Search results for: miRNA:mRNA target prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5088

Search results for: miRNA:mRNA target prediction

4008 An Experimental Study on Heat and Flow Characteristics of Water Flow in Microtube

Authors: Zeynep Küçükakça, Nezaket Parlak, Mesut Gür, Tahsin Engin, Hasan Küçük

Abstract:

In the current research, the single phase fluid flow and heat transfer characteristics are experimentally investigated. The experiments are conducted to cover transition zone for the Reynolds numbers ranging from 100 to 4800 by fused silica and stainless steel microtubes having diameters of 103-180 µm. The applicability of the Logarithmic Mean Temperature Difference (LMTD) method is revealed and an experimental method is developed to calculate the heat transfer coefficient. Heat transfer is supplied by a water jacket surrounding the microtubes and heat transfer coefficients are obtained by LMTD method. The results are compared with data obtained by the correlations available in the literature in the study. The experimental results indicate that the Nusselt numbers of microtube flows do not accord with the conventional results when the Reynolds number is lower than 1000. After that, the Nusselt number approaches the conventional theory prediction. Moreover, the scaling effects in micro scale such as axial conduction, viscous heating and entrance effects are discussed. On the aspect of fluid characteristics, the friction factor is well predicted with conventional theory and the conventional friction prediction is valid for water flow through microtube with a relative surface roughness less than about 4 %.

Keywords: microtube, laminar flow, friction factor, heat transfer, LMTD method

Procedia PDF Downloads 460
4007 Simulation Studies of Solid-Particle and Liquid-Drop Erosion of NiAl Alloy

Authors: Rong Liu, Kuiying Chen, Ju Chen, Jingrong Zhao, Ming Liang

Abstract:

This article presents modeling studies of NiAl alloy under solid-particle erosion and liquid-drop erosion. In the solid particle erosion simulation, attention is paid to the oxide scale thickness variation on the alloy in high-temperature erosion environments. The erosion damage is assumed to be deformation wear and cutting wear mechanisms, incorporating the influence of the oxide scale on the eroded surface; thus the instantaneous oxide thickness is the result of synergetic effect of erosion and oxidation. For liquid-drop erosion, special interest is in investigating the effects of drop velocity and drop size on the damage of the target surface. The models of impact stress wave, mean depth of penetration, and maximum depth of erosion rate (Max DER) are employed to develop various maps for NiAl alloy, including target thickness vs. drop size (diameter), rate of mean depth of penetration (MDRP) vs. drop impact velocity, and damage threshold velocity (DTV) vs. drop size.

Keywords: liquid-drop erosion, NiAl alloy, oxide scale thickness, solid-particle erosion

Procedia PDF Downloads 577
4006 Prediction of the Lateral Bearing Capacity of Short Piles in Clayey Soils Using Imperialist Competitive Algorithm-Based Artificial Neural Networks

Authors: Reza Dinarvand, Mahdi Sadeghian, Somaye Sadeghian

Abstract:

Prediction of the ultimate bearing capacity of piles (Qu) is one of the basic issues in geotechnical engineering. So far, several methods have been used to estimate Qu, including the recently developed artificial intelligence methods. In recent years, optimization algorithms have been used to minimize artificial network errors, such as colony algorithms, genetic algorithms, imperialist competitive algorithms, and so on. In the present research, artificial neural networks based on colonial competition algorithm (ANN-ICA) were used, and their results were compared with other methods. The results of laboratory tests of short piles in clayey soils with parameters such as pile diameter, pile buried length, eccentricity of load and undrained shear resistance of soil were used for modeling and evaluation. The results showed that ICA-based artificial neural networks predicted lateral bearing capacity of short piles with a correlation coefficient of 0.9865 for training data and 0.975 for test data. Furthermore, the results of the model indicated the superiority of ICA-based artificial neural networks compared to back-propagation artificial neural networks as well as the Broms and Hansen methods.

