Search results for: prediction method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20500

Search results for: prediction method

19420 Spline Solution of Singularly Perturbed Boundary Value Problems

Authors: Reza Mohammadi

Abstract:

Using quartic spline, we develop a method for numerical solution of singularly perturbed two-point boundary-value problems. The purposed method is fourth-order accurate and applicable to problems both in singular and non-singular cases. The convergence analysis of the method is given. The resulting linear system of equations has been solved by using a tri-diagonal solver. We applied the presented method to test problems which have been solved by other existing methods in references, for comparison of presented method with the existing methods. Numerical results are given to illustrate the efficiency of our methods.

Keywords: second-order ordinary differential equation, singularly-perturbed, quartic spline, convergence analysis

Procedia PDF Downloads 295
19419 Testing Immunochemical Method for the Bacteriological Diagnosis of Bovine Tuberculosis

Authors: Assiya Madenovna Borsynbayeva, Kairat Altynbekovich Turgenbayev, Nikolay Petrovich Ivanov

Abstract:

In this article presents the results of rapid diagnostics of tuberculosis in comparison with classical bacteriological method. The proposed method of rapid diagnosis of tuberculosis than bacteriological method allows shortening the time of diagnosis to 7 days, to visualize the growth of mycobacteria in the semi-liquid medium and differentiate the type of mycobacterium. Fast definition of Mycobacterium tuberculosis and its derivatives in the culture medium is a new and promising direction in the diagnosis of tuberculosis.

Keywords: animal diagnosis of tuberculosis, bacteriological diagnostics, antigen, specific antibodies, immunological reaction

Procedia PDF Downloads 345
19418 Numerical Treatment of Block Method for the Solution of Ordinary Differential Equations

Authors: A. M. Sagir

Abstract:

Discrete linear multistep block method of uniform order for the solution of first order Initial Value Problems (IVPs) in Ordinary Differential Equations (ODEs) is presented in this paper. The approach of interpolation and collocation approximation are adopted in the derivation of the method which is then applied to first order ordinary differential equations with associated initial conditions. The continuous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain four discrete schemes, which were used in block form for parallel or sequential solutions of the problems. Furthermore, a stability analysis and efficiency of the block method are tested on ordinary differential equations, and the results obtained compared favorably with the exact solution.

Keywords: block method, first order ordinary differential equations, hybrid, self-starting

Procedia PDF Downloads 482
19417 Predicting Growth of Eucalyptus Marginata in a Mediterranean Climate Using an Individual-Based Modelling Approach

Authors: S.K. Bhandari, E. Veneklaas, L. McCaw, R. Mazanec, K. Whitford, M. Renton

Abstract:

Eucalyptus marginata, E. diversicolor and Corymbia calophylla form widespread forests in south-west Western Australia (SWWA). These forests have economic and ecological importance, and therefore, tree growth and sustainable management are of high priority. This paper aimed to analyse and model the growth of these species at both stand and individual levels, but this presentation will focus on predicting the growth of E. Marginata at the individual tree level. More specifically, the study wanted to investigate how well individual E. marginata tree growth could be predicted by considering the diameter and height of the tree at the start of the growth period, and whether this prediction could be improved by also accounting for the competition from neighbouring trees in different ways. The study also wanted to investigate how many neighbouring trees or what neighbourhood distance needed to be considered when accounting for competition. To achieve this aim, the Pearson correlation coefficient was examined among competition indices (CIs), between CIs and dbh growth, and selected the competition index that can best predict the diameter growth of individual trees of E. marginata forest managed under different thinning regimes at Inglehope in SWWA. Furthermore, individual tree growth models were developed using simple linear regression, multiple linear regression, and linear mixed effect modelling approaches. Individual tree growth models were developed for thinned and unthinned stand separately. The developed models were validated using two approaches. In the first approach, models were validated using a subset of data that was not used in model fitting. In the second approach, the model of the one growth period was validated with the data of another growth period. Tree size (diameter and height) was a significant predictor of growth. This prediction was improved when the competition was included in the model. The fit statistic (coefficient of determination) of the model ranged from 0.31 to 0.68. The model with spatial competition indices validated as being more accurate than with non-spatial indices. The model prediction can be optimized if 10 to 15 competitors (by number) or competitors within ~10 m (by distance) from the base of the subject tree are included in the model, which can reduce the time and cost of collecting the information about the competitors. As competition from neighbours was a significant predictor with a negative effect on growth, it is recommended including neighbourhood competition when predicting growth and considering thinning treatments to minimize the effect of competition on growth. These model approaches are likely to be useful tools for the conservations and sustainable management of forests of E. marginata in SWWA. As a next step in optimizing the number and distance of competitors, further studies in larger size plots and with a larger number of plots than those used in the present study are recommended.

