Search results for: soil conductivity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3972

Search results for: soil conductivity

2892 Numerical Simulation of Footing on Reinforced Loose Sand

Authors: M. L. Burnwal, P. Raychowdhury

Abstract:

Earthquake leads to adverse effects on buildings resting on soft soils. Mitigating the response of shallow foundations on soft soil with different methods reduces settlement and provides foundation stability. Few methods such as the rocking foundation (used in Performance-based design), deep foundation, prefabricated drain, grouting, and Vibro-compaction are used to control the pore pressure and enhance the strength of the loose soils. One of the problems with these methods is that the settlement is uncontrollable, leading to differential settlement of the footings, further leading to the collapse of buildings. The present study investigates the utility of geosynthetics as a potential improvement of the subsoil to reduce the earthquake-induced settlement of structures. A steel moment-resisting frame building resting on loose liquefiable dry soil, subjected to Uttarkashi 1991 and Chamba 1995 earthquakes, is used for the soil-structure interaction (SSI) analysis. The continuum model can simultaneously simulate structure, soil, interfaces, and geogrids in the OpenSees framework. Soil is modeled with PressureDependentMultiYield (PDMY) material models with Quad element that provides stress-strain at gauss points and is calibrated to predict the behavior of Ganga sand. The model analyzed with a tied degree of freedom contact reveals that the system responses align with the shake table experimental results. An attempt is made to study the responses of footing structure and geosynthetics with unreinforced and reinforced bases with varying parameters. The result shows that geogrid reinforces shallow foundation effectively reduces the settlement by 60%.

Keywords: settlement, shallow foundation, SSI, continuum FEM

Procedia PDF Downloads 194
2891 Characterization and Evaluation of Soil Resources for Sustainable Land Use Planning of Timatjatji Community Farm, Limpopo, South Africa

Authors: M. Linda Phooko, Phesheya E. Dlamini, Vusumuzi E. Mbanjwa, Rhandu Chauke

Abstract:

The decline of yields as a consequence of miss-informed land-use decisions poses a threat to sustainable agriculture in South Africa. The non-uniform growth pattern of wheat crop and the yields below expectations has been one of the main concerns for Timatjatji community farmers. This study was then conducted to characterize, classify, and evaluate soils of the farm for sustainable land use planning. A detailed free survey guided by surface features was conducted on a 25 ha farm to check soil variation. It was revealed that Sepane (25%), Bonheim (21%), Rensburg (18%), Katspruit (15%), Arcadia (12%) and Dundee (9%) were the dominant soil forms found across the farm. Field soil description was done to determine morphological characteristics of the soils which were matched with slope percentage and climate to assess the potential of the soils. The land capability results showed that soils were generally shallow due to high clay content in the B horizon. When the climate of the area was factored in (i.e. land potential), it further revealed that the area has low cropping potential due to heat, moisture stress and shallow soils. This implies that the farm is not suitable for annual cropping but can be highly suitable for planted pastures.

Keywords: characterization, land capability, land evaluation, land potential

Procedia PDF Downloads 199
2890 Increase of Quinoa Tolerance to High Salinity Involves Agrophysiological Parameters Improvement by Soil Amendments

Authors: Bourhim Mohammad Redouane, Cheto Said, Qaddoury Ahmed, Hirich Abdelaziz, Ghoulam Cherki

Abstract:

Several abiotic stresses cause disruptions in the properties of agricultural soils and hence their loss worldwide. Among these abiotic stresses, Salinity to which most crops were exposed caused an important reduction in their productivity. Therefore, in order to deal with this challenging problem, we rely on cultivating alternative plants that can tolerate the adverse salinity stress, such as quinoa (Chenopodium quinoa). Although even it was qualified as tolerant to Salinity, the quinoa’s performance could be negatively affected under high salinity levels. Thus, our study aims to assess the effects of the application of soil amendments to improve quinoa tolerance levels under high Salinity. Thus, three quinoa varieties (Puno, ICBA-Q5, and Titicaca) were grown on agricultural soil under a greenhouse with five amendments; Biochar “Bc,” compost “Cp,” black soldier insect frass “If,” cow manure “Fb” and phosphogypsum “Pg.” Two controls without amendment were adopted consisting of the salinized negative one “T(-)” and the non-salinized positive one “T(+).” After 20 days from sowing, the plants were irrigated with a saline solution of 16 dS/m prepared with NaCl for a period of 60 days. Then plant tolerance was assessed based on agrophysiological parameters. The results showed that salinity stress negatively affected the quinoa plants for all the analyzed agrophysiological parameters in the three varieties compared to their corresponding controls “T(+).” However, most of these parameters were significantly enhanced by the application of soil amendments compared to their negative controls “T(-).” For instance, the biomass was improved by 91.8% and 69.4%, respectively, for Puno and Titicaca varieties amended with “Bc.” The total nitrogen amount was increased by 220% for Titicaca and ICBA-Q5 plants cultivated in the soil amended with “If.” One of the most important improvements was noted for potassium content in Titicaca amended with “Pg,” which was six times higher compared to the negative control. Besides, the plants of Puno amended with “Cp” showed an improvement of 75.9% for the stomatal conductance and 58.5% for nitrate reductase activity. Nevertheless, the pronounced varietal difference was registered between Puno and Titicaca, presenting the highest performances mainly for the soil amended with “If,” “Bc,” and “Pg.”

Keywords: chenopodium quinoa, salinity, soil amendments, growth, nutrients, nitrate reductase

Procedia PDF Downloads 73
2889 A Hybrid System for Boreholes Soil Sample

Authors: Ali Ulvi Uzer

Abstract:

Data reduction is an important topic in the field of pattern recognition applications. The basic concept is the reduction of multitudinous amounts of data down to the meaningful parts. The Principal Component Analysis (PCA) method is frequently used for data reduction. The Support Vector Machine (SVM) method is a discriminative classifier formally defined by a separating hyperplane. In other words, given labeled training data, the algorithm outputs an optimal hyperplane which categorizes new examples. This study offers a hybrid approach that uses the PCA for data reduction and Support Vector Machines (SVM) for classification. In order to detect the accuracy of the suggested system, two boreholes taken from the soil sample was used. The classification accuracies for this dataset were obtained through using ten-fold cross-validation method. As the results suggest, this system, which is performed through size reduction, is a feasible system for faster recognition of dataset so our study result appears to be very promising.

