Search results for: rapidly exploring random trees
4466 Improvement Perturb and Observe for a Fast Response MPPT Applied to Photovoltaic Panel
Authors: Labar Hocine, Kelaiaia Mounia Samira, Mesbah Tarek, Kelaiaia Samia
Abstract:
Maximum power point tracking (MPPT) techniques are used in photovoltaic (PV) systems to maximize the PV array output power by tracking continuously the maximum power point(MPP) which depends on panels temperature and on irradiance conditions. The main drawback of P&O is that, the operating point oscillates around the MPP giving rise to the waste of some amount of available energy; moreover, it is well known that the P&O algorithm can be confused during those time intervals characterized by rapidly changing atmospheric conditions. In this paper, it is shown that in order to limit the negative effects associated to the above drawbacks, the P&O MPPT parameters must be customized to the dynamic behavior of the specific converter adopted. A theoretical analysis allowing the optimal choice of such initial set parameters is also carried out. The fast convergence of the proposal is proven.Keywords: P&O, Taylor’s series, MPPT, photovoltaic panel
Procedia PDF Downloads 5874465 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain
Authors: Zachary Blanks, Solomon Sonya
Abstract:
Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection
Procedia PDF Downloads 2924464 Investigating the Dimensions of Perceived Attributions in Making Sense of Failure: An Exploratory Study of Lebanese Entrepreneurs
Authors: Ghiwa Dandach
Abstract:
By challenging the anti-failure bias and contributing to the theoretical territory of the attribution theory, this thesis develops a comprehensive process for entrepreneurial learning from failure. The practical implication of the findings suggests assisting entrepreneurs (current, failing, and nascent) in effectively anticipating and reflecting upon failure. Additionally, the process is suggested to enhance the level of institutional and private (accelerators and financers) support provided to entrepreneurs, the implications of which may improve future opportunities for entrepreneurial success. Henceforth, exploring learning from failure is argued to impact the potential survival of future ventures, subsequently revitalizing the economic contribution of entrepreneurship. This learning process can be enhanced with the cognitive development of causal ascriptions for failure, which eventually impacts learning outcomes. However, the mechanism with which entrepreneurs make sense of failure, reflect on the journey, and transform experience into knowledge is still under-researched. More specifically, the cognitive process of failure attribution is under-explored, majorly in the context of developing economies, calling for a more insightful understanding on how entrepreneurs ascribe failure. Responding to the call for more thorough research in such cultural contexts, this study expands the understanding of the dimensions of failure attributions as perceived by entrepreneurs and the impact of these dimensions on learning outcomes in the Lebanese context. The research adopted the exploratory interpretivism paradigm and collected data from interviews with industry experts first, followed by narratives of entrepreneurs using the qualitative multimethod approach. The holistic and categorical content analysis of narratives, preceded by the thematic analysis of interviews, unveiled how entrepreneurs ascribe failure by developing minor and major dimensions of each failure attribution. The findings have also revealed how each dimension impacts the learning from failure when accompanied by emotional resilience. The thesis concludes that exploring in-depth the dimensions of failure attributions significantly determines the level of learning generated. They are moving beyond the simple categorisation of ascriptions as primary internal or external unveiled how learning may occur with each attribution at the individual, venture, and ecosystem levels. This has further accentuated that a major internal attribution of failure combined with a minor external attribution generated the highest levels of transformative and double-loop learning, emphasizing the role of personal blame and responsibility on enhancing learning outcomes.Keywords: attribution, entrepreneurship, reflection, sense-making, emotions, learning outcomes, failure, exit
Procedia PDF Downloads 2274463 Phylogenetic Analysis of the Thunnus Tuna Fish Using Cytochrome C Oxidase Subunit I Gene Sequence
Authors: Yijun Lai, Saber Khederzadeh, Lingshaung Han
Abstract:
Species in Thunnus are organized due to the similarity between them. The closeness between T. maccoyii, T. thynnus, T. Tonggol, T. atlanticus, T. albacares, T. obsesus, T. alalunga, and T. orientails are in different degrees. However, the genetic pattern of differentiation has not been presented based on individuals yet, to the author’s best knowledge. Hence, we aimed to analyze the difference in individuals level of tuna species to identify the factors that contribute to the maternal lineage variety using Cytochrome c oxidase subunit I (COXI) gene sequences. Our analyses provided evidence of sharing lineages in the Thunnus. A phylogenetic analysis revealed that these lineages are basal to the other sequences. We also showed a close connection between the T. tonggol, T. thynnus, and T. albacares populations. Also, the majority of the T. orientalis samples were clustered with the T. alalunga and, then, T. atlanticus populations. Phylogenetic trees and migration modeling revealed high proximity of T. thynnus sequences to a few T. orientalis and suggested possible gene flow with T. tonggol and T. albacares lineages, while all T. obsesus samples indicated unique clustering with each other. Our results support the presence of old maternal lineages in Thunnus, as a legacy of an ancient wave of colonization or migration.Keywords: Thunnus Tuna, phylogeny, maternal lineage, COXI gene