Keywords: competition, growth, model, thinning

Procedia PDF Downloads 128
19416 A Hybrid Adomian Decomposition Method in the Solution of Logistic Abelian Ordinary Differential and Its Comparism with Some Standard Numerical Scheme

Authors: F. J. Adeyeye, D. Eni, K. M. Okedoye

Abstract:

In this paper we present a Hybrid of Adomian decomposition method (ADM). This is the substitution of a One-step method of Taylor’s series approximation of orders I and II, into the nonlinear part of Adomian decomposition method resulting in a convergent series scheme. This scheme is applied to solve some Logistic problems represented as Abelian differential equation and the results are compared with the actual solution and Runge-kutta of order IV in order to ascertain the accuracy and efficiency of the scheme. The findings shows that the scheme is efficient enough to solve logistic problems considered in this paper.

Keywords: Adomian decomposition method, nonlinear part, one-step method, Taylor series approximation, hybrid of Adomian polynomial, logistic problem, Malthusian parameter, Verhulst Model

Procedia PDF Downloads 400
19415 Numerical Study of Steel Structures Responses to External Explosions

Authors: Mohammad Abdallah

Abstract:

Due to the constant increase in terrorist attacks, the research and engineering communities have given significant attention to building performance under explosions. This paper presents a methodology for studying and simulating the dynamic responses of steel structures during external detonations, particularly for accurately investigating the impact of incrementing charge weight on the members total behavior, resistance and failure. Prediction damage method was introduced to evaluate the damage level of the steel members based on five scenarios of explosions. Johnson–Cook strength and failure model have been used as well as ABAQUS finite element code to simulate the explicit dynamic analysis, and antecedent field tests were used to verify the acceptance and accuracy of the proposed material strength and failure model. Based on the structural response, evaluation criteria such as deflection, vertical displacement, drift index, and damage level; the obtained results show the vulnerability of steel columns and un-braced steel frames which are designed and optimized to carry dead and live load to resist and endure blast loading.

Keywords: steel structure, blast load, terrorist attacks, charge weight, damage level

Procedia PDF Downloads 364
19414 New Gas Geothermometers for the Prediction of Subsurface Geothermal Temperatures: An Optimized Application of Artificial Neural Networks and Geochemometric Analysis

Authors: Edgar Santoyo, Daniel Perez-Zarate, Agustin Acevedo, Lorena Diaz-Gonzalez, Mirna Guevara

Abstract:

Four new gas geothermometers have been derived from a multivariate geo chemometric analysis of a geothermal fluid chemistry database, two of which use the natural logarithm of CO₂ and H2S concentrations (mmol/mol), respectively, and the other two use the natural logarithm of the H₂S/H₂ and CO₂/H₂ ratios. As a strict compilation criterion, the database was created with gas-phase composition of fluids and bottomhole temperatures (BHTM) measured in producing wells. The calibration of the geothermometers was based on the geochemical relationship existing between the gas-phase composition of well discharges and the equilibrium temperatures measured at bottomhole conditions. Multivariate statistical analysis together with the use of artificial neural networks (ANN) was successfully applied for correlating the gas-phase compositions and the BHTM. The predicted or simulated bottomhole temperatures (BHTANN), defined as output neurons or simulation targets, were statistically compared with measured temperatures (BHTM). The coefficients of the new geothermometers were obtained from an optimized self-adjusting training algorithm applied to approximately 2,080 ANN architectures with 15,000 simulation iterations each one. The self-adjusting training algorithm used the well-known Levenberg-Marquardt model, which was used to calculate: (i) the number of neurons of the hidden layer; (ii) the training factor and the training patterns of the ANN; (iii) the linear correlation coefficient, R; (iv) the synaptic weighting coefficients; and (v) the statistical parameter, Root Mean Squared Error (RMSE) to evaluate the prediction performance between the BHTM and the simulated BHTANN. The prediction performance of the new gas geothermometers together with those predictions inferred from sixteen well-known gas geothermometers (previously developed) was statistically evaluated by using an external database for avoiding a bias problem. Statistical evaluation was performed through the analysis of the lowest RMSE values computed among the predictions of all the gas geothermometers. The new gas geothermometers developed in this work have been successfully used for predicting subsurface temperatures in high-temperature geothermal systems of Mexico (e.g., Los Azufres, Mich., Los Humeros, Pue., and Cerro Prieto, B.C.) as well as in a blind geothermal system (known as Acoculco, Puebla). The last results of the gas geothermometers (inferred from gas-phase compositions of soil-gas bubble emissions) compare well with the temperature measured in two wells of the blind geothermal system of Acoculco, Puebla (México). Details of this new development are outlined in the present research work. Acknowledgements: The authors acknowledge the funding received from CeMIE-Geo P09 project (SENER-CONACyT).