Keywords: feature selection, sequential forward selection, support vector machines, soil sample

Procedia PDF Downloads 455
2888 Electrochemical Study of Prepared Cubic Fluorite Structured Titanium Doped Lanthanum Gallium Cerate Electrolyte for Low Temperature Solid Oxide Fuel Cell

Authors: Rida Batool, Faizah Altaf, Saba Nadeem, Afifa Aslam, Faisal Alamgir, Ghazanfar Abbas

Abstract:

Today, the need of the hour is to find out alternative renewable energy resources in order to reduce the burden on fossil fuels and prevent alarming environmental degradation. Solid oxide fuel cell (SOFC) is considered a good alternative energy conversion device because it is environmentally benign and supplies energy on demand. The only drawback associated with SOFC is its high operating temperature. In order to reduce operating temperature, different types of composite material are prepared. In this work, titanium doped lanthanum gallium cerate (LGCT) composite is prepared through the co-precipitation method as electrolyte and examined for low temperature SOFCs (LTSOFCs). The structural properties are analyzed by X-Ray Diffractometry (XRD) and Fourier Transform Infrared (FTIR) Spectrometry. The surface properties are investigated by Scanning Electron Microscopy (SEM). The electrolyte LGCT has the formula LGCTO₃ because it showed two phases La.GaO and Ti.CeO₂. The average particle size is found to be (32 ± 0.9311) nm. The ionic conductivity is achieved to be 0.073S/cm at 650°C. Arrhenius plots are drawn to calculate activation energy and found 2.96 eV. The maximum power density and current density are achieved at 68.25mW/cm² and 357mA/cm², respectively, at 650°C with hydrogen. The prepared material shows excellent ionic conductivity at comparatively low temperature, that makes it a potentially good candidate for LTSOFCs.

Keywords: solid oxide fuel cell, LGCTO₃, cerium composite oxide, ionic conductivity, low temperature electrolyte

Procedia PDF Downloads 108
2887 Evaluation of the Mechanical Behavior of a Retaining Wall Structure on a Weathered Soil through Probabilistic Methods

Authors: P. V. S. Mascarenhas, B. C. P. Albuquerque, D. J. F. Campos, L. L. Almeida, V. R. Domingues, L. C. S. M. Ozelim

Abstract:

Retaining slope structures are increasingly considered in geotechnical engineering projects due to extensive urban cities growth. These kinds of engineering constructions may present instabilities over the time and may require reinforcement or even rebuilding of the structure. In this context, statistical analysis is an important tool for decision making regarding retaining structures. This study approaches the failure probability of the construction of a retaining wall over the debris of an old and collapsed one. The new solution’s extension length will be of approximately 350 m and will be located over the margins of the Lake Paranoá, Brasilia, in the capital of Brazil. The building process must also account for the utilization of the ruins as a caisson. A series of in situ and laboratory experiments defined local soil strength parameters. A Standard Penetration Test (SPT) defined the in situ soil stratigraphy. Also, the parameters obtained were verified using soil data from a collection of masters and doctoral works from the University of Brasília, which is similar to the local soil. Initial studies show that the concrete wall is the proper solution for this case, taking into account the technical, economic and deterministic analysis. On the other hand, in order to better analyze the statistical significance of the factor-of-safety factors obtained, a Monte Carlo analysis was performed for the concrete wall and two more initial solutions. A comparison between the statistical and risk results generated for the different solutions indicated that a Gabion solution would better fit the financial and technical feasibility of the project.

Keywords: economical analysis, probability of failure, retaining walls, statistical analysis

Procedia PDF Downloads 406
2886 Synthesis and Electrochemical Characterization of a Copolymer (PANI/PEDOT:PSS) for Application in Supercapacitors

Authors: Naima Boudieb, Mohamed Loucif Seaid, Imad Rati, Imane Benammane

Abstract:

The aim of this study is to synthesis of a copolymer PANI/PEDOT:PSS by electrochemical means to apply in supercapacitors. Polyaniline (PANI) is a conductive polymer; it was synthesized by electrochemical polymerization. It exhibits very stable properties in different environments, whereas PEDOT:PSS is a conductive polymer based on poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(styrene sulfonate)(PSS). It is commonly used with polyaniline to improve its electrical conductivity. Several physicochemical and electrochemical techniques were used for the characterization of PANI/PEDOT:PSS: cyclic voltammetry (VC), electrochemical impedance spectroscopy (EIS), open circuit potential, SEM, X-ray diffraction, etc. The results showed that the PANI/PEDOT:PSS composite is a promising material for supercapacitors due to its high electrical conductivity and high porosity. Electrochemical and physicochemical characterization tests have shown that the composite has high electrical and structural performances, making it a material of choice for high-performance energy storage applications.

Keywords: energy storage, supercapacitors, SIE, VC, PANI, poly(3, 4-ethylenedioxythiophene, PEDOT, polystyrene sulfonate

Procedia PDF Downloads 63
2885 Studies on the Characterization and Machinability of Duplex Stainless Steel 2205 during Dry Turning

Authors: Gaurav D. Sonawane, Vikas G. Sargade

Abstract:

The present investigation is a study of the effect of advanced Physical Vapor Deposition (PVD) coatings on cutting temperature residual stresses and surface roughness during Duplex Stainless Steel (DSS) 2205 turning. Austenite stabilizers like nickel, manganese, and molybdenum reduced the cost of DSS. Surface Integrity (SI) plays an important role in determining corrosion resistance and fatigue life. Resistance to various types of corrosion makes DSS suitable for applications with critical environments like Heat exchangers, Desalination plants, Seawater pipes and Marine components. However, lower thermal conductivity, poor chip control and non-uniform tool wear make DSS very difficult to machine. Cemented carbide tools (M grade) were used to turn DSS in a dry environment. AlTiN and AlTiCrN coatings were deposited using advanced PVD High Pulse Impulse Magnetron Sputtering (HiPIMS) technique. Experiments were conducted with cutting speed of 100 m/min, 140 m/min and 180 m/min. A constant feed and depth of cut of 0.18 mm/rev and 0.8 mm were used, respectively. AlTiCrN coated tools followed by AlTiN coated tools outperformed uncoated tools due to properties like lower thermal conductivity, higher adhesion strength and hardness. Residual stresses were found to be compressive for all the tools used for dry turning, increasing the fatigue life of the machined component. Higher cutting temperatures were observed for coated tools due to its lower thermal conductivity, which results in very less tool wear than uncoated tools. Surface roughness with uncoated tools was found to be three times higher than coated tools due to lower coefficient of friction of coating used.

