Search results for: neural stem cells
4337 Application of Artificial Neural Network for Prediction of Load-Haul-Dump Machine Performance Characteristics
Authors: J. Balaraju, M. Govinda Raj, C. S. N. Murthy
Abstract:
Every industry is constantly looking for enhancement of its day to day production and productivity. This can be possible only by maintaining the men and machinery at its adequate level. Prediction of performance characteristics plays an important role in performance evaluation of the equipment. Analytical and statistical approaches will take a bit more time to solve complex problems such as performance estimations as compared with software-based approaches. Keeping this in view the present study deals with an Artificial Neural Network (ANN) modelling of a Load-Haul-Dump (LHD) machine to predict the performance characteristics such as reliability, availability and preventive maintenance (PM). A feed-forward-back-propagation ANN technique has been used to model the Levenberg-Marquardt (LM) training algorithm. The performance characteristics were computed using Isograph Reliability Workbench 13.0 software. These computed values were validated using predicted output responses of ANN models. Further, recommendations are given to the industry based on the performed analysis for improvement of equipment performance.Keywords: load-haul-dump, LHD, artificial neural network, ANN, performance, reliability, availability, preventive maintenance
Procedia PDF Downloads 1474336 Investigation of The Effects of Hydroxytyrosol on Cytotoxicity, Apoptosis, PI3K/Akt, and ERK 1/2 Pathways in Ovarian Cancer Cell Cultures
Authors: Latife Merve Oktay, Berrin Tugrul
Abstract:
Hydroxytyrosol (HT) is a phenolic phytochemical molecule derived from the hydrolysis of oleuropein, which originates during the maturation of the olives. It has recently received particular attention because of its antioxidant, anti-proliferative, pro-apoptotic and anti-inflammatory activities. In this study, we investigated the cytotoxic and apoptotic effects of hydroxytyrosol and its effects on phosphatidylinositol 3-kinase/Akt (PI3K/Akt) and extracellular signal-regulated kinase 1/2 (ERK 1/2) signaling pathways in human ovarian cancer cell lines OVCAR-3 and MDAH-2774. XTT cell proliferation kit, Cell Death Detection Elisa Plus Kit (Roche) and Human Apoptosis Array (R&D Systems) were used to determine the cytotoxic and apoptotic effects of HT in OVCAR-3 and MDAH-2774 cell lines at 24, 48, 72, and 96 h. Effect of HT on PI3K/Akt and ERK 1/2 signaling pathways were investigated by using specific inhibitors of these pathways. IC50 values of HT were found to be 102.3 µM in MDAH-2774 cells at 72 h and 51.5 µM in OVCAR-3 cells at 96 h. Apoptotic effect of HT in MDAH-2774 cells was the highest at 50 µM at 72 h, and kept decreasing at 100 and 150 µM concentrations and was not seen at 200 µM and higher concentrations. Highest apoptotic effect was seen at 100 µM concentration in OVCAR-3 cells at 96 h, however apoptotic effect was decreased over 100 µM concentrations. According to antibody microarray results, HT increased the levels of pro-apoptotic molecules Bad, Bax, active caspase-3, Htra2/Omi by 2.0-, 1.4-, 1.2-, 4.2-fold, respectively and also increased the levels of pro-apoptotic death receptors TRAIL R1/DR4, TRAIL R2/DR5, FAS/TNFRSF6 by 2.1-, 1.7-, 1.6-fold, respectively, however, it decreased the level of Survivin by 1.6-fold which is one of the inhibitor of apoptosis protein (IAP) family in MDAH-2774 cells. In OVCAR-3 cells, HT decreased the levels of anti-apoptotic proteins Bcl-2, pro-caspase 3 by 3.1-, 8.2-fold, respectively and IAP family proteins CIAP-1, CIAP-2, XIAP, Livin, Survivin by 6.5-, 6.0-, 3.2-, 2.2-, 2.7-fold, respectively and increased the level of cytochrome-c by 1.2-fold. We have shown that HT shows its cytotoxic and apoptotic effect through inhibiting ERK 1/2 signaling pathway in both OVCAR-3 and MDAH-2774 cells. Further studies are needed to investigate molecular mechanisms and modulatory effects of hydroxytyrosol.Keywords: apoptosis, cytotoxicity, hydroxytyrosol, ovarian cancer
Procedia PDF Downloads 3534335 Burn/Traumatic Scar Maturation Using Autologous Fat Grafts + SVF
Authors: Ashok K. Gupta
Abstract:
Over the past few decades, since the bio-engineering revolution, autologous cell therapy (ACT) has become a rapidly evolving field. Currently, this form of therapy has broad applications in modern medicine and plastic surgery, ranging from the treatment/improvement of wound healing to life-saving operations. A study was conducted on 50 patients having to disfigure, and deform post burn scars and was treated by injection of extracted, refined adipose tissue grafts with their unique stem cell properties. To compare the outcome, a control of 20 such patients was treated with conventional skin or soft-tissue flaps or skin grafting, and a control of 10 was treated with more advanced microsurgical techniques such as Pre-fabricated flaps/pre laminated flaps / free flaps. Assessment of fat volume and survival post- follow up period was done by radiological aid, using MRI and clinically (Survival of the autograft and objective parameters for scar elasticity were evaluated skin elasticity parameters 3 to 9 months postoperatively). Recently, an enzyme that is involved in collagen crosslinking in fibrotic tissue, lysyl hydroxylase (LH2), was identified. This enzyme is normally active in bone and cartilage but hardly in the skin. It has been found that this enzyme is highly expressed in scar tissue and subcutaneous fat; this is in contrast to the dermis, where the enzyme is hardly expressed. Adipose tissue-derived stem cell injections are an effective method in the treatment of various extensive post-burn scar deformities that makes it possible to re-create the lost sub-dermal tissue for improvement in the function of involved joint movements.Keywords: adipose tissue-derived stem cell injections, treatment of various extensive post-burn scar deformities, re-create the lost sub-dermal tissue, improvement in function of involved joint movements
Procedia PDF Downloads 664334 Machine Learning Based Gender Identification of Authors of Entry Programs