Keywords: artificial intelligence, gas geochemistry, geochemometrics, geothermal energy

Procedia PDF Downloads 352
19413 Numerical Modeling and Prediction of Nanoscale Transport Phenomena in Vertically Aligned Carbon Nanotube Catalyst Layers by the Lattice Boltzmann Simulation

Authors: Seungho Shin, Keunwoo Choi, Ali Akbar, Sukkee Um

Abstract:

In this study, the nanoscale transport properties and catalyst utilization of vertically aligned carbon nanotube (VACNT) catalyst layers are computationally predicted by the three-dimensional lattice Boltzmann simulation based on the quasi-random nanostructural model in pursuance of fuel cell catalyst performance improvement. A series of catalyst layers are randomly generated with statistical significance at the 95% confidence level to reflect the heterogeneity of the catalyst layer nanostructures. The nanoscale gas transport phenomena inside the catalyst layers are simulated by the D3Q19 (i.e., three-dimensional, 19 velocities) lattice Boltzmann method, and the corresponding mass transport characteristics are mathematically modeled in terms of structural properties. Considering the nanoscale reactant transport phenomena, a transport-based effective catalyst utilization factor is defined and statistically analyzed to determine the structure-transport influence on catalyst utilization. The tortuosity of the reactant mass transport path of VACNT catalyst layers is directly calculated from the streaklines. Subsequently, the corresponding effective mass diffusion coefficient is statistically predicted by applying the pre-estimated tortuosity factors to the Knudsen diffusion coefficient in the VACNT catalyst layers. The statistical estimation results clearly indicate that the morphological structures of VACNT catalyst layers reduce the tortuosity of reactant mass transport path when compared to conventional catalyst layer and significantly improve consequential effective mass diffusion coefficient of VACNT catalyst layer. Furthermore, catalyst utilization of the VACNT catalyst layer is substantially improved by enhanced mass diffusion and electric current paths despite the relatively poor interconnections of the ion transport paths.

Keywords: Lattice Boltzmann method, nano transport phenomena, polymer electrolyte fuel cells, vertically aligned carbon nanotube

Procedia PDF Downloads 201
19412 Forced Degradation Study of Rifaximin Formulated Tablets to Determine Stability Indicating Nature of High-Performance Liquid Chromatography Analytical Method

Authors: Abid Fida Masih

Abstract:

Forced degradation study of Rifaximin was conducted to determine the stability indicating potential of HPLC testing method for detection of Rifaximin in formulated tablets to be employed for quality control and stability testing. The questioned method applied with mobile phase methanol: water (70:30), 5µm, 250 x 4.6mm, C18 column, wavelength 293nm and flow rate of 1.0 ml/min. Forced degradation study was performed under oxidative, acidic, basic, thermal and photolytic conditions. The applied method successfully determined the degradation products after acidic and basic degradation without interfering with Rifaximin detection. Therefore, the method was said to be stability indicating and can be applied for quality control and stability testing of Rifaxmin tablets during its shelf life.

Keywords: forced degradation, high-performance liquid chromatography, method validation, rifaximin, stability indicating method

Procedia PDF Downloads 314
19411 A Numerical Method for Diffusion and Cahn-Hilliard Equations on Evolving Spherical Surfaces

Authors: Jyh-Yang Wu, Sheng-Gwo Chen

Abstract:

In this paper, we present a simple effective numerical geometric method to estimate the divergence of a vector field over a curved surface. The conservation law is an important principle in physics and mathematics. However, many well-known numerical methods for solving diffusion equations do not obey conservation laws. Our presented method in this paper combines the divergence theorem with a generalized finite difference method and obeys the conservation law on discrete closed surfaces. We use the similar method to solve the Cahn-Hilliard equations on evolving spherical surfaces and observe stability results in our numerical simulations.

Keywords: conservation laws, diffusion equations, Cahn-Hilliard equations, evolving surfaces

Procedia PDF Downloads 495
19410 MICA-TM Peptide Selectively Binds to HLAs Associated with Behçet's Disease

Authors: Sirilak Kongkaew, Pathumwadee Yodmanee, Nopporn Kaiyawet, Arthitaya Meeprasert, Thanyada Rungrotmongkol, Toshikatsu Kaburaki, Hiroshi Noguchi, Fujio Takeuch, Nawee Kungwan, Supot Hannongbua

Abstract:

Behçet’s disease (BD) is a genetic autoimmune expressed by multisystemic inflammatory disorder mostly occurred at the skin, joints, gastrointestinal tract, and genitalia, including ocular, oral, genital, and central nervous systems. Most BD patients in Japan and Korea were strongly indicated by the genetic factor namely HLA-B*51 (especially, HLA-B*51:01) marker in HMC class I, while HLA-A*26:01 allele has been detected from the BD patients in Greek, Japan, and Taiwan. To understand the selective binding of the MICA-TM peptide towards the HLAs associated with BD, the molecular dynamics simulations were applied on the four HLA alleles (B*51:01, B*35:01, A*26:01, and A*11:01) in complex with such peptide. As a result, the key residues in the binding groove of HLA protein which play an important role in the MICA-TM peptide binding and stabilization were revealed. The Van der Waals force was found to be the main protein-protein interaction. Based on the binding free energy prediction by MM/PBSA method, the MICA-TM peptide interacted stronger to the HLA alleles associated to BD in the identical class by 7-12 kcal/mol. The obtained results from the present study could help to differentiate the HLA alleles and explain a source of Behçet’s disease.