Keywords: cutting temperature, DSS2205, dry turning, HiPIMS, surface integrity

Procedia PDF Downloads 134
2884 Effects of Application of Rice Husk Charcoal-Coated Urea and Rice Straw Compost on Growth, Yield, and Properties of Lowland Rice

Authors: D. A. S. Gamage, B. F. A. Basnayake, W.A.J.M. De Costa

Abstract:

Rice is the staple food of Sri Lankans thus; rice cultivation is the major agricultural activity of the country. The application of inorganic fertilizer has become a burden to the country. The excessive application of organic and inorganic fertilizers can potentially lead to deterioration of the quality of water. In mixing both urea and rice husk charcoal and rice straw compost in soils causes a slow release of nitrogen fertilizer, thus reducing the cost of importations of nitrogen based fertilizers per unit area of cultivation. Objective of this study was to evaluate rice husk charcoal coated urea as a slow releasing fertilizer and compare the total N,P, K, organic matter in soil and yield of rice production. Five treatments were used for twenty pots (pot size 30 cm diameter and 45 cm height) each replicated four times as: inorganic fertilizer only (Urea, TSP and MOP) (Treatment 1); rice husk charcoal coated urea, TSP and MOP (Treatment 2); inorganic fertilizer (Urea, TSP and MOP) with rice straw compost only (Treatment 3); rice husk charcoal urea, TSP and MOP with rice straw compost (Treatment 4); and no fertilizer as the control (Treatment 5). Rice grain yield was significantly higher in treatment 4 where rice husk charcoal coated urea, TSP and MOP with rice straw compost. The lowest yield was observed in control (treatment 5). The lower the value of the nitrogen to phosphorous ratio in soil, it indicates higher uptake of phosphorous. Charcoal can be used as a soil amendment and organic fertilizer, but adjustment of pH was required at high application rates. K content of soil of treatment 3 and 4 were the highest with compared to the treatment 1. Rice husk charcoal coated urea can potentially be used as a slow releasing nitrogen fertilizer.

Keywords: charcoal, rice husk, nitrogen to phosphorous ratio, soil amendment

Procedia PDF Downloads 308
2883 A Research on the Effect of Soil-Structure Interaction on the Dynamic Response of Symmetrical Reinforced Concrete Buildings

Authors: Adinew Gebremeskel Tizazu

Abstract:

The effect of soil-structure interaction on the dynamic response of reinforced concrete buildings of regular and symmetrical geometry are considered in this study. The structures are presumed to be generally embedded in a homogenous soil formation underlain by very stiff material or bedrock. The structure-foundation–soil system is excited at the base by an earthquake ground motion. The superstructure is idealized as a system with lumped masses concentrated at the floor levels, and coupled with the substructure. The substructure system, which comprises of the foundation and soil, is represented, and replaced by springs and dashpots. Frequency-dependent impedances of the foundation system are incorporated in the discrete model in terms of the springs and dashpots coefficients. The excitation applied to the model is field ground motions of actual earthquake records. Modal superposition principle is employed to transform the equations of motion in geometrical coordinates to modal coordinates. However, the modal equations remain coupled with respect to damping terms due to the difference in damping mechanisms of the superstructure and the soil. Hence, proportional damping for the coupled structural system may not be assumed. An iterative approach is adopted and programmed to solve the system of coupled equations of motion in modal coordinates to obtain the displacement responses of the system. Parametric studies for responses of building structures with regular and symmetric plans of different structural properties and heights are made for fixed and flexible base conditions, for different soil conditions encountered in Addis Ababa. The displacement, base shear and base overturning moments are used in the comparison of different types of structures for various foundation embedment depths, site conditions and height of structures. These values are compared against those of fixed base structure. The study shows that the flexible base structures, generally exhibit different responses from those structures with fixed base. Basically, the natural circular frequencies, the base shears and the inter-story displacements for the flexible base are less than those of the fixed base structures. This trend is particularly evident when the flexible soil has large thickness. In contrast, the trend becomes less predictable, when the thickness of the flexible soil decreases. Moreover, in the latter case, the iteration undulates significantly making the prediction difficult. This is attributed to the highly jagged nature of the impedance functions of frequencies for such formations. In this case, it is difficult to conclude whether the conventional fixed-base approach yields conservative design forces, as is the case for soil formations of large thickness.

Keywords: effect of soil structure, dynamic response corroborated, the modal superposition principle, parametric studies

Procedia PDF Downloads 32
2882 Qusai-Solid-State Electrochromic Device Based on PolyMethyl Methacrylate (PMMA)/Succinonitrile Gel Polymer Electrolyte

Authors: Jen-Yuan Wang, Min-Chuan Wang, Der-Jun Jan

Abstract:

Polymer electrolytes can be classified into four major categories, solid polymer electrolytes (SPEs), gel polymer electrolytes (GPEs), polyelectrolytes and composite polymer electrolytes. SPEs suffer from low ionic conductivity at room temperature. The main problems for GPEs are the poor thermal stability and mechanical properties. In this study, a GPE containing PMMA and succinonitrile is prepared to solve the problems mentioned above, and applied to the assembly of a quasi-solid-state electrochromic device (ECD). In the polymer electrolyte, poly(methyl methacrylate) (PMMA) is the polymer matrix and propylene carbonate (PC) is used as the plasticizer. To enhance the mechanical properties of this GPE, succinonitrile (SN) is introduced as the additive. For the electrochromic materials, tungsten oxide (WO3) is used as the cathodic coloring film, which is fabricated by pulsed dc magnetron reactive sputtering. For the anodic coloring material, Prussian blue nanoparticles (PBNPs) are synthesized and coated on the transparent Sn-doped indium oxide (ITO) glass. The thickness of ITO, WO3 and PB film is 110, 170 and 200 nm, respectively. The size of the ECD is 5×5 cm2. The effect of the introduction of SN into the GPEs is discussed by observing the electrochromic behaviors of the WO3-PB ECD. Besides, the composition ratio of PC to SN is also investigated by measuring the ionic conductivity. The optimized ratio of PC to SN is 4:1, and the ionic conductivity under this condition is 6.34x10-5 S∙cm-1, which is higher than that of PMMA/PC (1.35x10-6 S∙cm-1) and PMMA/EC/PC (4.52x10-6 S∙cm-1). This quasi-solid-state ECD fabricated with the PMMA/SN based GPE shows an optical contrast of ca. 53% at 690 nm. The optical transmittance of the ECD can be reversibly modulated from 72% (bleached) to 19% (darkened), by applying potentials of 1.5 and -2.2 V, respectively. During the durability test, the optical contrast of this ECD remains 44.5% after 2400 cycles, which is 83% of the original one.