Procedia PDF Downloads 2904462 Refinery Sulfur as an Alternative Agent to Decrease Pesticide Exposure in Pistachio Orchards and Common Pistachio Psylla’s Control
Authors: Mehdi Basirat, Mohammad Rouhani, Shahla Borzouei, Majid Zarangi, Asma Abolghasemi, Mohammad Fazel Soltani, Mohammad Gorji, Mohammad Amin Samih
Abstract:
The common pistachio psylla, Agonoscena pistaciae Burckhardt and Lauterer (Hemiptera: Aphalaridae), as one of the most detrimental pests in all pistachio producing regions, causes great economic damages to pistachio trees. Nowadays, various pesticides are used to control the common pistachio psylla and robust pesticide exposure has occurred in orchards. In this study, field experiments were conducted during 2018–2021 to assess the effects of sulfur on A. pistaciae. This study compared sulfur with asafoetida extract and pesticide (acetamiprid) on A. pistaciae based on complete randomized blocks with three replications. The analysis results of variance showed that the effect of treatments on egg (F2,24 = 17.61, P = 0.00) and nymphs (F2,24 = 18.29, P = 0.00) had a significant difference at a 1% level. The results demonstrated that sulfur had the highest measure of control on eggs and nymphs significantly compared to the plant extract and pesticide (negative control). These results provide support to the potential use of sulfur as an alternative pest management tool against A. pistaciae. The results clearly indicated that sulfur could control the common pistachio psylla population for six weeks at least.Keywords: Agonoscena pistaciae, pesticide exposure, pistachio, sulfur
Procedia PDF Downloads 1654461 Exploring Chinese Nurses’ Views on Alternative Medicine
Authors: Hui Chen, Huping Gong, Yalin Mao
Abstract:
This paper mainly focuses on the Chinese registered nurses as the research object, and studies the role of Chinese registered nurses in the cognition and application experience of alternative medicine. In this study, nurses were interviewed, focusing on their views and exchanging experiences on the use of alternative medicine in their work. The researchers will use Colaizzi to analyze the collected data. Four main themes emerged from the interviews, namely: 1) the current state of alternative medicine in China, 2) Challenges faced by nurses, 3) How nurses overcome various difficulties, 4) Development of alternative medicine in China. Through the exchange of knowledge and practical experience of alternative medicine, registered nurses in China are not only participants in the application of alternative medicine but also play an active role in promoting its development.Keywords: traditional Chinese medicine, alternative medicine, nurse, qualitative research
Procedia PDF Downloads 174460 Providing Security to Private Cloud Using Advanced Encryption Standard Algorithm
Authors: Annapureddy Srikant Reddy, Atthanti Mahendra, Samala Chinni Krishna, N. Neelima
Abstract:
In our present world, we are generating a lot of data and we, need a specific device to store all these data. Generally, we store data in pen drives, hard drives, etc. Sometimes we may loss the data due to the corruption of devices. To overcome all these issues, we implemented a cloud space for storing the data, and it provides more security to the data. We can access the data with just using the internet from anywhere in the world. We implemented all these with the java using Net beans IDE. Once user uploads the data, he does not have any rights to change the data. Users uploaded files are stored in the cloud with the file name as system time and the directory will be created with some random words. Cloud accepts the data only if the size of the file is less than 2MB.Keywords: cloud space, AES, FTP, NetBeans IDE
Procedia PDF Downloads 2064459 Sustainable Micro Architecture: A Pattern for Urban Release Areas
Authors: Saber Fatourechian
Abstract:
People within modern cities have faced macro urban values spreads rapidly through current style of living. Unexpected phenomena without any specific features of micro scale, humanity and urban social/cultural patterns. The gap between micro and macro scale is unidentified and people could not recognize where they are especially in the interaction between life and city. Urban life details were verified. Micro architecture is a pattern in which human activity derives from human needs in an unconscious position. Sustainable attitude via micro architecture causes flexibility in decision making through micro urbanism essentially impacts macro scale. In this paper the definition of micro architecture and its relation with city and human activity are argued, there after the interaction between micro and macro scale is presented as an effective way for urban sustainable development.Keywords: micro architecture, sustainability, human activity, city