Keywords: Behçet’s disease, MD simulations, HMC class I, autoimmune

Procedia PDF Downloads 399
19409 Autism Spectrum Disorder Classification Algorithm Using Multimodal Data Based on Graph Convolutional Network

Authors: Yuntao Liu, Lei Wang, Haoran Xia

Abstract:

Machine learning has shown extensive applications in the development of classification models for autism spectrum disorder (ASD) using neural image data. This paper proposes a fusion multi-modal classification network based on a graph neural network. First, the brain is segmented into 116 regions of interest using a medical segmentation template (AAL, Anatomical Automatic Labeling). The image features of sMRI and the signal features of fMRI are extracted, which build the node and edge embedding representations of the brain map. Then, we construct a dynamically updated brain map neural network and propose a method based on a dynamic brain map adjacency matrix update mechanism and learnable graph to further improve the accuracy of autism diagnosis and recognition results. Based on the Autism Brain Imaging Data Exchange I dataset(ABIDE I), we reached a prediction accuracy of 74% between ASD and TD subjects. Besides, to study the biomarkers that can help doctors analyze diseases and interpretability, we used the features by extracting the top five maximum and minimum ROI weights. This work provides a meaningful way for brain disorder identification.

Keywords: autism spectrum disorder, brain map, supervised machine learning, graph network, multimodal data, model interpretability

Procedia PDF Downloads 67
19408 Graph Neural Network-Based Classification for Disease Prediction in Health Care Heterogeneous Data Structures of Electronic Health Record

Authors: Raghavi C. Janaswamy

Abstract:

In the healthcare sector, heterogenous data elements such as patients, diagnosis, symptoms, conditions, observation text from physician notes, and prescriptions form the essentials of the Electronic Health Record (EHR). The data in the form of clear text and images are stored or processed in a relational format in most systems. However, the intrinsic structure restrictions and complex joins of relational databases limit the widespread utility. In this regard, the design and development of realistic mapping and deep connections as real-time objects offer unparallel advantages. Herein, a graph neural network-based classification of EHR data has been developed. The patient conditions have been predicted as a node classification task using a graph-based open source EHR data, Synthea Database, stored in Tigergraph. The Synthea DB dataset is leveraged due to its closer representation of the real-time data and being voluminous. The graph model is built from the EHR heterogeneous data using python modules, namely, pyTigerGraph to get nodes and edges from the Tigergraph database, PyTorch to tensorize the nodes and edges, PyTorch-Geometric (PyG) to train the Graph Neural Network (GNN) and adopt the self-supervised learning techniques with the AutoEncoders to generate the node embeddings and eventually perform the node classifications using the node embeddings. The model predicts patient conditions ranging from common to rare situations. The outcome is deemed to open up opportunities for data querying toward better predictions and accuracy.

Keywords: electronic health record, graph neural network, heterogeneous data, prediction

Procedia PDF Downloads 86
19407 Comparison of the Boundary Element Method and the Method of Fundamental Solutions for Analysis of Potential and Elasticity

Authors: S. Zenhari, M. R. Hematiyan, A. Khosravifard, M. R. Feizi

Abstract:

The boundary element method (BEM) and the method of fundamental solutions (MFS) are well-known fundamental solution-based methods for solving a variety of problems. Both methods are boundary-type techniques and can provide accurate results. In comparison to the finite element method (FEM), which is a domain-type method, the BEM and the MFS need less manual effort to solve a problem. The aim of this study is to compare the accuracy and reliability of the BEM and the MFS. This comparison is made for 2D potential and elasticity problems with different boundary and loading conditions. In the comparisons, both convex and concave domains are considered. Both linear and quadratic elements are employed for boundary element analysis of the examples. The discretization of the problem domain in the BEM, i.e., converting the boundary of the problem into boundary elements, is relatively simple; however, in the MFS, obtaining appropriate locations of collocation and source points needs more attention to obtain reliable solutions. The results obtained from the presented examples show that both methods lead to accurate solutions for convex domains, whereas the BEM is more suitable than the MFS for concave domains.

Keywords: boundary element method, method of fundamental solutions, elasticity, potential problem, convex domain, concave domain

Procedia PDF Downloads 90
19406 Influencing Factors and Mechanism of Patient Engagement in Healthcare: A Survey in China

Authors: Qing Wu, Xuchun Ye, Kirsten Corazzini

Abstract:

Objective: It is increasingly recognized that patients’ rational and meaningful engagement in healthcare could make important contributions to their health care and safety management. However, recent evidence indicated that patients' actual roles in healthcare didn’t match their desired roles, and many patients reported a less active role than desired, which suggested that patient engagement in healthcare may be influenced by various factors. This study aimed to analyze influencing factors on patient engagement and explore the influence mechanism, which will be expected to contribute to the strategy development of patient engagement in healthcare. Methods: On the basis of analyzing the literature and theory study, the research framework was developed. According to the research framework, a cross-sectional survey was employed using the behavior and willingness of patient engagement in healthcare questionnaire, Chinese version All Aspects of Health Literacy Scale, Facilitation of Patient Involvement Scale and Wake Forest Physician Trust Scale, and other influencing factor related scales. A convenience sample of 580 patients was recruited from 8 general hospitals in Shanghai, Jiangsu Province, and Zhejiang Province. Results: The results of the cross-sectional survey indicated that the mean score for the patient engagement behavior was (4.146 ± 0.496), and the mean score for the willingness was (4.387 ± 0.459). The level of patient engagement behavior was inferior to their willingness to be involved in healthcare (t = 14.928, P < 0.01). The influencing mechanism model of patient engagement in healthcare was constructed by the path analysis. The path analysis revealed that patient attitude toward engagement, patients’ perception of facilitation of patient engagement and health literacy played direct prediction on the patients’ willingness of engagement, and standard estimated values of path coefficient were 0.341, 0.199, 0.291, respectively. Patients’ trust in physician and the willingness of engagement played direct prediction on the patient engagement, and standard estimated values of path coefficient were 0.211, 0.641, respectively. Patient attitude toward engagement, patients’ perception of facilitation and health literacy played indirect prediction on patient engagement, and standard estimated values of path coefficient were 0.219, 0.128, 0.187, respectively. Conclusions: Patients engagement behavior did not match their willingness to be involved in healthcare. The influencing mechanism model of patient engagement in healthcare was constructed. Patient attitude toward engagement, patients’ perception of facilitation of engagement and health literacy posed indirect positive influence on patient engagement through the patients’ willingness of engagement. Patients’ trust in physician and the willingness of engagement had direct positive influence on the patient engagement. Patient attitude toward engagement, patients’ perception of physician facilitation of engagement and health literacy were the factors influencing the patients’ willingness of engagement. The results of this study provided valuable evidence on guiding the development of strategies for promoting patient rational and meaningful engagement in healthcare.

Keywords: healthcare, patient engagement, influencing factor, the mechanism

Procedia PDF Downloads 156
19405 Relevance of Reliability Approaches to Predict Mould Growth in Biobased Building Materials

Authors: Lucile Soudani, Hervé Illy, Rémi Bouchié

Abstract:

Mould growth in living environments has been widely reported for decades all throughout the world. A higher level of moisture in housings can lead to building degradation, chemical component emissions from construction materials as well as enhancing mould growth within the envelope elements or on the internal surfaces. Moreover, a significant number of studies have highlighted the link between mould presence and the prevalence of respiratory diseases. In recent years, the proportion of biobased materials used in construction has been increasing, as seen as an effective lever to reduce the environmental impact of the building sector. Besides, bio-based materials are also hygroscopic materials: when in contact with the wet air of a surrounding environment, their porous structures enable a better capture of water molecules, thus providing a more suitable background for mould growth. Many studies have been conducted to develop reliable models to be able to predict mould appearance, growth, and decay over many building materials and external exposures. Some of them require information about temperature and/or relative humidity, exposure times, material sensitivities, etc. Nevertheless, several studies have highlighted a large disparity between predictions and actual mould growth in experimental settings as well as in occupied buildings. The difficulty of considering the influence of all parameters appears to be the most challenging issue. As many complex phenomena take place simultaneously, a preliminary study has been carried out to evaluate the feasibility to sadopt a reliability approach rather than a deterministic approach. Both epistemic and random uncertainties were identified specifically for the prediction of mould appearance and growth. Several studies published in the literature were selected and analysed, from the agri-food or automotive sectors, as the deployed methodology appeared promising.

Keywords: bio-based materials, mould growth, numerical prediction, reliability approach

Procedia PDF Downloads 46
19404 A Comprehensive Method of Fault Detection and Isolation based on Testability Modeling Data

Authors: Junyou Shi, Weiwei Cui

Abstract:

Testability modeling is a commonly used method in testability design and analysis of system. A dependency matrix will be obtained from testability modeling, and we will give a quantitative evaluation about fault detection and isolation. Based on the dependency matrix, we can obtain the diagnosis tree. The tree provides the procedures of the fault detection and isolation. But the dependency matrix usually includes built-in test (BIT) and manual test in fact. BIT runs the test automatically and is not limited by the procedures. The method above cannot give a more efficient diagnosis and use the advantages of the BIT. A Comprehensive method of fault detection and isolation is proposed. This method combines the advantages of the BIT and Manual test by splitting the matrix. The result of the case study shows that the method is effective.