Keywords: electrochromism, tungsten oxide, prussian blue, poly(methyl methacrylate), succinonitrile

Procedia PDF Downloads 297
2881 Toxic Metal and Radiological Risk Assessment of Soil, Water and Vegetables around a Gold Mine Turned Residential Area in Mokuro Area of Ile-Ife, Osun State Nigeria: An Implications for Human Health

Authors: Grace O. Akinlade, Danjuma D. Maza, Oluwakemi O. Olawolu, Delight O. Babalola, John A. O. Oyekunle, Joshua O. Ojo

Abstract:

The Mokuro area of Ile-Ife, South West Nigeria, was well known for gold mining in the past (about twenty years ago). However, the place has since been reclaimed and converted to residential area without any environmental risk assessment of the impact of the mining tailings on the environment. Soil, water, and plant samples were collected from 4 different locations around the mine-turned-residential area. Soil samples were pulverized and sieved into finer particles, while the plant samples were dried and pulverized. All the samples were digested and analyzed for As, Pb, Cd, and Zn using atomic absorption spectroscopy (AAS). From the analysis results, the hazard index (HI) was then calculated for the metals. The soil and plant samples were air dried and pulverized, then weighed, after which the samples were packed into special and properly sealed containers to prevent radon gas leakage. After the sealing, the samples were kept for 28 days to attain secular equilibrium. The concentrations of 40K, 238U, and 232Th in the samples were measured using a cesium iodide (CsI) spectrometer and URSA software. The AAS analysis showed that As, Pb, Cd (Toxic metals), and Zn (essential trace metals) are in concentrations lower than permissible limits in plants and soil samples, while the water samples had concentrations higher than permissible limits. The calculated health indices (HI) show that HI for water is >1 and that of plants and soil is <1. Gamma spectrometry result shows high levels of activity concentrations above the recommended limits for all the soil and plant samples collected from the area. Only the water samples have activity concentrations below the recommended limit. Consequently, the absorbed dose, annual effective dose, and excess lifetime cancer risk are all above the recommended safe limit for all the samples except for water samples. In conclusion, all the samples collected from the area are either contaminated with toxic metals or they pose radiological hazards to the consumers. Further detailed study is therefore recommended in order to be able to advise the residents appropriately.

Keywords: toxic metals, gamma spectrometry, Ile-Ife, radiological hazards, gold mining

Procedia PDF Downloads 57
2880 Indium Oxide/Scandium Doping Yttria-Stabilized Zirconia Composite Films as Electrolytes for Solid Oxide Fuel Cells

Authors: Yong-Jie Lin, Yi-Feng Lin

Abstract:

In this study, scandium-doped yttria-stabilized zirconia (ScYSZ) and In2O3 nanoparticles (NPs) with cubic crystalline structures were successfully prepared using a facile hydrothermal process. ScYSZ films were prepared by the pressing of ScYSZ NPs and were further used for the electrolyte of solid oxide fuel cells (SOFCs). To increase the ionic conductivity of the ScYSZ electrolyte, different amounts of In2O3 NPs [0 wt% (X(In2O3)=0), 0.21 wt% (X(In2O3)=0.001) and 1.13 wt% (X(In2O3)=0.005)] were doped in the ScYSZ films to increase their oxygen vacancy. The result shows In2O3 NP/ScYSZ films with 1.13 wt% (X(In2O3 )=0.005) In2O3 NPs doping are with largest ionic conductivity of 0.057Ω-1 cm-1 at 900oC, which is 1.6 and 1.8 times higher than YSZ and In2O3 NP/ScYSZ films with 0.21 wt% (X(In2O3)=0.001) In2O3 NPs doping, respectively.

Keywords: indium oxide/scandium doping Yttria-stabilized zirconia, solid oxide fuel cells, scandium-doped yttria-stabilized zirconia, indium oxide

Procedia PDF Downloads 464
2879 Towards a Vulnerability Model Assessment of The Alexandra Jukskei Catchment in South Africa

Authors: Vhuhwavho Gadisi, Rebecca Alowo, German Nkhonjera

Abstract:

This article sets out to detail an investigation of groundwater management in the Juksei Catchment of South Africa through spatial mapping of key hydrological relationships, interactions, and parameters in catchments. The Department of Water Affairs (DWA) noted gaps in the implementation of the South African National Water Act 1998: article 16, including the lack of appropriate models for dealing with water quantity parameters. For this reason, this research conducted a drastic GIS-based groundwater assessment to improve groundwater monitoring system in the Juksei River basin catchment of South Africa. The methodology employed was a mixed-methods approach/design that involved the use of DRASTIC analysis, questionnaire, literature review and observations to gather information on how to help people who use the Juskei River. GIS (geographical information system) mapping was carried out using a three-parameter DRASTIC (Depth to water, Recharge, Aquifer media, Soil media, Topography, Impact of the vadose zone, Hydraulic conductivity) vulnerability methodology. In addition, the developed vulnerability map was subjected to sensitivity analysis as a validation method. This approach included single-parameter sensitivity, sensitivity to map deletion, and correlation analysis of DRASTIC parameters. The findings were that approximately 5.7% (45km2) of the area in the northern part of the Juksei watershed is highly vulnerable. Approximately 53.6% (428.8 km^2) of the basin is also at high risk of groundwater contamination. This area is mainly located in the central, north-eastern, and western areas of the sub-basin. The medium and low vulnerability classes cover approximately 18.1% (144.8 km2) and 21.7% (168 km2) of the Jukskei River, respectively. The shallow groundwater of the Jukskei River belongs to a very vulnerable area. Sensitivity analysis indicated that water depth, water recharge, aquifer environment, soil, and topography were the main factors contributing to the vulnerability assessment. The conclusion is that the final vulnerability map indicates that the Juksei catchment is highly susceptible to pollution, and therefore, protective measures are needed for sustainable management of groundwater resources in the study area.