Procedia PDF Downloads 5044458 Burnout and Personality Characteristics of University Students
Authors: Tazvin Ijaz, Rabia Khan
Abstract:
The current study was conducted to identify the predictors of burnout among university students. The sample for the study was collected through simple random sampling. The tools to measure burnout and personality characteristics included Indigenous burnout scale and Eysenck personality inventory respectively. Results indicated that neurotic personality traits significantly predicts burnout among university students while extraversion does not lead to burnout. Results also indicated female students experience more burnout than male students. It was also found that family size and birth order did not affected the level of burnout. Results of the study are discussed to explain association between etiological factors and burnout with in Pakistani cultural context.Keywords: burnout, students, neuroticism, extraversion
Procedia PDF Downloads 2954457 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data
Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone
Abstract:
The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine
Procedia PDF Downloads 2404456 Manufacture and Characterization of Poly (Tri Methylene Terephthalate) Nanofibers by Electrospinning
Authors: Omid Saligheh
Abstract:
Poly (tri methylene terephthalate) (PTT) nanofibers were prepared by electrospinning, being directly deposited in the form of a random fibers web. The effect of changing processing parameters such as solution concentration and electrospinning voltage on the morphology of the electrospun PTT nanofibers was investigated with scanning electron microscopy (SEM). The electrospun fibers diameter increased with rising concentration and decreased by increasing the electrospinning voltage, thermal and mechanical properties of electrospun fibers were characterized by DSC and tensile testing, respectively.Keywords: poly tri methylene terephthalate, electrospinning, morphology, thermal behavior, mechanical properties
Procedia PDF Downloads 864455 Prediction, Production, and Comprehension: Exploring the Influence of Salience in Language Processing
Authors: Andy H. Clark
Abstract:
This research looks into the relationship between language comprehension and production with a specific focus on the role of salience in shaping these processes. Salience, our most immediate perception of what is most probable out of all possible situations and outcomes strongly affects our perception and action in language production and comprehension. This study investigates the impact of geographic and emotional attachments to the target language on the differences in the learners’ comprehension and production abilities. Using quantitative research methods (Qualtrics, SPSS), this study examines preferential choices of two groups of Japanese English language learners: those residing in the United States and those in Japan. By comparing and contrasting these two groups, we hope to gain a better understanding of how salience of linguistics cues influences language processing.Keywords: intercultural pragmatics, salience, production, comprehension, pragmatics, action, perception, cognition
Procedia PDF Downloads 724454 Impacts and Implications: Exploring the Long-Term Health Benefits of Regular Physical Activity
Authors: Muhammad Wahb
Abstract:
Physical activity is increasingly recognized as a significant factor in maintaining optimal health and preventing chronic diseases. This research scrutinizes the long-term health benefits of sustained physical activity, employing a systematic review of epidemiological studies and randomized control trials conducted over the past decade. The study illuminates the protective effects of regular physical activity against cardiovascular disease, obesity, diabetes, and mental health disorders, with a special focus on the mechanisms involved. Furthermore, the paper provides insights into how public health initiatives can effectively promote physical activity among diverse populations, contributing to improved community health outcomes.Keywords: physical activity, long-term health benefits, chronic disease prevention, public health
Procedia PDF Downloads 964453 Biodegradable Elastic Polymers Are Used to Create Stretchable Piezoresistive Strain Sensors
Authors: Mostafa Vahdani, Mohsen Asadnia, Shuying Wu
Abstract:
Huge amounts of e-waste are being produced by the rapidly expanding use of electronics; the majority of this material is either burned or dumped directly in landfills since recycling would either be impracticable or too expensive. Degradable and environmentally friendly materials are therefore seen as the answer to this urgent problem. Here, we create strain sensors that are biodegradable, robust, and incredibly flexible using thin films of sodium carboxymethyl cellulose (NaCMC), glycerol, and polyvinyl alcohol (PVA). Due to the creation of many inter- or intramolecular hydrogen bonds, the polymer blends (NaCMC/PVA/glycerol) exhibit a failure strain of up to 330% and negligible hysteresis when exposed to cyclic stretching-releasing. What's more intriguing is that the sensors can degrade completely in deionized water at a temperature of 95 °C in about 25 minutes. This project illustrates a novel method for developing wearable electronics that are environmentally beneficial.Keywords: degradable, stretchable, strain sensors, wearable electronics.