Keywords: fault detection, fault isolation, testability modeling, BIT

Procedia PDF Downloads 335
19403 Prediction of Survival Rate after Gastrointestinal Surgery Based on The New Japanese Association for Acute Medicine (JAAM Score) With Neural Network Classification Method

Authors: Ayu Nabila Kusuma Pradana, Aprinaldi Jasa Mantau, Tomohiko Akahoshi

Abstract:

The incidence of Disseminated intravascular coagulation (DIC) following gastrointestinal surgery has a poor prognosis. Therefore, it is important to determine the factors that can predict the prognosis of DIC. This study will investigate the factors that may influence the outcome of DIC in patients after gastrointestinal surgery. Eighty-one patients were admitted to the intensive care unit after gastrointestinal surgery in Kyushu University Hospital from 2003 to 2021. Acute DIC scores were estimated using the new Japanese Association for Acute Medicine (JAAM) score from before and after surgery from day 1, day 3, and day 7. Acute DIC scores will be compared with The Sequential Organ Failure Assessment (SOFA) score, platelet count, lactate level, and a variety of biochemical parameters. This study applied machine learning algorithms to predict the prognosis of DIC after gastrointestinal surgery. The results of this study are expected to be used as an indicator for evaluating patient prognosis so that it can increase life expectancy and reduce mortality from cases of DIC patients after gastrointestinal surgery.

Keywords: the survival rate, gastrointestinal surgery, JAAM score, neural network, machine learning, disseminated intravascular coagulation (DIC)

Procedia PDF Downloads 260
19402 Mitigating Supply Chain Risk for Sustainability Using Big Data Knowledge: Evidence from the Manufacturing Supply Chain

Authors: Mani Venkatesh, Catarina Delgado, Purvishkumar Patel

Abstract:

The sustainable supply chain is gaining popularity among practitioners because of increased environmental degradation and stakeholder awareness. On the other hand supply chain, risk management is very crucial for the practitioners as it potentially disrupts supply chain operations. Prediction and addressing the risk caused by social issues in the supply chain is paramount importance to the sustainable enterprise. More recently, the usage of Big data analytics for forecasting business trends has been gaining momentum among professionals. The aim of the research is to explore the application of big data, predictive analytics in successfully mitigating supply chain social risk and demonstrate how such mitigation can help in achieving sustainability (environmental, economic & social). The method involves the identification and validation of social issues in the supply chain by an expert panel and survey. Later, we used a case study to illustrate the application of big data in the successful identification and mitigation of social issues in the supply chain. Our result shows that the company can predict various social issues through big data, predictive analytics and mitigate the social risk. We also discuss the implication of this research to the body of knowledge and practice.

Keywords: big data, sustainability, supply chain social sustainability, social risk, case study

Procedia PDF Downloads 408
19401 A Study of Numerical Reaction-Diffusion Systems on Closed Surfaces

Authors: Mei-Hsiu Chi, Jyh-Yang Wu, Sheng-Gwo Chen

Abstract:

The diffusion-reaction equations are important Partial Differential Equations in mathematical biology, material science, physics, and so on. However, finding efficient numerical methods for diffusion-reaction systems on curved surfaces is still an important and difficult problem. The purpose of this paper is to present a convergent geometric method for solving the reaction-diffusion equations on closed surfaces by an O(r)-LTL configuration method. The O(r)-LTL configuration method combining the local tangential lifting technique and configuration equations is an effective method to estimate differential quantities on curved surfaces. Since estimating the Laplace-Beltrami operator is an important task for solving the reaction-diffusion equations on surfaces, we use the local tangential lifting method and a generalized finite difference method to approximate the Laplace-Beltrami operators and we solve this reaction-diffusion system on closed surfaces. Our method is not only conceptually simple, but also easy to implement.

Keywords: closed surfaces, high-order approachs, numerical solutions, reaction-diffusion systems

Procedia PDF Downloads 376
19400 A Simple Autonomous Hovering and Operating Control of Multicopter Using Only Web Camera

Authors: Kazuya Sato, Toru Kasahara, Junji Kuroda

Abstract:

In this paper, an autonomous hovering control method of multicopter using only Web camera is proposed. Recently, various control method of an autonomous flight for multicopter are proposed. But, in the previously proposed methods, a motion capture system (i.e., OptiTrack) and laser range finder are often used to measure the position and posture of multicopter. To achieve an autonomous flight control of multicopter with simple equipment, we propose an autonomous flight control method using AR marker and Web camera. AR marker can measure the position of multicopter with Cartesian coordinate in three dimensional, then its position connects with aileron, elevator, and accelerator throttle operation. A simple PID control method is applied to the each operation and adjust the controller gains. Experimental result are given to show the effectiveness of our proposed method. Moreover, another simple operation method for autonomous flight control multicopter is also proposed.

Keywords: autonomous hovering control, multicopter, Web camera, operation

Procedia PDF Downloads 562
19399 Application of Double Side Approach Method on Super Elliptical Winkler Plate

Authors: Hsiang-Wen Tang, Cheng-Ying Lo

Abstract:

In this study, the static behavior of super elliptical Winkler plate is analyzed by applying the double side approach method. The lack of information about super elliptical Winkler plates is the motivation of this study and we use the double side approach method to solve this problem because of its superior ability on efficiently treating problems with complex boundary shape. The double side approach method has the advantages of high accuracy, easy calculation procedure and less calculation load required. Most important of all, it can give the error bound of the approximate solution. The numerical results not only show that the double side approach method works well on this problem but also provide us the knowledge of static behavior of super elliptical Winkler plate in practical use.