Keywords: artificial neural network, clayey soil, imperialist competition algorithm, lateral bearing capacity, short pile

Procedia PDF Downloads 153
4005 CSPG4 Molecular Target in Canine Melanoma, Osteosarcoma and Mammary Tumors for Novel Therapeutic Strategies

Authors: Paola Modesto, Floriana Fruscione, Isabella Martini, Simona Perga, Federica Riccardo, Mariateresa Camerino, Davide Giacobino, Cecilia Gola, Luca Licenziato, Elisabetta Razzuoli, Katia Varello, Lorella Maniscalco, Elena Bozzetta, Angelo Ferrari

Abstract:

Canine and human melanoma, osteosarcoma (OSA), and mammary carcinomas are aggressive tumors with common characteristics making dogs a good model for comparative oncology. Novel therapeutic strategies against these tumors could be useful to both species. In humans, chondroitin sulphate proteoglycan 4 (CSPG4) is a marker involved in tumor progression and could be a candidate target for immunotherapy. The anti-CSPG4 DNA electrovaccination has shown to be an effective approach for canine malignant melanoma (CMM) [1]. An immunohistochemistry evaluation of CSPG4 expression in tumour tissue is generally performed prior to electrovaccination. To assess the possibility to perform a rapid molecular evaluation and in order to validate these spontaneous canine tumors as the model for human studies, we investigate the CSPG4 gene expression by RT qPCR in CMM, OSA, and canine mammary tumors (CMT). The total RNA was extracted from RNAlater stored tissue samples (CMM n=16; OSA n=13; CMT n=6; five paired normal tissues for CMM, five paired normal tissues for OSA and one paired normal tissue for CMT), retro-transcribed and then analyzed by duplex RT-qPCR using two different TaqMan assays for the target gene CSPG4 and the internal reference gene (RG) Ribosomal Protein S19 (RPS19). RPS19 was selected from a panel of 9 candidate RGs, according to NormFinder analysis following the protocol already described [2]. Relative expression was analyzed by CFX Maestro™ Software. Student t-test and ANOVA were performed (significance set at P<0.05). Results showed that gene expression of CSPG4 in OSA tissues is significantly increased by 3-4 folds when compared to controls. In CMT, gene expression of the target was increased from 1.5 to 19.9 folds. In melanoma, although an increasing trend was observed, no significant differences between the two groups were highlighted. Immunohistochemistry analysis of the two cancer types showed that the expression of CSPG4 within CMM is concentrated in isles of cells compared to OSA, where the distribution of positive cells is homogeneous. This evidence could explain the differences in gene expression results.CSPG4 immunohistochemistry evaluation in mammary carcinoma is in progress. The evidence of CSPG4 expression in a different type of canine tumors opens the way to the possibility of extending the CSPG4 immunotherapy marker in CMM, OSA, and CMT and may have an impact to translate this strategy modality to human oncology.

Keywords: canine melanoma, canine mammary carcinomas, canine osteosarcoma, CSPG4, gene expression, immunotherapy

Procedia PDF Downloads 176
4004 Discovering New Organic Materials through Computational Methods

Authors: Lucas Viani, Benedetta Mennucci, Soo Young Park, Johannes Gierschner

Abstract:

Organic semiconductors have attracted the attention of the scientific community in the past decades due to their unique physicochemical properties, allowing new designs and alternative device fabrication methods. Until today, organic electronic devices are largely based on conjugated polymers mainly due to their easy processability. In the recent years, due to moderate ET and CT efficiencies and the ill-defined nature of polymeric systems the focus has been shifting to small conjugated molecules with well-defined chemical structure, easier control of intermolecular packing, and enhanced CT and ET properties. It has led to the synthesis of new small molecules, followed by the growth of their crystalline structure and ultimately by the device preparation. This workflow is commonly followed without a clear knowledge of the ET and CT properties related mainly to the macroscopic systems, which may lead to financial and time losses, since not all materials will deliver the properties and efficiencies demanded by the current standards. In this work, we present a theoretical workflow designed to predict the key properties of ET of these new materials prior synthesis, thus speeding up the discovery of new promising materials. It is based on quantum mechanical, hybrid, and classical methodologies, starting from a single molecule structure, finishing with the prediction of its packing structure, and prediction of properties of interest such as static and averaged excitonic couplings, and exciton diffusion length.

