boron micro-additives in the volume of treated liquid metal is provided. Acknowledgment: This work was supported by Shota Rustaveli Georgian National Science Foundation of Georgia (SRGNSFG) under the GENIE project (grant number № CARYS-19-802).Keywords: self-propagating high-temperature synthesis, cast iron, industrial waste, ductile iron, structure formation
Procedia PDF Downloads 1278058 Research on the Spatial Organization and Collaborative Innovation of Innovation Corridors from the Perspective of Ecological Niche: A Case Study of Seven Municipal Districts in Jiangsu Province, China
Authors: Weikang Peng
Abstract:
The innovation corridor is an important spatial carrier to promote regional collaborative innovation, and its development process is the spatial re-organization process of regional innovation resources. This paper takes the Nanjing-Zhenjiang G312 Industrial Innovation Corridor, which involves seven municipal districts in Jiangsu Province, as empirical evidence. Based on multi-source spatial big data in 2010, 2016, and 2022, this paper applies triangulated irregular network (TIN), head/tail breaks, regional innovation ecosystem (RIE) niche fitness evaluation model, and social network analysis to carry out empirical research on the spatial organization and functional structural evolution characteristics of innovation corridors and their correlation with the structural evolution of collaborative innovation network. The results show, first, the development of innovation patches in the corridor has fractal characteristics in time and space and tends to be multi-center and cluster layout along the Nanjing Bypass Highway and National Highway G312. Second, there are large differences in the spatial distribution pattern of niche fitness in the corridor in various dimensions, and the niche fitness of innovation patches along the highway has increased significantly. Third, the scale of the collaborative innovation network in the corridor is expanding fast. The core of the network is shifting from the main urban area to the periphery of the city along the highway, with small-world and hierarchical levels, and the core-edge network structure is highlighted. With the development of the Innovation Corridor, the main collaborative mode in the corridor is changing from collaboration within innovation patches to collaboration between innovation patches, and innovation patches with high ecological suitability tend to be the active areas of collaborative innovation. Overall, polycentric spatial layout, graded functional structure, diversified innovation clusters, and differentiated environmental support play an important role in effectively constructing collaborative innovation linkages and the stable expansion of the scale of collaborative innovation within the innovation corridor.Keywords: innovation corridor development, spatial structure, niche fitness evaluation model, head/tail breaks, innovation network
Procedia PDF Downloads 268057 The Effects of Cultural Distance and Institutions on Foreign Direct Investment Choices: Evidence from Turkey and China
Authors: Nihal Kartaltepe Behram, Göksel Ataman, Dila Okçu
Abstract:
With the development of foreign direct investments, the social, cultural, political and economic interactions between countries and institutions have become visible and they have become determining factors for the strategic structuring and market goals. In this context the purpose of this study is to investigate the effects of cultural distance and institutions on foreign direct investment choices in terms of location and investment model. For international establishments, the concept of culture, as well as the concept of cultural distance, is taken specifically into consideration, especially in the selection of methods for entering the market. In the researches and empirical studies conducted, a direct relationship between cultural distance and foreign direct investments is set and institutions and effective variable factors are examined at the level of defining the investment types. When the detailed calculation strategies and empirical researches and studies are taken into consideration, the most common methods for determining the direct investment model, considering the cultural distances, are full-ownership enterprises and joint ventures. Also, when all of the factors affecting the investments are taken into consideration, it was seen that the effect of institutions such as Government Intervention, Intellectual Property Rights, Corruption and Contract Enforcements is very important. Furthermore agglomeration is more intense and effective on the investment, compared to other factors. China has been selected as the target country, due to its effectiveness in world economy and its contributions to developing countries, which has commercial relationships with. Qualitative research methods are used for this study conducted, to measure the effects of determinative variable factors in the hypotheses of study, on the direct foreign investors and to evaluate the findings. In this study in-depth interview is used as a data collection method and the data analysis is made through descriptive analysis. Foreign Direct Investments are so reactive to institutions and cultural distance is identified by all interviews and analysis. On the other hand, agglomeration is the most strong determiner factor on foreign direct investors in Chinese Market. The reason of this factors, which comprise the sectorial aggregate, are not the strongest factors as agglomeration that the most important finding. We expect that this study became a beneficial guideline for developed and developing countries and local and national institutions’ strategic plans.Keywords: China, cultural distance, Foreign Direct Investments, institutions