Keywords: super elliptical winkler plate, double side approach method, error bound, mechanic

Procedia PDF Downloads 356
19398 Study the Dynamic Behavior of Irregular Buildings by the Analysis Method Accelerogram

Authors: Beciri Mohamed Walid

Abstract:

Some architectural conditions required some shapes often lead to an irregular distribution of masses, rigidities and resistances. The main object of the present study consists in estimating the influence of the irregularity both in plan and in elevation which presenting some structures on the dynamic characteristics and his influence on the behavior of this structures. To do this, it is necessary to make apply both dynamic methods proposed by the RPA99 (spectral modal method and method of analysis by accelerogram) on certain similar prototypes and to analyze the parameters measuring the answer of these structures and to proceed to a comparison of the results.

Keywords: structure, irregular, code, seismic, method, force, period

Procedia PDF Downloads 310
19397 Solvent Extraction, Spectrophotometric Determination of Antimony(III) from Real Samples and Synthetic Mixtures Using O-Methylphenyl Thiourea as a Sensitive Reagent

Authors: Shashikant R. Kuchekar, Shivaji D. Pulate, Vishwas B. Gaikwad

Abstract:

A simple and selective method is developed for solvent extraction spectrophotometric determination of antimony(III) using O-Methylphenyl Thiourea (OMPT) as a sensitive chromogenic chelating agent. The basis of proposed method is formation of antimony(III)-OMPT complex was extracted with 0.0025 M OMPT in chloroform from aqueous solution of antimony(III) in 1.0 M perchloric acid. The absorbance of this complex was measured at 297 nm against reagent blank. Beer’s law was obeyed up to 15µg mL-1 of antimony(III). The Molar absorptivity and Sandell’s sensitivity of the antimony(III)-OMPT complex in chloroform are 16.6730 × 103 L mol-1 cm-1 and 0.00730282 µg cm-2 respectively. The stoichiometry of antimony(III)-OMPT complex was established from slope ratio method, mole ratio method and Job’s continuous variation method was 1:2. The complex was stable for more than 48 h. The interfering effect of various foreign ions was studied and suitable masking agents are used wherever necessary to enhance selectivity of the method. The proposed method is successfully applied for determination of antimony(III) from real samples alloy and synthetic mixtures. Repetition of the method was checked by finding relative standard deviation (RSD) for 10 determinations which was 0.42%.

Keywords: solvent extraction, antimony, spectrophotometry, real sample analysis

Procedia PDF Downloads 332
19396 Prediction of Incompatibility Between Excipients and API in Gliclazide Tablets Using Infrared Spectroscopy and Principle Component Analysis

Authors: Farzad Khajavi

Abstract:

Recognition of the interaction between active pharmaceutical ingredients (API) and excipients is a pivotal factor in the development of all pharmaceutical dosage forms. By predicting the interaction between API and excipients, we will be able to prevent the advent of impurities or at least lessen their amount. In this study, we used principle component analysis (PCA) to predict the interaction between Gliclazide as a secondary amine with Lactose in pharmaceutical solid dosage forms. The infrared spectra of binary mixtures of Gliclazide with Lactose at different mole ratios were recorded, and the obtained matrix was analyzed with PCA. By plotting score columns of the analyzed matrix, the incompatibility between Gliclazide and Lactose was observed. This incompatibility was seen experimentally. We observed the appearance of the impurity originated from the Maillard reaction between Gliclazide and Lactose at the chromatogram of the manufactured tablets in room temperature and under accelerated stability conditions. This impurity increases at the stability months. By changing Lactose to Mannitol and using Calcium Dibasic Phosphate in the tablet formulation, the amount of the impurity decreased and was in the acceptance range defined by British pharmacopeia for Gliclazide Tablets. This method is a fast and simple way to predict the existence of incompatibility between excipients and active pharmaceutical ingredients.

Keywords: PCA, gliclazide, impurity, infrared spectroscopy, interaction

Procedia PDF Downloads 208
19395 A Fuzzy Satisfactory Optimization Method Based on Stress Analysis for a Hybrid Composite Flywheel

Authors: Liping Yang, Curran Crawford, Jr. Ren, Zhengyi Ren

Abstract:

Considering the cost evaluation and the stress analysis, a fuzzy satisfactory optimization (FSO) method has been developed for a hybrid composite flywheel. To evaluate the cost, the cost coefficients of the flywheel components are obtained through calculating the weighted sum of the scores of the material manufacturability, the structure character, and the material price. To express the satisfactory degree of the energy, the cost, and the mass, the satisfactory functions are proposed by using the decline function and introducing a satisfactory coefficient. To imply the different significance of the objectives, the object weight coefficients are defined. Based on the stress analysis of composite material, the circumferential and radial stresses are considered into the optimization formulation. The simulations of the FSO method with different weight coefficients and storage energy density optimization (SEDO) method of a flywheel are contrasted. The analysis results show that the FSO method can satisfy different requirements of the designer and the FSO method with suitable weight coefficients can replace the SEDO method.