Procedia PDF Downloads 1164452 Challenges of e-Service Adoption and Implementation in Nigeria: Lessons from Asia
Authors: Kazeem Oluwakemi Oseni, Kate Dingley
Abstract:
E-Service has moved from the usual manual and traditional way of rendering services to electronic service provision for the public and there are several reasons for implementing these services, Airline ticketing have gone from its manual traditional way to an intelligent web-driven service of purchasing. Many companies have seen their profits doubled through the use of online services in their operation and a typical example is Hewlett Packard (HP) which is rapidly transforming their after sales business into a profit generating e-service business unit. This paper will examine the various challenges confronting e-Service adoption and implementation in Nigeria and also analyse lessons learnt from e-Service adoption and implementation in Asia to see how it could be useful in Nigeria which is a lower middle income country. Based on the analysis of the online survey data. It has been identified that the public in Nigeria are much aware of e-Services but successful adoption and implementation have been the problems faced.Keywords: e-government service, adoption, implementation, Nigeria, Asia
Procedia PDF Downloads 4564451 Enhancing Sustainability of Residential Buildings: A Case Study of Al-Malaz District, Riyadh, Saudi Arabia
Authors: Jenin Zidan
Abstract:
This research paper investigates how planning, urban design, and architectural decisions affect the long-term environmental sustainability of residential buildings. The study, which focuses on the Al-Malaz District in Riyadh, Saudi Arabia, looks into how strategic planning, innovative urban design, and sustainable architectural practices might help mitigate environmental concerns and promote sustainable development in rapidly growing cities. This study attempts to shed light on the interplay of urban planning, design, and architecture in constructing sustainable residential environments by conducting a thorough examination of case studies and empirical data.Keywords: urban planning, sustainable architecture, urban environmental challenge, residential buildings, villa house type
Procedia PDF Downloads 624450 Development of Pasta Production by Using of Hard and Soft Domestic Sorts of Wheat
Authors: A.N. Zhilkaidarov, G.K. Iskakova, V.Y. Chernyh
Abstract:
High-qualified and not-expensive products of daily usage have a big demand on food products’ market. Moreover, it is about independent and irreplaceable product as pasta. Pasta is a product, which represents itself the conserved dough from wheat flour made through special milling process. A wide assortment of the product and its pleasant taste properties allow to use pasta products in very different combinations with other food products. Pasta industry of Kazakhstan has large perspectives of development. There are many premises for it, which includes first an importance of pasta as a social product. Due to for its nutritional and energetically value pasta is the part of must have food. Besides that, the pasta production in Kazakhstan has traditional bases, and nowadays the market of this product develops rapidly as in quantity as well as in quality aspects. Moreover, one of the advantages of this branch is an economical aspect – pasta is the product of secondary processing, and therefore price for sailing is much higher as its own costs.Keywords: pasta, new wheat sorts, domesic sorts of wheat, macaronic flour
Procedia PDF Downloads 5264449 Hidden Wild Edible Agaric Wealth in North West India: Diversity and Domestication Studies
Authors: Munruchi Kaur
Abstract:
Agarics are the fruiting bodies of the fungi falling under Phylum Basidiomycota of class Agaricomycetes. North Western parts of India which comprises of mighty Himalayas decorated with snow cap mountains, forested areas, grassland and the Gangetic plains with the altitude varying between 196m to 3600m have a huge potential of naturally growing wild agarics. These mushrooms lavishly grow in wet humid weather conditions that prevail in these parts of India during the monsoon which hits in the early June and continue up to mid-October. In this area, a diverse form of mixed vegetation is available which is represented by coniferous and angiospermic trees, shrubs, herbs, epiphytes, parasites, climbers etc. The vegetation, topography and climate of this area is quite favorable for the growth of agarics. Cedrus deodara, Pinus longifolia, P. roxburghii, P. wallichiana, Abies pindrow, A. spectabilis, Picea