Authors: Go Woon Kwak, Siyoung Jun, Soyun Maeng, Haeyoung Lee
Abstract:
Entry is an education platform used in South Korea, created to help students learn to program, in which they can learn to code while playing. Using the online version of the entry, teachers can easily assign programming homework to the student and the students can make programs simply by linking programming blocks. However, the programs may be made by others, so that the authors of the programs should be identified. In this paper, as the first step toward author identification of entry programs, we present an artificial neural network based classification approach to identify genders of authors of a program written in an entry. A neural network has been trained from labeled training data that we have collected. Our result in progress, although preliminary, shows that the proposed approach could be feasible to be applied to the online version of entry for gender identification of authors. As future work, we will first use a machine learning technique for age identification of entry programs, which would be the second step toward the author identification.Keywords: artificial intelligence, author identification, deep neural network, gender identification, machine learning
Procedia PDF Downloads 3204333 Impact of Cytokines Alone and Primed with Macrophages on Balamuthia mandrillaris Interactions with Human Brain Microvascular Endothelial Cells in vitro
Authors: Abdul Matin, Salik Nawaz, Suk-Yul Jung
Abstract:
Balamuthia mandrillaris is well known to cause fatal Balamuthia amoebic encephalitis (BAE). Amoebic transmission into the central nervous system (CNS), haematogenous spread is thought to be the prime step, followed by blood-brain barrier (BBB) dissemination. Macrophages are considered to be the foremost line of defense and present in excessive numbers during amoebic infections. The aim of the present investigation was to evaluate the effects of macrophages alone or primed with cytokines on the biological characteristics of Balamuthia in vitro. Using human brain microvascular endothelial cells (HBMEC), which constitutes the BBB, we have shown that Balamuthia demonstrated > 90% binding and > 70% cytotoxicity to host cells. However, macrophages further increased amoebic binding and Balamuthia-mediated cell cytotoxicity. Furthermore, macrophages exhibited no amoebicidal effect against Balamuthia. Zymography assay demonstrated that macrophages exhibited no inhibitory effect on proteolytic activity of Balamuthia. Overall, to our best knowledge, we have shown for the first time macrophages has no inhibitory effects on the biological properties of Balamuthia in vitro. This also strengthened the concept that how and why Balamuthia can cause infections in both immuno-competent and immuno-compromised individuals.Keywords: Balamuthia mandrillaris, macrophages, cytokines, human brain microvascular endothelial cells, Balamuthia amoebic encephalitis
Procedia PDF Downloads 1554332 Optimizing the Capacity of a Convolutional Neural Network for Image Segmentation and Pattern Recognition
Authors: Yalong Jiang, Zheru Chi
Abstract:
In this paper, we study the factors which determine the capacity of a Convolutional Neural Network (CNN) model and propose the ways to evaluate and adjust the capacity of a CNN model for best matching to a specific pattern recognition task. Firstly, a scheme is proposed to adjust the number of independent functional units within a CNN model to make it be better fitted to a task. Secondly, the number of independent functional units in the capsule network is adjusted to fit it to the training dataset. Thirdly, a method based on Bayesian GAN is proposed to enrich the variances in the current dataset to increase its complexity. Experimental results on the PASCAL VOC 2010 Person Part dataset and the MNIST dataset show that, in both conventional CNN models and capsule networks, the number of independent functional units is an important factor that determines the capacity of a network model. By adjusting the number of functional units, the capacity of a model can better match the complexity of a dataset.Keywords: CNN, convolutional neural network, capsule network, capacity optimization, character recognition, data augmentation, semantic segmentation
Procedia PDF Downloads 1524331 Anti-Inflammatory Effect of Myristic Acid through Inhibiting NF-κB and MAPK Signaling Pathways in Lipopolysaccharide-Stimulated RAW 264.7 Macrophage Cells
Authors: Hyun Ji Hyun, Hyo Sun Suh, Min Kook Kim, Yong Chan Kwon, Byung-Mu Lee
Abstract:
Scope: This study is focused on the effect of myristic acid on LPS-induced inflammation in RAW 264.7 macrophage cells. Methods and results: For the experiment, RAW 264.7 mouse macrophage cell line was used. Results showed that treatment with myristic acid can attenuate LPS-induced inflammation. Moreover, myristic acid significantly suppressed expression of inflammatory mediators and down-regulating UVB-induced intracellular ROS generation. Furthermore, myristic acid reduced the expression of NF-κB by inhibiting degradation of IκB-α and ERK, JNK, and p38 pathways by inhibiting phosphorylation in RAW 264.7 macrophage cells. Conclusion: Overall, these data suggest that the myristic acid could reduce LPS-induced inflammation. Acknowledgment: This research was supported by the Ministry of Trade, Industry & Energy(MOTIE), Korea Institute for Advancement of Technology(KIAT) through the Encouragement Program for The Industries of Economic Cooperation RegionKeywords: anti-inflammation, myristic acid, ROS, ultraviolet light
Procedia PDF Downloads 2034330 Bias Prevention in Automated Diagnosis of Melanoma: Augmentation of a Convolutional Neural Network Classifier
Authors: Kemka Ihemelandu, Chukwuemeka Ihemelandu
Abstract:
Melanoma remains a public health crisis, with incidence rates increasing rapidly in the past decades. Improving diagnostic accuracy to decrease misdiagnosis using Artificial intelligence (AI) continues to be documented. Unfortunately, unintended racially biased outcomes, a product of lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone, have increasingly been recognized as a problem.Resulting in noted limitations of the accuracy of the Convolutional neural network (CNN)models. CNN models are prone to biased output due to biases in the dataset used to train them. Our aim in this study was the optimization of convolutional neural network algorithms to mitigate bias in the automated diagnosis of melanoma. We hypothesized that our proposed training algorithms based on a data augmentation method to optimize the diagnostic accuracy of a CNN classifier by generating new training samples from the original ones will reduce bias in the automated diagnosis of melanoma. We applied geometric transformation, including; rotations, translations, scale change, flipping, and shearing. Resulting in a CNN model that provided a modifiedinput data making for a model that could learn subtle racial features. Optimal selection of the momentum and batch hyperparameter increased our model accuracy. We show that our augmented model reduces bias while maintaining accuracy in the automated diagnosis of melanoma.Keywords: bias, augmentation, melanoma, convolutional neural network
Procedia PDF Downloads 2084329 Downscaling Daily Temperature with Neuroevolutionary Algorithm
Authors: Min Shi
Abstract:
State of the art research with Artificial Neural Networks for the downscaling of General Circulation Models (GCMs) mainly uses back-propagation algorithm as a training approach. This paper introduces another training approach of ANNs, Evolutionary Algorithm. The combined algorithm names neuroevolutionary (NE) algorithm. We investigate and evaluate the use of the NE algorithms in statistical downscaling by generating temperature estimates at interior points given information from a lattice of surrounding locations. The results of our experiments indicate that NE algorithms can be efficient alternative downscaling methods for daily temperatures.Keywords: temperature, downscaling, artificial neural networks, evolutionary algorithms
Procedia PDF Downloads 3484328 Steady State and Accelerated Decay Rate Evaluations of Membrane Electrode Assembly of PEM Fuel Cells
Authors: Yingjeng James Li, Lung-Yu Sung, Huan-Jyun Ciou
Abstract:
Durability of Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cells was evaluated in both steady state and accelerated decay modes. Steady state mode was carried out at constant current of 800mA / cm2 for 2500 hours using air as cathode feed and pure hydrogen as anode feed. The degradation of the cell voltage was 0.015V after such 2500 hrs operation. The degradation rate was therefore calculated to be 6uV / hr. Accelerated mode was carried out by switching the voltage of the single cell between OCV and 0.2V. The durations held at OCV and 0.2V were 20 and 40 seconds, respectively, meaning one minute per cycle. No obvious change in performance of the MEA was observed after 10000 cycles of such operation.Keywords: durability, lifetime, membrane electrode assembly, proton exchange membrane fuel cells
Procedia PDF Downloads 5874327 Convolutional Neural Networks Architecture Analysis for Image Captioning
Authors: Jun Seung Woo, Shin Dong Ho
Abstract:
The Image Captioning models with Attention technology have developed significantly compared to previous models, but it is still unsatisfactory in recognizing images. We perform an extensive search over seven interesting Convolutional Neural Networks(CNN) architectures to analyze the behavior of different models for image captioning. We compared seven different CNN Architectures, according to batch size, using on public benchmarks: MS-COCO datasets. In our experimental results, DenseNet and InceptionV3 got about 14% loss and about 160sec training time per epoch. It was the most satisfactory result among the seven CNN architectures after training 50 epochs on GPU.Keywords: deep learning, image captioning, CNN architectures, densenet, inceptionV3
Procedia PDF Downloads 1304326 Anomaly Detection with ANN and SVM for Telemedicine Networks
Authors: Edward Guillén, Jeisson Sánchez, Carlos Omar Ramos
Abstract:
In recent years, a wide variety of applications are developed with Support Vector Machines -SVM- methods and Artificial Neural Networks -ANN-. In general, these methods depend on intrusion knowledge databases such as KDD99, ISCX, and CAIDA among others. New classes of detectors are generated by machine learning techniques, trained and tested over network databases. Thereafter, detectors are employed to detect anomalies in network communication scenarios according to user’s connections behavior. The first detector based on training dataset is deployed in different real-world networks with mobile and non-mobile devices to analyze the performance and accuracy over static detection. The vulnerabilities are based on previous work in telemedicine apps that were developed on the research group. This paper presents the differences on detections results between some network scenarios by applying traditional detectors deployed with artificial neural networks and support vector machines.Keywords: anomaly detection, back-propagation neural networks, network intrusion detection systems, support vector machines
Procedia PDF Downloads 3564325 Dual Drug Piperine-Paclitaxel Nanoparticles Inhibit Migration and Invasion in Human Breast Cancer Cells
Authors: Monika Verma, Renuka Sharma, B. R. Gulati, Namita Singh
Abstract:
In combination therapy, two chemotherapeutic agents work together in a collaborative action. It has appeared as one of the promising approaches to improve anti-cancer treatment efficacy. In the present investigation, piperine (P-NPS), paclitaxel (PTX NPS), and a combination of both, piperine-paclitaxel nanoparticle (Pip-PTX NPS), were made by the nanoprecipitation method and later characterized by PSA, DSC, SEM, TEM, and FTIR. All nanoparticles exhibited a monodispersed size distribution with a size of below 200 nm, zeta potential ranges from (-30-40mV) and a narrow polydispersity index (>0.3) of the drugs. The average encapsulation efficiency was found to be between 80 and 90%. In vitro release of drugs for nanoparticles was done spectrophotometrically. FTIR and DSC results confirmed the presence of the drug. The Pip-PTX NPS significantly inhibit cell proliferation as compared to the native drugs nanoparticles in the breast cancer cell line MCF-7. In addition, Pip-PTX NPS suppresses cells in colony formation and soft gel agar assay. Scratch migration and Transwell chamber invasion assays revealed that combined nanoparticles reduce the migration and invasion of breast cancer cells. Morphological studies showed that Pip-PTX NPS penetrates the cells and induces apoptosis, which was further confirmed by DNA fragmentation, SEM, and western blot analysis. Taken together, Pip-PTX NPS inhibits cell proliferation, anchorage dependent and anchorage independent cell growth, reduces migration and invasion, and induces apoptosis in cells. These findings support that combination therapy using Pip-PTX NPS represents a potential approach and could be helpful in the future for breast cancer therapy.Keywords: piperine, paclitaxel, breast cancer, apoptosis
Procedia PDF Downloads 1004324 An IM-COH Algorithm Neural Network Optimization with Cuckoo Search Algorithm for Time Series Samples
Authors: Wullapa Wongsinlatam
Abstract:
Back propagation algorithm (BP) is a widely used technique in artificial neural network and has been used as a tool for solving the time series problems, such as decreasing training time, maximizing the ability to fall into local minima, and optimizing sensitivity of the initial weights and bias. This paper proposes an improvement of a BP technique which is called IM-COH algorithm (IM-COH). By combining IM-COH algorithm with cuckoo search algorithm (CS), the result is cuckoo search improved control output hidden layer algorithm (CS-IM-COH). This new algorithm has a better ability in optimizing sensitivity of the initial weights and bias than the original BP algorithm. In this research, the algorithm of CS-IM-COH is compared with the original BP, the IM-COH, and the original BP with CS (CS-BP). Furthermore, the selected benchmarks, four time series samples, are shown in this research for illustration. The research shows that the CS-IM-COH algorithm give the best forecasting results compared with the selected samples.Keywords: artificial neural networks, back propagation algorithm, time series, local minima problem, metaheuristic optimization
Procedia PDF Downloads 1514323 Management and Evaluating Technologies of Tissue Engineering Various Fields of Bone
Authors: Arash Sepehri Bonab
Abstract:
Techniques to switch cells between development and differentiation, which tend to be commonly exclusive, are utilized in arrange to supply an expansive cell mass that can perform particular separated capacities required for the tissue to develop. Approaches to tissue engineering center on the have to give signals to cell populaces to advance cell multiplication and separation. Current tissue regenerative procedures depend primarily on tissue repair by transplantation of synthetic/natural inserts. In any case, restrictions on the existing procedures have expanded the request for tissue designing approaches. Tissue engineering innovation and stem cell investigation based on tissue building have made awesome advances in overcoming the issues of tissue and organ damage, useful loss, and surgical complications. Bone tissue has the capability to recover itself; in any case, surrenders of a basic estimate anticipate the bone from recovering and require extra support. The advancement of bone tissue building has been utilized to form useful options to recover the bone. This paper primarily portrays current advances in tissue engineering in different fields of bone and talks about the long-term trend of tissue designing innovation in the treatment of complex diseases.Keywords: tissue engineering, bone, technologies, treatment
Procedia PDF Downloads 944322 Semi-Transparent Dye-Sensitized Solar Panels for Energy Autonomous Greenhouses
Authors: A. Mourtzikou, D. Sygkridou, T. Georgakopoulos, G. Katsagounos, E. Stathatos
Abstract:
Over 60% highly transparent quasi-solid-state dye-sensitized solar cells (DSSCs) with dimension of 50x50 cm2 were fabricated via inkjet printing process using nanocomposite inks as raw materials and tested under outdoor illumination conditions. The cells were electrically characterized, and their possible application to the shell of greenhouses was also examined. The panel design was in Z-interconnection, where the working electrode was inkjet printed on one conductive glass and the counter electrode on a second glass in a sandwich configuration. Silver current collective fingers were printed on the glasses to make the internal electrical connections. In that case, the adjacent cells were connected in series via silver fingers and finally insulated using a UV curing resin to protect them from the corrosive (I-/I3-) redox couple of the electrolyte.Keywords: Dye-sensitized solar panels, inkjet printing, quasi-solid state electrolyte, semi-transparency, scale up
Procedia PDF Downloads 1394321 Acute Neurophysiological Responses to Resistance Training; Evidence of a Shortened Super Compensation Cycle and Early Neural Adaptations
Authors: Christopher Latella, Ashlee M. Hendy, Dan Vander Westhuizen, Wei-Peng Teo
Abstract:
Introduction: Neural adaptations following resistance training interventions have been widely investigated, however the evidence regarding the mechanisms of early adaptation are less clear. Understanding neural responses from an acute resistance training session is pivotal in the prescription of frequency, intensity and volume in applied strength and conditioning practice. Therefore the primary aim of this study was to investigate the time course of neurophysiological mechanisms post training against current super compensation theory, and secondly, to examine whether these responses reflect neural adaptations observed with resistance training interventions. Methods: Participants (N=14) completed a randomised, counterbalanced crossover study comparing; control, strength and hypertrophy conditions. The strength condition involved 3 x 5RM leg extensions with 3min recovery, while the hypertrophy condition involved 3 x 12 RM with 60s recovery. Transcranial magnetic stimulation (TMS) and peripheral nerve stimulation were used to measure excitability of the central and peripheral neural pathways, and maximal voluntary contraction (MVC) to quantify strength changes. Measures were taken pre, immediately post, 10, 20 and 30 mins and 1, 2, 6, 24, 48, 72 and 96 hrs following training. Results: Significant decreases were observed at post, 10, 20, 30 min, 1 and 2 hrs for both training groups compared to control group for force, (p <.05), maximal compound wave; (p < .005), silent period; (p < .05). A significant increase in corticospinal excitability; (p < .005) was observed for both groups. Corticospinal excitability between strength and hypertrophy groups was near significance, with a large effect (η2= .202). All measures returned to baseline within 6 hrs post training. Discussion: Neurophysiological mechanisms appear to be significantly altered in the period 2 hrs post training, returning to homeostasis by 6 hrs. The evidence suggests that the time course of neural recovery post resistance training occurs 18-40 hours shorter than previous super compensation models. Strength and hypertrophy protocols showed similar response profiles with current findings suggesting greater post training corticospinal drive from hypertrophy training, despite previous evidence that strength training requires greater neural input. The increase in corticospinal drive and decrease inl inhibition appear to be a compensatory mechanism for decreases in peripheral nerve excitability and maximal voluntary force output. The changes in corticospinal excitability and inhibition are akin to adaptive processes observed with training interventions of 4 wks or longer. It appears that the 2 hr recovery period post training is the most influential for priming further neural adaptations with resistance training. Secondly, the frequency of prescribed resistance sessions can be scheduled closer than previous super compensation theory for optimal strength gains.Keywords: neural responses, resistance training, super compensation, transcranial magnetic stimulation
Procedia PDF Downloads 2834320 A Motion Dictionary to Real-Time Recognition of Sign Language Alphabet Using Dynamic Time Warping and Artificial Neural Network
Authors: Marcio Leal, Marta Villamil
Abstract:
Computacional recognition of sign languages aims to allow a greater social and digital inclusion of deaf people through interpretation of their language by computer. This article presents a model of recognition of two of global parameters from sign languages; hand configurations and hand movements. Hand motion is captured through an infrared technology and its joints are built into a virtual three-dimensional space. A Multilayer Perceptron Neural Network (MLP) was used to classify hand configurations and Dynamic Time Warping (DWT) recognizes hand motion. Beyond of the method of sign recognition, we provide a dataset of hand configurations and motion capture built with help of fluent professionals in sign languages. Despite this technology can be used to translate any sign from any signs dictionary, Brazilian Sign Language (Libras) was used as case study. Finally, the model presented in this paper achieved a recognition rate of 80.4%.Keywords: artificial neural network, computer vision, dynamic time warping, infrared, sign language recognition
Procedia PDF Downloads 2144319 Optimization of Friction Stir Welding Parameters for Joining Aluminium Alloys using Response Surface Methodology and Artificial Neural Network
Authors: A. M. Khourshid, A. M. El-Kassas, I. Sabry
Abstract:
The objective of this work was to investigate the mechanical properties in order to demonstrate the feasibility of friction stir welding for joining Al 6061 aluminium alloys. Welding was performed on pipe with different thickness (2, 3 and 4 mm), five rotational speeds (485, 710, 910, 1120 and 1400 rpm) and a traverse speed of 4mm/min. This work focuses on two methods which are artificial neural networks using software and Response Surface Methodology (RSM) to predict the tensile strength, the percentage of elongation and hardness of friction stir welded 6061 aluminium alloy. An Artificial Neural Network (ANN) model was developed for the analysis of the friction stir welding parameters of 6061 pipe. Tensile strength, the percentage of elongation and hardness of weld joints were predicted by taking the parameters tool rotation speed, material thickness and axial force as a function. A comparison was made between measured and predicted data. Response Surface Methodology (RSM) was also developed and the values obtained for the response tensile strength, the percentage of elongation and hardness are compared with measured values. The effect of FSW process parameters on mechanical properties of 6061 aluminium alloy has been analysed in detail.Keywords: friction stir welding, aluminium alloy, response surface methodology, artificial neural network
Procedia PDF Downloads 2934318 Surface Characteristics of Bacillus megaterium and Its Adsorption Behavior onto Dolomite
Authors: Mohsen Farahat, Tsuyoshi Hirajima
Abstract:
Surface characteristics of Bacillus megaterium strain were investigated; zeta potential, FTIR and contact angle were measured. Surface energy components including Lifshitz-van der Waals, Hamaker constant, and acid/base components (Lewis acid/Lewis base) were calculated from the contact angle data. The results showed that the microbial cells were negatively charged over all pH regions with high values at alkaline region. A hydrophilic nature for the strain was confirmed by contact angle and free energy of adhesion between microbial cells. Adsorption affinity of the strain toward dolomite was studied at different pH values. The results showed that the cells had a high affinity to dolomite at acid pH comparing to neutral and alkaline pH. Extended DLVO theory was applied to calculate interaction energy between B. megaterium cells and dolomite particles. The adsorption results were in agreement with the results of Extended DLVO approach. Surface changes occurred on dolomite surface after the bio-treatment were monitored; contact angle decreased from 69° to 38° and the mineral’s floatability decreased from 95% to 25% after the treatment.Keywords: Bacillus megaterium, surface modification, flotation, dolomite, adhesion energy