Keywords: contamination, DRASTIC, groundwater, vulnerability, model

Procedia PDF Downloads 83
2878 A New Binder Mineral for Cement Stabilized Road Pavements Soils

Authors: Aydın Kavak, Özkan Coruk, Adnan Aydıner

Abstract:

Long-term performance of pavement structures is significantly impacted by the stability of the underlying soils. In situ subgrades often do not provide enough support required to achieve acceptable performance under traffic loading and environmental demands. NovoCrete® is a powder binder-mineral for cement stabilized road pavements soils. NovoCrete® combined with Portland cement at optimum water content increases the crystallize formations during the hydration process, resulting in higher strengths, neutralizes pH levels, and provides water impermeability. These changes in soil properties may lead to transforming existing unsuitable in-situ materials into suitable fill materials. The main features of NovoCrete® are: They are applicable to all types of soil, reduce premature cracking and improve soil properties, creating base and subbase course layers with high bearing capacity by reducing hazardous materials. It can be used also for stabilization of recyclable aggregates and old asphalt pavement aggregate, etc. There are many applications in Germany, Turkey, India etc. In this paper, a few field application in Turkey will be discussed. In the road construction works, this binder material is used for cement stabilization works. In the applications 120-180 kg cement is used for 1 m3 of soil with a 2 % of binder NovoCrete® material for the stabilization. The results of a plate loading test in a road construction site show 1 mm deformation which is very small under 7 kg/cm2 loading. The modulus of subgrade reaction increase from 611 MN/m3 to 3673 MN/m3.The soaked CBR values for stabilized soils increase from 10-20 % to 150-200 %. According to these data weak subgrade soil can be used as a base or sub base after the modification. The potential reduction in the need for quarried materials will help conserve natural resources. The use of on-site or nearby materials in fills, will significantly reduce transportation costs and provide both economic and environmental benefits.

Keywords: soil, stabilization, cement, binder, Novocrete, additive

Procedia PDF Downloads 221
2877 Causes Analysis of Vacuum Consolidation Failure to Soft Foundation Filled by Newly Dredged Mud

Authors: Bao Shu-Feng, Lou Yan, Dong Zhi-Liang, Mo Hai-Hong, Chen Ping-Shan

Abstract:

For soft foundation filled by newly dredged mud, after improved by Vacuum Preloading Technology (VPT), the soil strength was increased only a little, the effective improved depth was small, and the ground bearing capacity is still low. To analyze the causes in depth, it was conducted in laboratory of several comparative single well model experiments of VPT. It was concluded: (1) it mainly caused serious clogging problem and poor drainage performance in vertical drains of high content of fine soil particles and strong hydrophilic minerals in dredged mud, too fast loading rate at the early stage of vacuum preloading (namely rapidly reaching-80kPa) and too small characteristic opening size of the filter of the existed vertical drains; (2) it commonly reduced the drainage efficiency of drainage system, in turn weaken vacuum pressure in soils and soil improvement effect of the greater partial loss and friction loss of vacuum pressure caused by larger curvature of vertical drains and larger transfer resistance of vacuum pressure in horizontal drain.

Keywords: newly dredged mud, single well model experiments of vacuum preloading technology, poor drainage performance of vertical drains, poor soil improvement effect, causes analysis

Procedia PDF Downloads 287
2876 Numerical Simulation of Large-Scale Landslide-Generated Impulse Waves With a Soil‒Water Coupling Smooth Particle Hydrodynamics Model

Authors: Can Huang, Xiaoliang Wang, Qingquan Liu

Abstract:

Soil‒water coupling is an important process in landslide-generated impulse waves (LGIW) problems, accompanied by large deformation of soil, strong interface coupling and three-dimensional effect. A meshless particle method, smooth particle hydrodynamics (SPH) has great advantages in dealing with complex interface and multiphase coupling problems. This study presents an improved soil‒water coupled model to simulate LGIW problems based on an open source code DualSPHysics (v4.0). Aiming to solve the low efficiency problem in modeling real large-scale LGIW problems, graphics processing unit (GPU) acceleration technology is implemented into this code. An experimental example, subaerial landslide-generated water waves, is simulated to demonstrate the accuracy of this model. Then, the Huangtian LGIW, a real large-scale LGIW problem is modeled to reproduce the entire disaster chain, including landslide dynamics, fluid‒solid interaction, and surge wave generation. The convergence analysis shows that a particle distance of 5.0 m can provide a converged landslide deposit and surge wave for this example. Numerical simulation results are in good agreement with the limited field survey data. The application example of the Huangtian LGIW provides a typical reference for large-scale LGIW assessments, which can provide reliable information on landslide dynamics, interface coupling behavior, and surge wave characteristics.

Keywords: soil‒water coupling, landslide-generated impulse wave, large-scale, SPH

Procedia PDF Downloads 64
2875 Evaluation of Critical State Behavior of Granular Soil in Confined Compression Tests

Authors: Rabia Chaudhry, Andrew Dawson

Abstract:

Identification of steady/critical state of coarse granular soil is challenging at conventional pressures. This study examines the drained and undrained triaxial tests for large strains on loose to dense, uniformly graded, Leighton Buzzard Fraction A sand. The triaxial tests are conducted under controlled test conditions. The comparison of soil behavior on shear strength characteristics at different effective stresses has been studied at the medium to large strains levels and the uniqueness of the critical state was discussed. The test results showed that there were two steady/critical state lines for drained and undrained conditions at confining pressures less than 1000 kPa. A critical state friction angle is not constant and the overall scatter in the steady/critical state line for the tested sand is ±0.01 in terms of void ratio at stress levels less than 1000 kPa.