smithiana, Taxus sp., Rhododendron sp. and Quercus sp. occur in pure formations or as scattered patches or as mixed forests, whereas the Gangetic plains are dominated by the angiospermic trees and shrubs, they commonly occur along roadsides or in conserved areas or are the avenues plantations, common amongst these are Shorea robusta, Dalbergia sissoo, Melia azadirachta, Acacia sp., Ficus benghalensis, Eucalyptus sp. and Butea monosperma. These agarics can be categorized on the basis of the habitat in which they grow they are usually foliocolous, lignicolous, humicolous, coprophilous or termitophilous. A number of fungal forays were undertaken to different parts of North West India from time to time during the monsoon season with an aim to decipher the agarics diversity of this part of India. Along with collecting the various agarics from diverse habitat, the ethnomycological data was also collected along with by interacting with the local inhabitants of those areas. Based upon the ethnomycological data collected over the years, cataloging of the edible and inedible agarics has been done and cultures of such potential edible agarics were raised with an aim to domesticate these selected taxa. With an aim to reduce the local pressure on these natural resources, a low-cost technology was developed to make it available to the public for cultivation. As a result, 104 taxa were found edible such as Amanita hemibapha var. ochracea, A. chepangiana, A. banningiana, A. vaginata, Agrocybe parasitica, Author: Professor & Dean Faculty of Life Sciences Punjabi University, Patiala. Punjab, India [email protected] Agaricus bisporus, A. andrewii, A. campestris var. campestris, A. silvicola, A. subrutilescens, A. bernardii, A. abruptibulbus, A. fuscovelatus, A. brunnescens, A. augustus, A. silvaticus, A. arvensis, Volvariella bakeri, V. terastia, V. bombycina, V. diplasia, Psathyrella candolleana, Volvopluteus gloiocephalus, Russula cyanoxantha, R. atropurpurea, R. aurea, Clitocybe gibba,Lentinus transitus, L. kashmirinus, L. crinitus, L. ligrinus, Lactarius rubrilacteus, Pleurotus sapidus, Pluteus subcervinus, Macrocybe gigantea, etc. Cultures of various taxa viz. Pleurotus sajor-caju, Macrocybe gigantea, Pluteus petasatus and Lentinus tigrinus were raised and a proper protocol for the domestication of Pleurotus sajor-caju, Macrocybe gigantea, and Lentinus tigrinus has been developed using the locally available agro-wastes.Keywords: Agaric, culture, domestication, edible
Procedia PDF Downloads 784448 Survival Data with Incomplete Missing Categorical Covariates
Authors: Madaki Umar Yusuf, Mohd Rizam B. Abubakar
Abstract:
The survival censored data with incomplete covariate data is a common occurrence in many studies in which the outcome is survival time. With model when the missing covariates are categorical, a useful technique for obtaining parameter estimates is the EM by the method of weights. The survival outcome for the class of generalized linear model is applied and this method requires the estimation of the parameters of the distribution of the covariates. In this paper, we propose some clinical trials with ve covariates, four of which have some missing values which clearly show that they were fully censored data.Keywords: EM algorithm, incomplete categorical covariates, ignorable missing data, missing at random (MAR), Weibull Distribution
Procedia PDF Downloads 4054447 Advanced Palliative Aquatics Care Multi-Device AuBento for Symptom and Pain Management by Sensorial Integration and Electromagnetic Fields: A Preliminary Design Study
Authors: J. F. Pollo Gaspary, F. Peron Gaspary, E. M. Simão, R. Concatto Beltrame, G. Orengo de Oliveira, M. S. Ristow Ferreira, J.C. Mairesse Siluk, I. F. Minello, F. dos Santos de Oliveira
Abstract:
Background: Although palliative care policies and services have been developed, research in this area continues to lag. An integrated model of palliative care is suggested, which includes complementary and alternative services aimed at improving the well-being of patients and their families. The palliative aquatics care multi-device (AuBento) uses several electromagnetic techniques to decrease pain and promote well-being through relaxation and interaction among patients, specialists, and family members. Aim: The scope of this paper is to present a preliminary design study of a device capable of exploring the various existing theories on the biomedical application of magnetic fields. This will be achieved by standardizing clinical data collection with sensory integration, and adding new therapeutic