Procedia PDF Downloads 2434317 Numerical Model to Study Calcium and Inositol 1,4,5-Trisphosphate Dynamics in a Myocyte Cell
Authors: Nisha Singh, Neeru Adlakha
Abstract:
Calcium signalling is one of the most important intracellular signalling mechanisms. A lot of approaches and investigators have been made in the study of calcium signalling in various cells to understand its mechanisms over recent decades. However, most of existing investigators have mainly focussed on the study of calcium signalling in various cells without paying attention to the dependence of calcium signalling on other chemical ions like inositol-1; 4; 5 triphosphate ions, etc. Some models for the independent study of calcium signalling and inositol-1; 4; 5 triphosphate signalling in various cells are present but very little attention has been paid by the researchers to study the interdependence of these two signalling processes in a cell. In this paper, we propose a coupled mathematical model to understand the interdependence of inositol-1; 4; 5 triphosphate dynamics and calcium dynamics in a myocyte cell. Such studies will provide the deeper understanding of various factors involved in calcium signalling in myocytes, which may be of great use to biomedical scientists for various medical applications.Keywords: calcium signalling, coupling, finite difference method, inositol 1, 4, 5-triphosphate
Procedia PDF Downloads 2904316 Biosynthesis of Selenium Oxide Nanoparticles by Streptomyces bikiniensis and Its Cytotoxicity as Antitumor Agents against Hepatocellular and Breast Cells Carcinoma
Authors: Maged Syed Ahamd, Manal Mohamed Yasser, Essam Sholkamy
Abstract:
In this paper, we reported that selenium (Se) nanoparticles were firstly biosynthesized with a simple and eco-friendly biological method. Their shape, size, FTIR (Fourier Transform Infrared spectroscopy), UV–vis spectra, TEM (Transmission Electron Microscopy) images and EDS (Energy Dispersive Spectroscopy) pattern have been analyzed. TEM analyses of the samples obtained at different stages indicated that the formation of these Se nanostructures was governed by an incubation time (12- 24- 48 hours). The Se nanoparticles were initially generated and then would transform into crystal seeds for the subsequent growth of nanowires; however obtaining stable Se nanowire with a diameter of about 15-100 nm. EDS shows that Se nanoparticles are entirely pure. The IR spectra showed the peaks at 550 cm-1, 1635 cm-1, 1994 cm-1 and 3430 cm-1 correspond to the presence of Se-O bending and stretching vibrations. The concentrations of Se-NPs (0, 1, 2, 5 µg/ml) did not give significantly effect on both two cell lines while the highest concentrations (10- 100 µg/ml gave significantly effects on them. The lethal dose (ID50%) of Se-NPs on Hep2 G and MCF-7 cells was obtained at 75.96 and 61.86 µg/ml, respectively. Results showed that Se nanoparticles as anticancer agent against MCF-7 cells were more effective than Hep2 G cells. Our results suggest that Se-NPs may be a candidate for further evaluation as a chemotherapeutic agent for breast and liver cancers.Keywords: selenium nanoparticle, Streptomyces bikiniensis, nanowires, chemotherapeutic agent
Procedia PDF Downloads 4434315 Optimization of Cu (In, Ga)Se₂ Based Thin Film Solar Cells: Simulation
Authors: Razieh Teimouri
Abstract:
Electrical modelling of Cu (In,Ga)Se₂ thin film solar cells is carried out with compositionally graded absorber and CdS buffer layer. Simulation results are compared with experimental data. Surface defect layers (SDL) are located in CdS/CIGS interface for improving open circuit voltage simulated structure through the analysis of the interface is investigated with or without this layer. When SDL removed, by optimizing the conduction band offset (CBO) position of the buffer/absorber layers with its recombination mechanisms and also shallow donor density in the CdS, the open circuit voltage increased significantly. As a result of simulation, excellent performance can be obtained when the conduction band of window layer positions higher by 0.2 eV than that of CIGS and shallow donor density in the CdS was found about 1×10¹⁸ (cm⁻³).Keywords: CIGS solar cells, thin film, SCAPS, buffer layer, conduction band offset
Procedia PDF Downloads 2284314 Tomato-Weed Classification by RetinaNet One-Step Neural Network
Authors: Dionisio Andujar, Juan lópez-Correa, Hugo Moreno, Angela Ri
Abstract:
The increased number of weeds in tomato crops highly lower yields. Weed identification with the aim of machine learning is important to carry out site-specific control. The last advances in computer vision are a powerful tool to face the problem. The analysis of RGB (Red, Green, Blue) images through Artificial Neural Networks had been rapidly developed in the past few years, providing new methods for weed classification. The development of the algorithms for crop and weed species classification looks for a real-time classification system using Object Detection algorithms based on Convolutional Neural Networks. The site study was located in commercial corn fields. The classification system has been tested. The procedure can detect and classify weed seedlings in tomato fields. The input to the Neural Network was a set of 10,000 RGB images with a natural infestation of Cyperus rotundus l., Echinochloa crus galli L., Setaria italica L., Portulaca oeracea L., and Solanum nigrum L. The validation process was done with a random selection of RGB images containing the aforementioned species. The mean average precision (mAP) was established as the metric for object detection. The results showed agreements higher than 95 %. The system will provide the input for an online spraying system. Thus, this work plays an important role in Site Specific Weed Management by reducing herbicide use in a single step.Keywords: deep learning, object detection, cnn, tomato, weeds