Keywords: critical state, stress strain behavior, fabric/structure, triaxial tests

Procedia PDF Downloads 412
2874 Altering the Solid Phase Speciation of Arsenic in Paddy Soil: An Approach to Reduce Rice Grain Arsenic Uptake

Authors: Supriya Majumder, Pabitra Banik

Abstract:

Fates of Arsenic (As) on the soil-plant environment belong to the critical emerging issue, which in turn to appraises the threatening implications of a human health risk — assessing the dynamics of As in soil solid components are likely to impose its potential availability towards plant uptake. In the present context, we introduced an improved Sequential Extraction Procedure (SEP) questioning to identify solid-phase speciation of As in paddy soil under variable soil environmental conditions during two consecutive seasons of rice cultivation practices. We coupled gradients of water management practices with the addition of fertilizer amendments to assess the changes in a partition of As through a field experimental study during monsoon and post-monsoon season using two rice cultivars. Water management regimes were varied based on the methods of cultivation of rice by Conventional (waterlogged) vis-a-vis System of Rice Intensification-SRI (saturated). Fertilizer amendment through the nutrient treatment of absolute control, NPK-RD, NPK-RD + Calcium silicate, NPK-RD + Ferrous sulfate, Farmyard manure (FYM), FYM + Calcium silicate, FYM + Ferrous sulfate, Vermicompost (VC), VC + Calcium silicate, VC + Ferrous sulfate were selected to construct the study. After harvest, soil samples were sequentially extracted to estimate partition of As among the different fractions such as: exchangeable (F1), specifically sorbed (F2), As bound to amorphous Fe oxides (F3), crystalline Fe oxides (F4), organic matter (F5) and residual phase (F6). Results showed that the major proportions of As were found in F3, F4 and F6, whereas F1 exhibited the lowest proportion of total soil As. Among the nutrient treatment mediated changes on As fractions, the application of organic manure and ferrous sulfate were significantly found to restrict the release of As from exchangeable phase. Meanwhile, conventional practice produced much higher release of As from F1 as compared to SRI, which may substantially increase the environmental risk. In contrast, SRI practice was found to retain a significantly higher proportion of As in F2, F3, and F4 phase resulting restricted mobilization of As. This was critically reflected towards rice grain As bioavailability where the reduction in grain As concentration of 33% and 55% in SRI concerning conventional treatment (p <0.05) during monsoon and post-monsoon season respectively. Also, prediction assay for rice grain As bioavailability based on the linear regression model was performed. Results demonstrated that rice grain As concentration was positively correlated with As concentration in F1 and negatively correlated with F2, F3, and F4 with a satisfactory level of variation being explained (p <0.001). Finally, we conclude that F1, F2, F3 and F4 are the major soil. As fractions critically may govern the potential availability of As in soil and suggest that rice cultivation with the SRI treatment is particularly at less risk of As availability in soil. Such exhaustive information may be useful for adopting certain management practices for rice grown in contaminated soil concerning to the environmental issues in particular.

Keywords: arsenic, fractionation, paddy soil, potential availability

Procedia PDF Downloads 123
2873 Novel Numerical Technique for Dusty Plasma Dynamics (Yukawa Liquids): Microfluidic and Role of Heat Transport

Authors: Aamir Shahzad, Mao-Gang He

Abstract:

Currently, dusty plasmas motivated the researchers' widespread interest. Since the last two decades, substantial efforts have been made by the scientific and technological community to investigate the transport properties and their nonlinear behavior of three-dimensional and two-dimensional nonideal complex (dusty plasma) liquids (NICDPLs). Different calculations have been made to sustain and utilize strongly coupled NICDPLs because of their remarkable scientific and industrial applications. Understanding of the thermophysical properties of complex liquids under various conditions is of practical interest in the field of science and technology. The determination of thermal conductivity is also a demanding question for thermophysical researchers, due to some reasons; very few results are offered for this significant property. Lack of information of the thermal conductivity of dense and complex liquids at different parameters related to the industrial developments is a major barrier to quantitative knowledge of the heat flux flow from one medium to another medium or surface. The exact numerical investigation of transport properties of complex liquids is a fundamental research task in the field of thermophysics, as various transport data are closely related with the setup and confirmation of equations of state. A reliable knowledge of transport data is also important for an optimized design of processes and apparatus in various engineering and science fields (thermoelectric devices), and, in particular, the provision of precise data for the parameters of heat, mass, and momentum transport is required. One of the promising computational techniques, the homogenous nonequilibrium molecular dynamics (HNEMD) simulation, is over viewed with a special importance on the application to transport problems of complex liquids. This proposed work is particularly motivated by the FIRST TIME to modify the problem of heat conduction equations leads to polynomial velocity and temperature profiles algorithm for the investigation of transport properties with their nonlinear behaviors in the NICDPLs. The aim of proposed work is to implement a NEMDS algorithm (Poiseuille flow) and to delve the understanding of thermal conductivity behaviors in Yukawa liquids. The Yukawa system is equilibrated through the Gaussian thermostat in order to maintain the constant system temperature (canonical ensemble ≡ NVT)). The output steps will be developed between 3.0×105/ωp and 1.5×105/ωp simulation time steps for the computation of λ data. The HNEMD algorithm shows that the thermal conductivity is dependent on plasma parameters and the minimum value of lmin shifts toward higher G with an increase in k, as expected. New investigations give more reliable simulated data for the plasma conductivity than earlier known simulation data and generally the plasma λ0 by 2%-20%, depending on Γ and κ. It has been shown that the obtained results at normalized force field are in satisfactory agreement with various earlier simulation results. This algorithm shows that the new technique provides more accurate results with fast convergence and small size effects over a wide range of plasma states.

Keywords: molecular dynamics simulation, thermal conductivity, nonideal complex plasma, Poiseuille flow

Procedia PDF Downloads 274
2872 Effect of Integrity of the Earthing System on the Rise of Earth Potential

Authors: N. Ullah, A. Haddad, F. Van Der Linde

Abstract:

This paper investigates the effects of breaks in bonds, breaks in the earthing system and breaks in earth wire on the rise of the earth potential (EPR) in a substation and at the transmission tower bases using various models of an L6 tower. Different approaches were adopted to examine the integrity of the earthing system and the terminal towers. These effects were investigated to see the associated difference in the EPR magnitudes with respect to a healthy system at various locations. Comparisons of the computed EPR magnitudes were then made between the healthy and unhealthy system to detect any difference. The studies were conducted at power frequency for a uniform soil with different soil resistivities. It was found that full breaks in the double bond of the terminal towers increase the EPR significantly at the fault location, while they reduce EPR at the terminal tower bases. A fault on the isolated section of the grid can result in EPR values up to 8 times of those on a healthy system at higher soil resistivities, provided that the extended earthing system stays connected to the grid.