options to develop an advanced palliative aquatics care, innovating in symptom and pain management. Methods: The research methodology was based on the Work Package Methodology for the development of projects, separating the activities into seven different Work Packages. The theoretical basis was carried out through an integrative literature review according to the specific objectives of each Work Package and provided a broad analysis, which, together with the multiplicity of proposals and the interdisciplinarity of the research team involved, generated consistent and understandable complex concepts in the biomedical application of magnetic fields for palliative care. Results: Aubento ambience was idealized with restricted electromagnetic exposure (avoiding data collection bias) and sensory integration (allowing relaxation associated with hydrotherapy, music therapy, and chromotherapy or like floating tank). This device has a multipurpose configuration enabling classic or exploratory options on the use of the biomedical application of magnetic fields at the researcher's discretion. Conclusions: Several patients in diverse therapeutic contexts may benefit from the use of magnetic fields or fluids, thus validating the stimuli to clinical research in this area. A device in controlled and multipurpose environments may contribute to standardizing research and exploring new theories. Future research may demonstrate the possible benefits of the aquatics care multi-device AuBento to improve the well-being and symptom control in palliative care patients and their families.Keywords: advanced palliative aquatics care, magnetic field therapy, medical device, research design
Procedia PDF Downloads 1284446 Cost-Effective Hybrid Cloud Framework for HEI’s
Authors: Shah Muhammad Butt, Ahmed Masaud Ansari
Abstract:
Present Financial crisis in Higher Educational Institutes (HEIs) facing lots of problems considerable budget cuts, make difficult to meet the ever growing IT-based research and learning needs, institutions are rapidly planning and promoting cloud-based approaches for their academic and research needs. A cost effective Hybrid Cloud framework for HEI’s will provide educational services for campus or intercampus communication. Hybrid Cloud Framework comprises Private and Public Cloud approaches. This paper will propose the framework based on the Open Source Cloud (OpenNebula for Virtualization, Eucalyptus for Infrastructure, and Aneka for programming development environment) combined with CSP’s services which are delivered to the end-user via the Internet from public clouds.Keywords: educational services, hybrid campus cloud, open source, electrical and systems sciences
Procedia PDF Downloads 4584445 Catalytic Activity Study of Fe, Ti Loaded TUD-1
Authors: Supakorn Tantisriyanurak, Hussaya Maneesuwan, Thanyalak Chaisuwan, Sujitra Wongkasemjit
Abstract:
TUD-1 is a siliceous mesoporous material with a three-dimensional amorphous structure of random, interconnecting pores, large pore size, high surface area (400-1000 m2/g), hydrothermal stability, and tunable porosity. However, the significant disadvantage of the mesoporous silicates is few catalytic active sites. In this work, a series of bimetallic Fe and Ti incorporated into TUD-1 framework is successfully synthesized by sol–gel method. The synthesized Fe,Ti-TUD-1 is characterized by various techniques. To study the catalytic activity of Fe, Ti–TUD-1, phenol hydroxylation was selected as a model reaction. The amounts of residual phenol and oxidation products were determined by high performance liquid chromatography coupled with UV-detector (HPLC-UV).Keywords: iron, phenol hydroxylation, titanium, TUD-1
Procedia PDF Downloads 2584444 Surface Roughness Effects in Pure Sliding EHL Line Contacts with Carreau-Type Shear-Thinning Lubricants
Authors: Punit Kumar, Niraj Kumar
Abstract:
The influence of transverse surface roughness on EHL characteristics has been investigated numerically using an extensive set of full EHL line contact simulations for shear-thinning lubricants under pure sliding condition. The shear-thinning behavior of lubricant is modeled using Carreau viscosity equation along with Doolittle-Tait equation for lubricant compressibility. The surface roughness is assumed to be sinusoidal and it is present on the stationary surface. It is found that surface roughness causes sharp pressure peaks along with reduction in central and minimum film thickness. With increasing amplitude of surface roughness, the minimum film thickness decreases much more rapidly as compared to the central film thickness.Keywords: EHL, Carreau, shear-thinning, surface roughness, amplitude, wavelength