Procedia PDF Downloads 1034313 Epstein, Barr Virus Alters ATM-Dependent DNA Damage Responses in Germinal Centre B-Cells during Early Infection
Authors: Esther N. Maina, Anna Skowronska, Sridhar Chaganti, Malcolm A. Taylor, Paul G. Murray, Tatjana Stankovic
Abstract:
Epstein-Barr virus (EBV) has been implicated in the pathogenesis of human tumours of B-cell origin. The demonstration that a proportion of Hodgkin lymphomas and all Burkitt’s lymphomas harbour EBV suggests that the virus contributes to the development of these malignancies. However, the mechanisms of lymphomagenesis remain largely unknown. To determine whether EBV causes DNA damage and alters DNA damage response in cells of EBV-driven lymphoma origin, Germinal Centre (GC) B cells were infected with EBV and DNA damage responses to gamma ionising radiation (IR) assessed at early time points (12hr – 72hr) after infection and prior to establishment of lymphoblastoid (LCL) cell lines. In the presence of EBV, we observed induction of spontaneous DNA DSBs and downregulation of ATM-dependent phosphorylation in response to IR. This downregulation coincided with reduced ability of infected cells to repair IR-induced DNA double-strand breaks, as measured by the kinetics of gamma H2AX, a marker of double-strand breaks, and by the tail moment of the comet assay. Furthermore, we found that alteration of DNA damage responses coincided with the expression of LMP-1 protein. The presence of the EBV virus did not affect the localization of the ATM-dependent DNA repair proteins to sites of damage but instead lead to an increased expression of PP5, a phosphatase that regulates ATM function. The impact of the virus on DNA repair was most prominent 24h after infection, suggesting that this time point is crucial for the viral establishment in B cells. Our results suggest that during an early infection EBV virus dampens crucial cellular responses to DNA double-strand breaks which facilitate successful viral infection, but at the same time might provide the mechanism for tumor development.Keywords: EBV, ATM, DNA damage, germinal center cells
Procedia PDF Downloads 3474312 Effects of SNP in Semen Diluents on Motility, Viability and Lipid Peroxidation of Sperm of Bulls
Authors: Hamid Reza Khodaei, Behnaz Mahdavi, Alireza Banitaba
Abstract:
Nitric oxide (NO) plays an important role in all sexual activities of animals. It is made in body from NO syntheses enzyme and L-arginin molecule. NO can make band with sulfur-iron complexes and due to production of steroid sexual hormones related to enzymes which have this complex, NO can change the activity of these enzymes. NO affects many cells including endothelial cells of veins, macrophages and mast cells. These cells are found in testis leydig cells and therefore are important source of NO in testis tissue. Minimizing damages to sperm at the time of sperm freezing and thawing is really important. The goal of this study was to determine the function of NO before freezing and its effects on quality and viability of sperms after thawing and incubation. 4 Holstein bulls were selected from the age of 4, and artificial insemination was done for 3 weeks (2 times a week). Treatments were 0, 10, 50 and 100 nm of sodium nitroprusside (SNP). Data analysis was performed by SAS98 program. Also, mean comparison was done using Duncan's multiple ranges test (P<0.05). Concentrations used were found to increase motility and viability of spermatozoa at 1, 2 and 3 hours after thawing significantly (P<0.05) but there was no significant difference at zero time. SNP levels reduced the amount of lipid peroxidation in sperm membrane, increased acrosome health and improved samples membranes especially in 50 and 100 nm treatments. According to results, adding SNP to semen diluents increases motility and viability of spermatozoa. Also, it reduces lipid peroxidation in sperm membrane and improves sperm function.Keywords: sperm motility, nitric oxide, lipid peroxidation, spermatozoa
Procedia PDF Downloads 6564311 Regulation of Differentiating Intramuscular Stromal Vascular Cells Isolated from Hanwoo Beef Cattle by Retinoic Acid and Calcium
Authors: Seong Gu Hwang, Young Kyoon Oh, Joseph F. dela Cruz
Abstract:
Marbling, or intramuscular fat, has been consistently identified as one of the top beef quality problems. Intramuscular adipocytes distribute throughout the perimysial connective tissue of skeletal muscle and are the major site for the deposition of intramuscular fat, which is essential for the eating quality of meat. The stromal vascular fraction of the skeletal muscle contains progenitor cells that can be enhanced to differentiate to adipocytes and increase intramuscular fat. Primary cultures of bovine intramuscular stromal vascular cells were used in this study to elucidate the effects of extracellular calcium and retinoic acid concentration on adipocyte differentiation. Cell viability assay revealed that even at different concentrations of calcium and retinoic acid, there was no significant difference on cell viability. Monitoring of the adipocyte differentiation showed that bovine intramuscular stromal vascular cells cultured in a low concentration of extracellular calcium and retinoic acid had a better degree of fat accumulation. The mRNA and protein expressions of PPARγ, C/EBPα, SREBP-1c and aP2 were analyzed and showed a significant upregulation upon the reduction in the level of extracellular calcium and retinoic acid. The upregulation of these adipogenic related genes means that the decreasing concentration of calcium and retinoic acid is able to stimulate the adipogenic differentiation of bovine intramuscular stromal vascular cells. To further elucidate the effect of calcium, the expression level of calreticulin was measured. Calreticulin which is known to be an inhibitor of PPARγ was down regulated by the decreased level of calcium and retinoic acid in the culture media. The same tendency was observed on retinoic acid receptors RARα and CRABP-II. These receptors are recognized as adipogenic inhibitors, and the downregulation of their expression allowed a better level of differentiation in bovine intramuscular stromal vascular cells. In conclusion, data show that decreasing the level of extracellular calcium and retinoic acid can significantly promote adipogenesis in intramuscular stromal vascular cells of Hanwoo beef cattle. These findings may provide new insights in enhancing intramuscular adipogenesis and marbling in beef cattle.Keywords: calcium, calreticulin, hanwoo beef, retinoic acid