Keywords: organic semiconductor, organic crystals, energy transport, excitonic couplings

Procedia PDF Downloads 253
4003 Cakrawala Baca Transformation Model into Social Enterprise: A Benchmark Approach from Socentra Agro Mandiri (SAM) and Agritektur

Authors: Syafinatul Fitri

Abstract:

Cakrawala Baca is one of social organization in Indonesia that realize to transform its organization into social enterprise to create more sustainable organization that result more sustainable social impact. Cakrawala Baca implements voluntary system for its organization and it has passive social target. It funds its program by several fund rising activities that depend on donors or sponsor. Therefore social activity that held does not create sustainable social impact. It is different with social enterprise that usually more independent in funding its activity through social business and implement active social target and professional work for organization member. Therefore social enterprise can sustain its organization and then able to create sustainable social impact. Developing transformation model from social movement into social enterprise is the focus of this study. To achieve the aim of study, benchmark approach from successful social enterprise in Indonesia that has previously formed as social movement is employed. The benchmark is conducted through internal and external scanning that result the understanding of how they transformed into social enterprise. After understanding SAM and Agritektur transformation, transformation pattern is formulated based on their transformation similarities. This transformation pattern will be implemented to formulate the transformation plan for Cakrawala Baca to be a social enterprise.

Keywords: social movement/social organization, non-profit organization (NPO), social enterprise, transformation, Benchmarks approach

Procedia PDF Downloads 510
4002 Integrated Machine Learning Framework for At-Home Patients Personalized Risk Prediction Using Activities, Biometric, and Demographic Features

Authors: Claire Xu, Welton Wang, Manasvi Pinnaka, Anqi Pan, Michael Han

Abstract:

Hospitalizations account for one-third of the total health care spending in the US. Early risk detection and intervention can reduce this high cost and increase the satisfaction of both patients and physicians. Due to the lack of awareness of the potential arising risks in home environment, the opportunities for patients to seek early actions of clinical visits are dramatically reduced. This research aims to offer a highly personalized remote patients monitoring and risk assessment AI framework to identify the potentially preventable hospitalization for both acute as well as chronic diseases. A hybrid-AI framework is trained with data from clinical setting, patients surveys, as well as online databases. 20+ risk factors are analyzed ranging from activities, biometric info, demographic info, socio-economic info, hospitalization history, medication info, lifestyle info, etc. The AI model yields high performance of 87% accuracy and 88 sensitivity with 20+ features. This hybrid-AI framework is proven to be effective in identifying the potentially preventable hospitalization. Further, the high indicative features are identified by the models which guide us to a healthy lifestyle and early intervention suggestions.

Keywords: hospitalization prevention, machine learning, remote patient monitoring, risk prediction

Procedia PDF Downloads 237
4001 Astaxanthin Induces Cytotoxicity through Down-Regulating Rad51 Expression in Human Lung Cancer Cells

Authors: Jyh-Cheng Chen, Tai-Jing Wang, Yun-Wei Lin

Abstract:

Astaxanthin has been demonstrated to exhibit a wide range of beneficial effects including anti-inflammatory and anti-cancer properties. However, the molecular mechanism of astaxanthin-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Rad51 plays a central role in homologous recombination and high levels of Rad51 expression are observed in chemo- or radioresistant carcinomas. In this study, astaxanthin treatment inhibited cell viability and proliferation of two NSCLC cells, A549 and H1703. Treatment with astaxanthin decreased Rad51 expression and phospho-AKT protein level in a time and dose-dependent manner. Furthermore, expression of constitutively active AKT (AKT-CA) vector significantly rescued the decreased Rad51 protein and mRNA levels in astaxanthin-treated NSCLC cells. Combined treatment with PI3K inhibitors (LY294002 or wortmannin) and astaxanthin further decreased the Rad51 expression in NSCLC cells. Knockdown of Rad51 enhanced astaxanthin-induced cytotoxicity and growth inhibition in NSCLC cells. These findings may have implications for the rational design of future drug regimens incorporating astaxanthin for the treatment of NSCLC.