Keywords: flywheel energy storage, fuzzy, optimization, stress analysis

Procedia PDF Downloads 347
19394 A New Computational Method for the Solution of Nonlinear Burgers' Equation Arising in Longitudinal Dispersion Phenomena in Fluid Flow through Porous Media

Authors: Olayiwola Moruf Oyedunsi

Abstract:

This paper discusses the Modified Variational Iteration Method (MVIM) for the solution of nonlinear Burgers’ equation arising in longitudinal dispersion phenomena in fluid flow through porous media. The method is an elegant combination of Taylor’s series and the variational iteration method (VIM). Using Maple 18 for implementation, it is observed that the procedure provides rapidly convergent approximation with less computational efforts. The result shows that the concentration C(x,t) of the contaminated water decreases as distance x increases for the given time t.

Keywords: modified variational iteration method, Burger’s equation, porous media, partial differential equation

Procedia PDF Downloads 322
19393 A Dynamical Study of Fractional Order Obesity Model by a Combined Legendre Wavelet Method

Authors: Hakiki Kheira, Belhamiti Omar

Abstract:

In this paper, we propose a new compartmental fractional order model for the simulation of epidemic obesity dynamics. Using the Legendre wavelet method combined with the decoupling and quasi-linearization technique, we demonstrate the validity and applicability of our model. We also present some fractional differential illustrative examples to demonstrate the applicability and efficiency of the method. The fractional derivative is described in the Caputo sense.

Keywords: Caputo derivative, epidemiology, Legendre wavelet method, obesity

Procedia PDF Downloads 421
19392 Singular Perturbed Vector Field Method Applied to the Problem of Thermal Explosion of Polydisperse Fuel Spray

Authors: Ophir Nave

Abstract:

In our research, we present the concept of singularly perturbed vector field (SPVF) method, and its application to thermal explosion of diesel spray combustion. Given a system of governing equations, which consist of hidden Multi-scale variables, the SPVF method transfer and decompose such system to fast and slow singularly perturbed subsystems (SPS). The SPVF method enables us to understand the complex system, and simplify the calculations. Later powerful analytical, numerical and asymptotic methods (e.g method of integral (invariant) manifold (MIM), the homotopy analysis method (HAM) etc.) can be applied to each subsystem. We compare the results obtained by the methods of integral invariant manifold and SPVF apply to spray droplets combustion model. The research deals with the development of an innovative method for extracting fast and slow variables in physical mathematical models. The method that we developed called singular perturbed vector field. This method based on a numerical algorithm applied to global quasi linearization applied to given physical model. The SPVF method applied successfully to combustion processes. Our results were compared to experimentally results. The SPVF is a general numerical and asymptotical method that reveals the hierarchy (multi-scale system) of a given system.

Keywords: polydisperse spray, model reduction, asymptotic analysis, multi-scale systems

Procedia PDF Downloads 220
19391 Multi-Stage Optimization of Local Environmental Quality by Comprehensive Computer Simulated Person as Sensor for Air Conditioning Control

Authors: Sung-Jun Yoo, Kazuhide Ito

Abstract:

In this study, a comprehensive computer simulated person (CSP) that integrates computational human model (virtual manikin) and respiratory tract model (virtual airway), was applied for estimation of indoor environmental quality. Moreover, an inclusive prediction method was established by integrating computational fluid dynamics (CFD) analysis with advanced CSP which is combined with physiologically-based pharmacokinetic (PBPK) model, unsteady thermoregulation model for analysis targeting micro-climate around human body and respiratory area with high accuracy. This comprehensive method can estimate not only the contaminant inhalation but also constant interaction in the contaminant transfer between indoor spaces, i.e., a target area for indoor air quality (IAQ) assessment, and respiratory zone for health risk assessment. This study focused on the usage of the CSP as an air/thermal quality sensor in indoors, which means the application of comprehensive model for assessment of IAQ and thermal environmental quality. Demonstrative analysis was performed in order to examine the applicability of the comprehensive model to the heating, ventilation, air conditioning (HVAC) control scheme. CSP was located at the center of the simple model room which has dimension of 3m×3m×3m. Formaldehyde which is generated from floor material was assumed as a target contaminant, and flow field, sensible/latent heat and contaminant transfer analysis in indoor space were conducted by using CFD simulation coupled with CSP. In this analysis, thermal comfort was evaluated by thermoregulatory analysis, and respiratory exposure risks represented by adsorption flux/concentration at airway wall surface were estimated by PBPK-CFD hybrid analysis. These Analysis results concerning IAQ and thermal comfort will be fed back to the HVAC control and could be used to find a suitable ventilation rate and energy requirement for air conditioning system.

Keywords: CFD simulation, computer simulated person, HVAC control, indoor environmental quality

Procedia PDF Downloads 361