Procedia PDF Downloads 3044310 Effects of Anti-FGL2 Monoclonal Antibody SPF89 on Vascular Inflammation
Authors: Ying Sun, Biao Cheng, Qing Lu, Xuefei Tao, Xiaoyu Lai, Cheng Guo, Dan Wang
Abstract:
Fibrinogen-like protein 2 (FGL2) has recently been identified to play an important role in inflammatory diseases such as atherosclerosis through a thrombin-dependent manner. Here, a murine monoclonal antibody was raised against the critical residue Ser(89) of FGL2, and the effects of the anti-FGL2 mAb (SPF89) were analyzed in human umbilical vein endothelial cells (HUVECs) and THP-1 cells. Firstly, it was proved that SPF89, which belongs to the IgG1 subtype with a KD value of 44.5 pM, could specifically show the expression levels of protein FGL2 in different cell lines of known target gene status. The lipopolysaccharide (LPS)-mediated endothelial cell proliferation was significantly inhibited with a decline of phosphorylation nuclear factor-κB (NF-κB) in a dose-dependent manner after SPF89 treatment. Furthermore, SPF89 reduced LPS-induced expression of adhesion molecules and inflammatory cytokines such as vascular cell adhesion molecule-1, tumor necrosis factor-α, Matrix metalloproteinase MMP-2, Integrin αvβ3, and interleukin-6 in HUVECs. In macrophage-like THP-1 cells, SPF89 effectively inhibited LPS and low-density lipoprotein-induced foam cell formation. However, these anti-inflammatory and anti-atherosclerotic effects of anti-FGL2 mAb in HUVECs and THP-1 cells were significantly reduced after treatment with an NF-κB inhibitor PDTC. All the above suggest, by efficiently inhibiting LPS-induced pro-inflammatory effects in vascular endothelial cells by attenuating NF-κB dependent pathway, the new anti-FGL2 mAb SPF89 could to be a potential therapeutic candidate for protecting the vascular endothelium against inflammatory diseases such as atherosclerosis. This work was supported by the Program of Sichuan Science and Technology Department (2017FZ0069) and Collaborative Innovation Program of Sichuan for Elderly Care and Health(YLZBZ1511).Keywords: monoclonal antibody, fibrinogen like protein 2, inflammation, endothelial cells
Procedia PDF Downloads 2694309 Production of Single-Chain Antibodies against Common Epitopes of ErbB1 and ErbB2 Using Phage Display Antibody Library
Authors: Gholamreza Hashemitabr, Reza Valadan, Alireza Rafiei, Mohammad Reza Bassami
Abstract:
Breast cancer is the most common malignancy among women worldwide. Cancer cells use a complex multilayer network of epidermal growth factor receptors (EGFRs) signaling pathways to support their survival and growth. The overlapping networks of EGFRs signaling pathways account for the failure of most ErbB-targeted therapies. The aim of this study was to enrich a pool of recombinant antibody fragments against common epitopes of ErbB1 and ErbB2 in order to simultaneous blockade of ErbBs signaling pathways. ErbB1 and ErbB2 were expressed stably in VERO cells. Selection of recombinant antibodies was performed on live cells expressing either of ErbB1 and ErbB2 receptors using subtractive phage display approach. The results of PCR and DNA fingerprinting in the last round of panning showed that most clones contained insert (80% and 85% for ErbB1 and ErbB2 respectively) with an identical restriction pattern. The selected clones showed positive reaction to both ErbB1 and ErbB2 receptors in phage-ELISA test. Furthermore, the resulting soluble antibody fragments recognized common epitopes of both immunoprecipitated ErbB1 and ErbB2 in western blot. Additionally, the antibodies directed against the dimerization domain of ErbB1 demonstrated a significant absorbance in EGF-stimulated VERO/ErbB1 cells than non-stimulated cells (1.91 and 1.09 respectively). Moreover, the results of dimerization inhibition test showed that these antibodies blocked ErbB1 and ErbB2 dimerization on the surface of ErbB1 and ErbB2 expressing VERO cells. Regarding the importance of pan-ErbB approach to cancer therapy, the antibodies developed here might provide novel therapeutics for simultaneous blockade of ErbBs signaling pathways.Keywords: breast cancer, single-chain antibody, ErbB1, ErbB2, epitope
Procedia PDF Downloads 6464308 Extracts of Cola acuminata, Lupinus arboreus and Bougainvillea spectabilis as Natural Photosensitizers for Dye-Sensitized Solar Cells
Authors: M. L. Akinyemi, T. J. Abodurin, A. O. Boyo, J. A. O. Olugbuyiro
Abstract:
Organic dyes from Cola acuminata (C. acuminata), Lupinus arboreus (L. arboreus) and Bougainvillea spectabilis (B. spectabilis) leaves and their mixtures were used as sensitizers to manufacture dye-sensitized solar cells (DSSC). Photoelectric measurements of C. acuminata showed a short circuit current (Jsc) of 0.027 mA/ cm2, 0.026 mA/ cm2 and 0.018 mA/ cm2 with a mixture of mercury chloride and iodine (Hgcl2 + I); potassium bromide and iodine (KBr + I); and potassium chloride and iodine (KCl + I) respectively. The open circuit voltage (Voc) was 24 mV, 25 mV and 20 mV for the three dyes respectively. L. arboreus had Jsc of 0.034 mA/ cm2, 0.021 mA/ cm2 and 0.013 mA/ cm2; and corresponding Voc of 28 mV, 14.2 mV and 15 mV for the three electrolytes respectively. B. spectabilis recorded Jsc 0.023 mA/ cm2, 0.026 mA/ cm2 and 0.015 mA/ cm2; and corresponding Voc values of 6.2 mV, 14.3 mV and 4.0 mV for the three electrolytes respectively. It was observed that the fill factor (FF) was 0.140 for C. acuminata, 0.3198 for L. arboreus and 0.1138 for B. spectabilis. Internal conversions of 0.096%, 0.056% and 0.063% were recorded for three dyes when combined with (KBr + I) electrolyte. The internal efficiency of C. acuminata DSSC was highest in value.Keywords: dye-sensitized solar cells, organic dye, C. acuminate, L. arboreus, B. spectabilis, dye mixture
Procedia PDF Downloads 284