Procedia PDF Downloads 7314443 SciPaaS: a Scientific Execution Platform for the Cloud
Authors: Wesley H. Brewer, John C. Sanford
Abstract:
SciPaaS is a prototype development of an execution platform/middleware designed to make it easy for scientists to rapidly deploy their scientific applications (apps) to the cloud. It provides all the necessary infrastructure for running typical IXP (Input-eXecute-Plot) style apps, including: a web interface, post-processing and plotting capabilities, job scheduling, real-time monitoring of running jobs, and even a file/case manager. In this paper, first the system architecture is described and then is demonstrated for a two scientific applications: (1) a simple finite-difference solver of the inviscid Burger’s equation, and (2) Mendel’s Accountant—a forward-time population genetics simulation model. The implications of the prototype are discussed in terms of ease-of-use and deployment options, especially in cloud environments.Keywords: web-based simulation, cloud computing, Platform-as-a-Service (PaaS), rapid application development (RAD), population genetics
Procedia PDF Downloads 5904442 Analysis of Decentralized on Demand Cross Layer in Cognitive Radio Ad Hoc Network
Authors: A. Sri Janani, K. Immanuel Arokia James
Abstract:
Cognitive radio ad hoc networks different unlicensed users may acquire different available channel sets. This non-uniform spectrum availability imposes special design challenges for broadcasting in CR ad hoc networks. Cognitive radio automatically detects available channels in wireless spectrum. This is a form of dynamic spectrum management. Cross-layer optimization is proposed, using this can allow far away secondary users can also involve into channel work. So it can increase the throughput and it will overcome the collision and time delay.Keywords: cognitive radio, cross layer optimization, CR mesh network, heterogeneous spectrum, mesh topology, random routing optimization technique
Procedia PDF Downloads 3594441 Vibrational Behavior of Cylindrical Shells in Axial Magnetic Field
Authors: Sedrak Vardanyan
Abstract:
The investigation of the vibrational character of magnetic cylindrical shells placed in an axial magnetic field has important practical applications. In this work, we study the vibrational behaviour of such a cylindrical shell by making use of the so-called exact space treatment, which does not assume any hypothesis. We discuss the effects of several practically important boundary conditions on the vibrations of the described setup. We find that, for some cases of boundary conditions, e.g. clamped, simply supported or peripherally earthed, as well as for some values of the wave numbers, the vibrational frequencies of the shell are approximately zero. The theoretical and numerical exploration of this fact confirms that the vibrations are absent or attenuate very rapidly. For all the considered cases, the imaginary part of the frequencies is negative, which implies stability for the vibrational process.Keywords: bending vibrational frequencies, exact space treatment, free vibrations, magnetic cylindrical shells
Procedia PDF Downloads 2794440 Land Cover Mapping Using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A Study Case of the Beterou Catchment
Authors: Ella Sèdé Maforikan
Abstract:
Accurate land cover mapping is essential for effective environmental monitoring and natural resources management. This study focuses on assessing the classification performance of two satellite datasets and evaluating the impact of different input feature combinations on classification accuracy in the Beterou catchment, situated in the northern part of Benin. Landsat-8 and Sentinel-2 images from June 1, 2020, to March 31, 2021, were utilized. Employing the Random Forest (RF) algorithm on Google Earth Engine (GEE), a supervised classification categorized the land into five classes: forest, savannas, cropland, settlement, and water bodies. GEE was chosen due to its high-performance computing capabilities, mitigating computational burdens associated with traditional land cover classification methods. By eliminating the need for individual satellite image downloads and providing access to an extensive archive of remote sensing data, GEE facilitated efficient model training on remote sensing data. The study achieved commendable overall accuracy (OA), ranging from 84% to 85%, even without incorporating spectral indices and terrain metrics into the