Keywords: bonding, earthing, EPR, integrity, system

Procedia PDF Downloads 328
2871 1-g Shake Table Tests to Study the Impact of PGA on Foundation Settlement in Liquefiable Soil

Authors: Md. Kausar Alam, Mohammad Yazdi, Peiman Zogh, Ramin Motamed

Abstract:

The liquefaction-induced ground settlement has caused severe damage to structures in the past decades. However, the amount of building settlement caused by liquefaction is directly proportional to the intensity of the ground shaking. To reduce this soil liquefaction effect, it is essential to examine the influence of peak ground acceleration (PGA). Unfortunately, limited studies have been carried out on this issue. In this study, a series of moderate scale 1g shake table experiments were conducted at the University of Nevada Reno to evaluate the influence of PGA with the same duration in liquefiable soil layers. The model is prepared based on a large-scale shake table with a scaling factor of N = 5, which has been conducted at the University of California, San Diego. The model ground has three soil layers with relative densities of 50% for crust, 30% for liquefiable, and 90% for dense layer, respectively. In addition, a shallow foundation is seated over an unsaturated crust layer. After preparing the model, the input motions having various peak ground accelerations (i.e., 0.16g, 0.25g, and 0.37g) for the same duration (10 sec) were applied. Based on the experimental results, when the PGA increased from 0.16g to 0.37g, the foundation increased from 20 mm to 100 mm. In addition, the expected foundation settlement based on the scaling factor was 25 mm, while the actual settlement for PGA 0.25g for 10 seconds was 50 mm.

Keywords: foundation settlement, liquefaction, peak ground acceleration, shake table test

Procedia PDF Downloads 77
2870 Site Formation Processes at a New Kingdom Settlement at Sai Island, Sudan

Authors: Sean Taylor, Sayantani Neogi, Julia Budka

Abstract:

The important Egyptian New Kingdom settlement at Sai Island Sudan presents a complex stratigraphic archaeological record. This study takes the theoretic stance that it, not just the archaeological material being retrieved from the deposits but the sediments themselves that reflect human agency. These anthropogenic sediments reflect the use life of the buildings and spaces between and the post-depositional processes which operate to complicate the archaeological record. The application of soil micromorphology is a technique that takes intact block samples of sediment and analyses them in thin section under a petrological microscope. A detailed understanding of site formation processes and a contextualized knowledge of the material culture can be understood through careful and systematic observation of the changing facies. The major findings of the study are that soil and sedimentary information can provide valuable insights to the use of space during the New Kingdom and elucidate the complexities of site formation processes.

Keywords: anthropogenic sediment, New Kingdom, site formation processes, soil micromorphology

Procedia PDF Downloads 436
2869 Agronomic Value of Wastewater and Sugar Beet Lime Sludge Compost on Radish Crop

Authors: S. Rida, O. Saadani Hassani, Q. R’zina, N. Saadaoui, K. Fares

Abstract:

Wastewater treatment stations create large quantities of sludge, whose treatment is poorly underestimated in the draft installation. However, chemical analysis of sludge reveals their important concentration in fertilizer elements including nitrogen and phosphorus. The direct application of sludge can reveal contamination of the food chain because of their chemical and organic micropollutants load. Therefore, there is a need of treatment process before use. The treatment by composting of this sludge mixed with three different proportions of sugar beet lime sludge (0%, 20%,30%) and green waste permits to obtain a stable compost rich in mineral elements, having a pleasant smell and relatively hygienic. In addition, the use of compost in agriculture positively affects the plant-soil system. Thus, this study shows that the supply of compost improves the physical properties of the soil and its agronomic quality, which results in an increase in the biomass of cultivated radish plants and a larger crop.

Keywords: agriculture, composting, soil, sugar beet lime, wastewater

Procedia PDF Downloads 323
2868 Highly Stretchable, Intelligent and Conductive PEDOT/PU Nanofibers Based on Electrospinning and in situ Polymerization

Authors: Kun Qi, Yuman Zhou, Jianxin He

Abstract:

A facile fabrication strategy via electrospinning and followed by in situ polymerization to fabricate a highly stretchable and conductive Poly(3,4-ethylenedioxythiophene)/Polyurethane (PEDOT/PU) nanofibrous membrane is reported. PU nanofibers were prepared by electrospinning and then PEDOT was coated on the plasma modified PU nanofiber surface via in-situ polymerization to form flexible PEDOT/PU composite nanofibers with conductivity. The results show PEDOT is successfully synthesized on the surface of PU nanofiber and PEDOT/PU composite nanofibers possess skin-core structure. Furthermore, the experiments indicate the optimal technological parameters of the polymerization process are as follow: The concentration of EDOT monomers is 50 mmol/L, the polymerization time is 24 h and the temperature is 25℃. The PEDOT/PU nanofibers exhibit excellent electrical conductivity ( 27.4 S/cm). In addition, flexible sensor made from conductive PEDOT/PU nanofibers shows highly sensitive response towards tensile strain and also can be used to detect finger motion. The results demonstrate promising application of the as-obtained nanofibrous membrane in flexible wearable electronic fields.

Keywords: electrospinning, polyurethane, PEDOT, conductive nanofiber, flexible senor

Procedia PDF Downloads 359
2867 Effect of Elastic Modulus Anisotropy on Helical Piles Behavior in Sandy Soil

Authors: Reza Ziaie Moayed, Javad Shamsi Soosahab

Abstract:

Helical piles are being used extensively in engineering applications all over the world. There are insufficient studies on the helical piles' behavior in anisotropic soils. In this paper, numerical modeling was adopted to investigate the effect of elastic modulus anisotropy on helical pile behavior resting on anisotropic sand by using a finite element limit analysis. The load-displacement behavior of helical piles under compression and tension loads is investigated in different relative densities of soils, and the effect of the ratio of horizontal elastic modulus with respect to vertical elastic modulus (EH/EV) is evaluated. The obtained results illustrate that in sandy soils, the anisotropic ratio of elastic modulus (EH/EV) has notable effect on bearing capacity of helical piles in different relative density. Therefore, it may be recommended that the effect of anisotropic condition of soil elastic modulus should be considered in helical piles behavior.

Keywords: helical piles, bearing capacity, numerical modeling, soil anisotropy

Procedia PDF Downloads 163
2866 Peak Floor Response for Buildings with Flexible Base

Authors: Luciano Roberto Fernandez-Sola, Cesar Augusto Arredondo-Velez, Miguel Angel Jaimes-Tellez

Abstract:

This paper explores the modifications on peak acceleration, velocity and displacement profiles over the structure due to dynamic soil-structure interaction (DSSI). A shear beam model is used for the structure. Soil-foundation flexibility (inertial interaction) is considered by a set of springs and dashpots at the structure base. Kinematic interaction is considered using transfer functions. Impedance functions are computed using simplified expressions for rigid foundations. The research studies the influence of the slenderness ratio on the value of the peak floor response. It is shown that the modifications of peak floor responses are not the same for acceleration, velocity and displacement. This is opposite to the hypothesis used by methods included in several building codes. Results show that modifications produced by DSSI on different response quantities are not equal.