Procedia PDF Downloads 4228056 Application of Shore Protective Structures in Optimum Land Using of Defense Sites Located in Coastal Cities
Authors: Mir Ahmad Lashteh Neshaei, Hamed Afsoos Biria, Ata Ghabraei, Mir Abdolhamid Mehrdad
Abstract:
Awareness of effective land using issues in coastal area including protection of natural ecosystems and coastal environment due to the increasing of human life along the coast is of great importance. There are numerous valuable structures and heritages which are located in defence sites and waterfront area. Marine structures such as groins, sea walls and detached breakwaters are constructed in coast to improve the coast stability against bed erosion due to changing wave and climate pattern. Marine mechanisms and interaction with the shore protection structures need to be intensively studied. Groins are one of the most prominent structures that are used in shore protection to create a safe environment for coastal area by maintaining the land against progressive coastal erosion. The main structural function of a groin is to control the long shore current and littoral sediment transport. This structure can be submerged and provide the necessary beach protection without negative environmental impact. However, for submerged structures adopted for beach protection, the shoreline response to these structures is not well understood at present. Nowadays, modelling and computer simulation are used to assess beach morphology in the vicinity of marine structures to reduce their environmental impact. The objective of this study is to predict the beach morphology in the vicinity of submerged groins and comparison with non-submerged groins with focus on a part of the coast located in Dahane sar Sefidrood, Guilan province, Iran where serious coast erosion has occurred recently. The simulations were obtained using a one-line model which can be used as a first approximation of shoreline prediction in the vicinity of groins. The results of the proposed model are compared with field measurements to determine the shape of the coast. Finally, the results of the present study show that using submerged groins can have a good efficiency to control the beach erosion without causing severe environmental impact to the coast. The important outcome from this study can be employed in optimum designing of defence sites in the coastal cities to improve their efficiency in terms of re-using the heritage lands.Keywords: submerged structures, groin, shore protective structures, coastal cities
Procedia PDF Downloads 3208055 MAOD Is Estimated by Sum of Contributions
Authors: David W. Hill, Linda W. Glass, Jakob L. Vingren
Abstract:
Maximal accumulated oxygen deficit (MAOD), the gold standard measure of anaerobic capacity, is the difference between the oxygen cost of exhaustive severe intensity exercise and the accumulated oxygen consumption (O2; mL·kg–1). In theory, MAOD can be estimated as the sum of independent estimates of the phosphocreatine and glycolysis contributions, which we refer to as PCr+glycolysis. Purpose: The purpose was to test the hypothesis that PCr+glycolysis provides a valid measure of anaerobic capacity in cycling and running. Methods: The participants were 27 women (mean ± SD, age 22 ±1 y, height 165 ± 7 cm, weight 63.4 ± 9.7 kg) and 25 men (age 22 ± 1 y, height 179 ± 6 cm, weight 80.8 ± 14.8 kg). They performed two exhaustive cycling and running tests, at speeds and work rates that were tolerable for ~5 min. The rate of oxygen consumption (VO2; mL·kg–1·min–1) was measured in warmups, in the tests, and during 7 min of recovery. Fingerprick blood samples obtained after exercise were analysed to determine peak blood lactate concentration (PeakLac). The VO2 response in exercise was fitted to a model, with a fast ‘primary’ phase followed by a delayed ‘slow’ component, from which was calculated the accumulated O2 and the excess O2 attributable to the slow component. The VO2 response in recovery was fitted to a model with a fast phase and slow component, sharing a common time delay. Oxygen demand (in mL·kg–1·min–1) was determined by extrapolation from steady-state VO2 in warmups; the total oxygen cost (in mL·kg–1) was determined by multiplying this demand by time to exhaustion and adding the excess O2; then, MAOD was calculated as total oxygen cost minus accumulated O2. The phosphocreatine contribution (area under the fast phase of the post-exercise VO2) and the glycolytic contribution (converted from PeakLac) were summed to give PCr+glycolysis. There was not an interaction effect involving sex, so values for anaerobic capacity were examined using a two-way ANOVA, with repeated measures across method (PCr+glycolysis vs MAOD) and mode (cycling vs running). Results: There was a significant effect only for exercise mode. There was no difference between MAOD and PCr+glycolysis: values were 59 ± 6 mL·kg–1 and 61 ± 8 mL·kg–1 in cycling and 78 ± 7 mL·kg–1 and 75 ± 8 mL·kg–1 in running. Discussion: PCr+glycolysis is a valid measure of anaerobic capacity in cycling and running, and it is as valid for women as for men.Keywords: alactic, anaerobic, cycling, ergometer, glycolysis, lactic, lactate, oxygen deficit, phosphocreatine, running, treadmill