model. Notably, the inclusion of additional input sources, specifically terrain features like slope and elevation, enhanced classification accuracy. The highest accuracy was achieved with Sentinel-2 (OA = 91%, Kappa = 0.88), slightly surpassing Landsat-8 (OA = 90%, Kappa = 0.87). This underscores the significance of combining diverse input sources for optimal accuracy in land cover mapping. The methodology presented herein not only enables the creation of precise, expeditious land cover maps but also demonstrates the prowess of cloud computing through GEE for large-scale land cover mapping with remarkable accuracy. The study emphasizes the synergy of different input sources to achieve superior accuracy. As a future recommendation, the application of Light Detection and Ranging (LiDAR) technology is proposed to enhance vegetation type differentiation in the Beterou catchment. Additionally, a cross-comparison between Sentinel-2 and Landsat-8 for assessing long-term land cover changes is suggested.Keywords: land cover mapping, Google Earth Engine, random forest, Beterou catchment
Procedia PDF Downloads 634439 Exploring De-Fi through 3 Case Studies: Transparency, Social Impact, and Regulation
Authors: Dhaksha Vivekanandan
Abstract:
DeFi is a network that avoids reliance on financial intermediaries through its peer-to-peer financial network. DeFi operates outside of government control; hence it is important for us to understand its impacts. This study employs a literature review to understand DeFi and its emergence, as well as its implications on transparency, social impact, and regulation. Further, 3 case studies are analysed within the context of these categories. DeFi’s provision of increased transparency poses environmental and storage costs and can lead to user privacy being endangered. DeFi allows for the provision of entrepreneurial incentives and protection against monetary censorship and capital control. Despite DeFi's transparency issues and volatility costs, it has huge potential to reduce poverty; however, regulation surrounding DeFi still requires further tightening by governments.Keywords: DeFi, transparency, regulation, social impact
Procedia PDF Downloads 834438 Diagnose of the Future of Family Businesses Based on the Study of Spanish Family Businesses Founders
Authors: Fernando Doral
Abstract:
Family businesses are a key phenomenon within the business landscape. Nevertheless, it involves two terms (“family” and “business”) which are nowadays rapidly evolving. Consequently, it isn't easy to diagnose if a family business will be a growing or decreasing phenomenon, which is the objective of this study. For that purpose, a sample of 50 Spanish-established companies from various sectors was taken. Different factors were identified for each enterprise, related to the profile of the founders, such as age, the number of sons and daughters, or support received from the family at the moment to start it up. That information was taken as an input for a clustering method to identify groups, which could help define the founders' profiles. That characterization was carried as a base to identify three factors whose evolution should be analyzed: family structures, business landscape and entrepreneurs' motivations. The analysis of the evolution of these three factors seems to indicate a negative tendency of family businesses. Therefore the consequent diagnosis of this study is to consider family businesses as a declining phenomenon.Keywords: business diagnose, business trends, family business, family business founders
Procedia PDF Downloads 2074437 Analyzing the Programme for International Student Assessment (PISA) Results in Uzbekistan: Insights from Organisation for Economic Co-operation and Development (OECD) Assessments
Authors: Nukarova Marjona Kayimovna
Abstract:
This article examines Uzbekistan's participation in the Programme for International Student Assessment (PISA) 2022, as the country took part in the assessment for the first time. The analysis delves into the initial results and performance metrics reported by the Organisation for Economic Co-operation and Development (OECD). By exploring Uzbekistan's data, the article highlights key findings, trends, and areas of strength and improvement. The aim is to provide a comprehensive understanding of how Uzbekistan's education system compares on the international stage and to offer insights into potential implications for future educational policies and reforms.Keywords: PISA, OECD, data analysis of Uzbekistan, results, critical thinking.
Procedia PDF Downloads 11