Keywords: peak floor intensities, dynamic soil-structure interaction, buildings with flexible base, kinematic and inertial interaction

Procedia PDF Downloads 450
2865 Impact on Soil Irrigated with Municipal and Industrial Wastewater from Korangi Drain near IoBM, Karachi

Authors: Farhan Ali

Abstract:

Use of wastewater for growing vegetables has become a common practice around big cities. Wastewater contains organic material and inorganic elements essential for plant growth but also contain heavy metals, which may be lethal for animals and humans if their concentration increases than permissible limit. To monitor this situation, a survey was conducted to ascertain the addition of heavy metals into agricultural fields through wastewater irrigation and their translocation in to the edible parts of the vegetables. The study highlighted that there is a large accumulation of heavy metals in the soil, which is irrigated with industrial wastewater Laden and people consume vegetables grown in soil irrigated with sewage water to absorb a large amount of these metals. This accumulation of heavy metals in food cause possible health risks for the consumer. Regular monitoring of the levels of pathogens and heavy metals from the waste water drain which effluent are used for growing vegetables and other foodstuffs is essential to monitor excessive accumulation of these metals in the food chain.

Keywords: pathogens, wastewater, concentration, effluent

Procedia PDF Downloads 297
2864 Biological Soil Crust Effects on Dust Control Around the Urmia Lake

Authors: Abbas Ahmadi, Nasser Aliasgharzad, Ali Asghar Jafarzadeh

Abstract:

Nowadays, drying of the Urmia Lake as a largest saline lake in the world and emerging its saline bed from water has caused the risk of salty dune storms, which threats the health of human society and also plants and animal communities living in the region. Biological soil crusts (BSCs) as a dust stabilizer attracted the attention of Soil conservation experts in recent years. Although the presence of water by the impenetrable lake bed and endorheic basin can be an advantage to create BSCs, but the extraordinary of the lake bed salinity is a factor for prevention of its establishment in the region. Therefore, the present research work has been carried out to investigate the effects of inoculating the Cyanobacteria, algae and their combination to create BSCs for dust control. In this study, an algae attributed to Chlamydomonas sp and a cyanobacteria attributed to Anabaena sp isolated from the soils of Urmia Lake margin were used to create BSC in four soil samples which collected from 0-10 cm of the current margin (A), the previous bed (B), affected lands by lake (C) and Quomtappe sand dune (D). The main characteristics of the A, B and C soil samples are their highly salinity (their ECe are 108, 140 and 118 dS/m, respectively) and sodicity. Also, texture class of the soil A was loamy sand, and other two soils had clay textures. Soil D was Non-saline, but it was sodic with a sandy texture class. This study was conducted separately in each soil in a completely randomized design under four inoculation treatments of non-inoculated (T0), Algae (T1), cyanobacteria (T2) and equal mixture of algae and cyanobacteria (T3) with three replications. In the experiment, the soil was placed into wind tunnel trays, and a suspension containing microorganisms mixed with the trays surface soil. During the experiment, water was sprayed to the trays at the morning and evening of every day. After passing the incubation period (30 days), some characteristics of samples such as pH, EC, cold water extractable carbohydrate (CWEC), hot water extractable carbohydrate (HWEC), sulfuric acid extractable carbohydrate (SAEC), organic matter, crust thickness, penetration resistance, wind erosion threshold velocity and soil loss in the wind tunnel were measured, and Correlation between the measured characteristics was obtained through the SPSS software. Analysis of variance and so comparison between the means of treatments were analyzed with MSTATC software. In this research, Chlorophyll, an amount, was used as an indicator of the microorganism's population in the samples. Based on obtained results, the amount of Chlorophyll a in the T2 treatment of soil A and all treatments of soil D was significantly increased in comparison to the control and crust thickness showed increase in all treatments by microorganism’s inoculation. But effect of the treatments was significant in soils A and D. At all treatment’s inoculation of microorganisms in soil A caused to increase %46, %34 and %55 of the wind erosion threshold velocity in T1, T2 and T3 treatments in comparison to the control, respectively, and in soil D all treatments caused wind erosion threshold velocity became two times more than control. However, soil loss in the wind tunnel experiments was significant in T2 and T3 treatments of these soils and T1 treatment had no effect in reducing soil loss. Correlation between Chlorophyll a and salinity shows the important role of salinity in microbial growth prevention and formation of BSCs in the studied samples. In general, according to the obtained results, it can be concluded that salinity reduces the growth of microorganisms in saline soils of the region, and in soils with fine textures, salinity role in prevention of the microbial growth is clear. Also, using the mix of algae and cyanobacteria together caused the synergistic growth of them and consequently, better protection of the soil against wind erosion was provided.

Keywords: wind erosion, algae, cyanobacteria, carbohydrate

Procedia PDF Downloads 63
2863 Succinonitrile Modified Polyacrylamide as a Quasi-Solid Electrolyte for an Organic Based Electrochromic Device

Authors: Benjamin Orimolade, Emily Draper

Abstract:

The interest in all solid electrochromic devices (ECD) is ongoing. This is because these devices offer realistic applications of electrochromic materials in products such as sensors, windows and energy storage devices. The use of quasi-solid (gel) electrolytes for the construction of these ECDs is attractive because of their ease of preparation, availability, low cost, improved electrochromic performance, good ionic conductivity and prevention of leakages in ECDs. Herein, we developed a gel electrolyte consisting of polyacrylamide modified with succinonitrile for an ECD containing leucine-modified naphthalene diimide (NDI-L) as electrochromic material. The amount of succinonitrile in the gel was optimized, and the structure, surface morphology, and ionic conductivity of the electrolytes were assessed using microscopic techniques and electrochemical methods. The ECD fabricated with the gel electrolyte displayed good electrochromic performance with a fast switching response of up to 10 s and outstanding stability. These results add significant insight into understanding the inter- and intra-molecular interaction in succinonitrile gel electrolytes and provide a typical practicable high-performance gel electrolyte material for solid electrochromic devices.

Keywords: electrochromic device, gel electrolytes, naphthalene diimide, succinonitrile

Procedia PDF Downloads 60