Procedia PDF Downloads 1438054 Development of Sustainable Wind Speed Forecasting Framework for Wind Energy Farms
Authors: Mohammed Bou-Rabee
Abstract:
The significance of wind energy is rising as the global world shifts toward clean and renewable energy sources. Wind energy generates electricity without releasing greenhouse gases, making it a feasible substitute for fossil fuels. This contributes to the reduction of carbon emissions, mitigates climate change, and enhances air quality. Wind energy, unlike fossil fuels, is a renewable resource. Investing in wind energy allows nations to reduce their reliance on imported fossil fuels, improving their energy security. This technique ensures stable energy costs while safeguarding economies from the volatility of oil and gas markets. Recent technological advancements have markedly decreased the cost of wind energy over the past few decades, establishing it as one of the most cost-effective sources of new electricity in many regions globally. These advancements have significantly enhanced turbine efficiency, augmented energy output, and reduced costs. The fluctuating characteristics of wind energy present an ongoing research challenge that has captivated the whole scientific community. Accurate forecasting of wind energy is essential for effective wind farm operation and management, smart grid stabilization, optimizing energy storage, investment and financial planning, and improved participation in energy markets. The extraction of wind energy depends on several factors, with wind speed being the most critical, as it directly affects the power output of a wind turbine. A wind turbine generates energy exponentially with wind velocity, exhibiting a cubic relationship. In addressing these research challenges, we have developed an efficient wind speed forecasting system employing advanced machine learning (ML) and statistical techniques. We created a hybrid time series forecasting model using an ensemble learning approach that integrates a Light Gradient Boosting Machine (LGBoost), Extreme Gradient Boosting (XGBoost), and Bayesian Linear Regression (BLR). We then utilized the Random Forest (RF) technique for feature selection. The model can predict wind speed with a minimum mean square error (MSE) of 0.096 and a maximum R² score of 0.924.Keywords: wind energy, renewable resource, turbine efficiency, affects power
Procedia PDF Downloads 78053 Dense and Quality Urban Living: A Comparative Study on Architectural Solutions in the European City
Authors: Flavia Magliacani
Abstract:
The urbanization of the last decades and its resulting urban growth entail problems both for environmental and economic sustainability. From this perspective, sustainable settlement development requires a horizontal decrease in the existing urban structure in order to enhance its greater concentration. Hence, new stratifications of the city fabric and architectural strategies ensuring high-density settlement models are possible solutions. However, although increasing housing density is necessary, it is not sufficient. Guaranteeing the quality of living is, indeed, equally essential. In order to meet this objective, many other factors come to light, namely the relationship between private and public spaces, the proximity to services, the accessibility of public transport, the local lifestyle habits, and the social needs. Therefore, how to safeguard both quality and density in human habitats? The present paper attempts to answer the previous main research question by addressing several sub-questions: Which architectural types meet the dual need for urban density and housing quality? Which project criteria should be taken into consideration by good design practices? What principles are desirable for future planning? The research will analyse different architectural responses adopted in four European cities: Paris, Lion, Rotterdam, and Amsterdam. In particular, it will develop a qualitative and comparative study of two specific architectural solutions which integrate housing density and quality living. On the one hand, the so-called 'self-contained city' model, on the other hand, the French 'Habitat Dense Individualisé' one. The structure of the paper will be as follows: the first part will develop a qualitative evaluation of some case studies, emblematic examples of the two above said architectural models. The second part will focus on the comparison among the chosen case studies. Finally, some conclusions will be drawn. The methodological approach, therefore, combines qualitative and comparative research. Parameters will be defined in order to highlight potential and criticality of each model in light of an interdisciplinary view. In conclusion, the present paper aims at shading light on design approaches which ensure a right balance between density and quality of the urban living in contemporary European cities.Keywords: density, future design, housing quality, human habitat
Procedia PDF Downloads 1128052 Multicellular Cancer Spheroids as an in Vitro Model for Localized Hyperthermia Study
Authors: Kamila Dus-Szachniewicz, Artur Bednarkiewicz, Katarzyna Gdesz-Birula, Slawomir Drobczynski
Abstract:
In modern oncology hyperthermia (HT) is defined as a controlled tumor heating. HT treatment temperatures range between 40–48 °C and can selectively damage heat-sensitive cancer cells or limit their further growth, usually with minimal injury to healthy tissues. Despite many advantages, conventional whole-body and regional hyperthermia have clinically relevant side effects, including cardiac and vascular disorders. Additionally, the lack of accessibility of deep-seated tumor sites and impaired targeting micrometastases renders HT less effective. It is believed that above disadvantages can significantly overcome by the application of biofunctionalized microparticles, which can specifically target tumor sites and become activated by an external stimulus to provide a sufficient cellular response. In our research, the unique optical tweezers system have enabled capturing the silica microparticles, primary cells and tumor spheroids in highly controllable and reproducible environment to study the impact of localized heat stimulation on normal and pathological cell and within multicellular tumor spheroid. High throughput spheroid model was introduced to better mimic the response to HT treatment on tumors in vivo. Additionally, application of local heating of tumor spheroids was performed in strictly controlled conditions resembling tumor microenvironment (temperature, pH, hypoxia, etc.), in response to localized and nonhomogeneous hyperthermia in the extracellular matrix, which promotes tumor progression and metastatic spread. The lack of precise control over these well- defined parameters in basic research leads to discrepancies in the response of tumor cells to the new treatment strategy in preclinical animal testing. The developed approach enables also sorting out subclasses of cells, which exhibit partial or total resistance to therapy, in order to understand fundamental aspects of the resistance shown by given tumor cells in response to given therapy mode and conditions. This work was funded by the National Science Centre (NCN, Poland) under grant no. UMO-2017/27/B/ST7/01255.Keywords: cancer spheroids, hyperthermia, microparticles, optical tweezers
Procedia PDF Downloads 1398051 A Multilevel Approach for Stroke Prediction Combining Risk Factors and Retinal Images
Authors: Jeena R. S., Sukesh Kumar A.
Abstract:
Stroke is one of the major reasons of adult disability and morbidity in many of the developing countries like India. Early diagnosis of stroke is essential for timely prevention and cure. Various conventional statistical methods and computational intelligent models have been developed for predicting the risk and outcome of stroke. This research work focuses on a multilevel approach for predicting the occurrence of stroke based on various risk factors and invasive techniques like retinal imaging. This risk prediction model can aid in clinical decision making and help patients to have an improved and reliable risk prediction.Keywords: prediction, retinal imaging, risk factors, stroke
Procedia PDF Downloads 3088050 Two Kinds of Self-Oscillating Circuits Mechanically Demonstrated
Authors: Shiang-Hwua Yu, Po-Hsun Wu
Abstract:
This study introduces two types of self-oscillating circuits that are frequently found in power electronics applications. Special effort is made to relate the circuits to the analogous mechanical systems of some important scientific inventions: Galileo’s pendulum clock and Coulomb’s friction model. A little touch of related history and philosophy of science will hopefully encourage curiosity, advance the understanding of self-oscillating systems and satisfy the aspiration of some students for scientific literacy. Finally, the two self-oscillating circuits are applied to design a simple class-D audio amplifier.Keywords: self-oscillation, sigma-delta modulator, pendulum clock, Coulomb friction, class-D amplifier
Procedia PDF Downloads 3618049 Non-Destructive Inspection for Tunnel Lining Concrete with Small Void by Using Ultrasonic
Authors: Yasuyuki Nabeshima
Abstract:
Many tunnels which have been constructed since more than 50 years were existing in Japan. Lining concrete in these tunnels have many problems such as crack, flacking and void. Inner void between lining concrete and rock was very hard to find by outside visual check and hammering test. In this paper, non-destructive inspection by using ultrasonic was applied to investigate inner void. A model concrete with inner void was used as specimen and ultrasonic inspection was applied to specify the location and the size of void. As a result, ultrasonic inspection could accurately find the inner void.Keywords: tunnel, lining concrete, void, non-destructive inspection, ultrasonic
Procedia PDF Downloads 2208048 Induction Machine Bearing Failure Detection Using Advanced Signal Processing Methods
Authors: Abdelghani Chahmi
Abstract:
This article examines the detection and localization of faults in electrical systems, particularly those using asynchronous machines. First, the process of failure will be characterized, relevant symptoms will be defined and based on those processes and symptoms, a model of those malfunctions will be obtained. Second, the development of the diagnosis of the machine will be shown. As studies of malfunctions in electrical systems could only rely on a small amount of experimental data, it has been essential to provide ourselves with simulation tools which allowed us to characterize the faulty behavior. Fault detection uses signal processing techniques in known operating phases.Keywords: induction motor, modeling, bearing damage, airgap eccentricity, torque variation
Procedia PDF Downloads 141