Keywords: astaxanthin, cytotoxicity, AKT, non-small cell lung cancer, PI3K

Procedia PDF Downloads 297
4000 Deep Learning Approach for Colorectal Cancer’s Automatic Tumor Grading on Whole Slide Images

Authors: Shenlun Chen, Leonard Wee

Abstract:

Tumor grading is an essential reference for colorectal cancer (CRC) staging and survival prognostication. The widely used World Health Organization (WHO) grading system defines histological grade of CRC adenocarcinoma based on the density of glandular formation on whole slide images (WSI). Tumors are classified as well-, moderately-, poorly- or un-differentiated depending on the percentage of the tumor that is gland forming; >95%, 50-95%, 5-50% and <5%, respectively. However, manually grading WSIs is a time-consuming process and can cause observer error due to subjective judgment and unnoticed regions. Furthermore, pathologists’ grading is usually coarse while a finer and continuous differentiation grade may help to stratifying CRC patients better. In this study, a deep learning based automatic differentiation grading algorithm was developed and evaluated by survival analysis. Firstly, a gland segmentation model was developed for segmenting gland structures. Gland regions of WSIs were delineated and used for differentiation annotating. Tumor regions were annotated by experienced pathologists into high-, medium-, low-differentiation and normal tissue, which correspond to tumor with clear-, unclear-, no-gland structure and non-tumor, respectively. Then a differentiation prediction model was developed on these human annotations. Finally, all enrolled WSIs were processed by gland segmentation model and differentiation prediction model. The differentiation grade can be calculated by deep learning models’ prediction of tumor regions and tumor differentiation status according to WHO’s defines. If multiple WSIs were possessed by a patient, the highest differentiation grade was chosen. Additionally, the differentiation grade was normalized into scale between 0 to 1. The Cancer Genome Atlas, project COAD (TCGA-COAD) project was enrolled into this study. For the gland segmentation model, receiver operating characteristic (ROC) reached 0.981 and accuracy reached 0.932 in validation set. For the differentiation prediction model, ROC reached 0.983, 0.963, 0.963, 0.981 and accuracy reached 0.880, 0.923, 0.668, 0.881 for groups of low-, medium-, high-differentiation and normal tissue in validation set. Four hundred and one patients were selected after removing WSIs without gland regions and patients without follow up data. The concordance index reached to 0.609. Optimized cut off point of 51% was found by “Maxstat” method which was almost the same as WHO system’s cut off point of 50%. Both WHO system’s cut off point and optimized cut off point performed impressively in Kaplan-Meier curves and both p value of logrank test were below 0.005. In this study, gland structure of WSIs and differentiation status of tumor regions were proven to be predictable through deep leaning method. A finer and continuous differentiation grade can also be automatically calculated through above models. The differentiation grade was proven to stratify CAC patients well in survival analysis, whose optimized cut off point was almost the same as WHO tumor grading system. The tool of automatically calculating differentiation grade may show potential in field of therapy decision making and personalized treatment.

Keywords: colorectal cancer, differentiation, survival analysis, tumor grading

Procedia PDF Downloads 134
3999 Comprehensive Analysis of RNA m5C Regulator ALYREF as a Suppressive Factor of Anti-tumor Immune and a Potential Tumor Prognostic Marker in Pan-Cancer

Authors: Yujie Yuan, Yiyang Fan, Hong Fan

Abstract:

Objective: The RNA methylation recognition protein Aly/REF export factor (ALYREF) is considered one type of “reader” protein acting as a recognition protein of m5C, has been reported involved in several biological progresses including cancer initiation and progression. 5-methylcytosine (m5C) is a conserved and prevalent RNA modification in all species, as accumulating evidence suggests its role in the promotion of tumorigenesis. It has been claimed that ALYREF mediates nuclear export of mRNA with m5C modification and regulates biological effects of cancer cells. However, the systematical regulatory pathways of ALYREF in cancer tissues have not been clarified, yet. Methods: The expression level of ALYREF in pan-cancer and their normal tissues was compared through the data acquired from The Cancer Genome Atlas (TCGA). The University of Alabama at Birmingham Cancer data analysis Portal UALCAN was used to analyze the relationship between ALYREF and clinical pathological features. The relationship between the expression level of ALYREF and prognosis of pan-cancer, and the correlation genes of ALYREF were figured out by using Gene Expression Correlation Analysis database GEPIA. Immune related genes were obtained from TISIDB (an integrated repository portal for tumor-immune system interactions). Immune-related research was conducted by using Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) and TIMER. Results: Based on the data acquired from TCGA, ALYREF has an obviously higher-level expression in various types of cancers compared with relevant normal tissues excluding thyroid carcinoma and kidney chromophobe. The immunohistochemical images on The Human Protein Atlas showed that ALYREF can be detected in cytoplasm, membrane, but mainly located in nuclear. In addition, a higher expression level of ALYREF in tumor tissue generates a poor prognosis in majority of cancers. According to the above results, cancers with a higher expression level of ALYREF compared with normal tissues and a significant correlation between ALYREF and prognosis were selected for further analysis. By using TISIDB, we found that portion of ALYREF co-expression genes (such as BIRC5, H2AFZ, CCDC137, TK1, and PPM1G) with high Pearson correlation coefficient (PCC) were involved in anti-tumor immunity or affect resistance or sensitivity to T cell-mediated killing. Furthermore, based on the results acquired from GEPIA, there was significant correlation between ALYREF and PD-L1. It was exposed that there is a negative correlation between the expression level of ALYREF and ESTIMATE score. Conclusion: The present study indicated that ALYREF plays a vital and universal role in cancer initiation and progression of pan-cancer through regulating mitotic progression, DNA synthesis and metabolic process, and RNA processing. The correlation between ALYREF and PD-L1 implied ALYREF may affect the therapeutic effect of immunotherapy of tumor. More evidence revealed that ALYREF may play an important role in tumor immunomodulation. The correlation between ALYREF and immune cell infiltration level indicated that ALYREF can be a potential therapeutic target. Exploring the regulatory mechanism of ALYREF in tumor tissues may expose the reason for poor efficacy of immunotherapy and offer more directions of tumor treatment.

Keywords: ALYREF, pan-cancer, immunotherapy, PD-L1

Procedia PDF Downloads 71
3998 Multi Tier Data Collection and Estimation, Utilizing Queue Model in Wireless Sensor Networks

Authors: Amirhossein Mohajerzadeh, Abolghasem Mohajerzadeh

Abstract:

In this paper, target parameter is estimated with desirable precision in hierarchical wireless sensor networks (WSN) while the proposed algorithm also tries to prolong network lifetime as much as possible, using efficient data collecting algorithm. Target parameter distribution function is considered unknown. Sensor nodes sense the environment and send the data to the base station called fusion center (FC) using hierarchical data collecting algorithm. FC builds underlying phenomena based on collected data. Considering the aggregation level, x, the goal is providing the essential infrastructure to find the best value for aggregation level in order to prolong network lifetime as much as possible, while desirable accuracy is guaranteed (required sample size is fully depended on desirable precision). First, the sample size calculation algorithm is discussed, second, the average queue length based on M/M[x]/1/K queue model is determined and it is used for energy consumption calculation. Nodes can decrease transmission cost by aggregating incoming data. Furthermore, the performance of the new algorithm is evaluated in terms of lifetime and estimation accuracy.

Keywords: aggregation, estimation, queuing, wireless sensor network

Procedia PDF Downloads 187
3997 Autophagy Suppresses Tumorigenesis through Upregulation of MiR-449a in Colorectal Cancer

Authors: Sheng-Hui Lan, Shan-Ying Wu, Shu-Ching Lin, Wei-Chen Wang, Hsiao-Sheng Liu

Abstract:

Autophagy is an essential mechanism to maintain cellular homeostasis through its degradation function, and the autophagy deficiency is related various diseases including tumorigenesis in several cancers. MicroRNAs (miRNAs) are small none coding RNAs, which regulate gene expression through degradation of mRNA or inhibition of translation. However, the relationship between autophagy deficiency and dysregulated miRNAs is still unclear. We revealed a mechanism that autophagy up-regulates miR-449a expression at the transcriptional level through activation of forkhead transcription factor family member FoxO1 and then suppresses tumorigenesis in CRC. Our data showed that the autophagic activity and miR-449a expression were lower in colorectal cancer (CRC) and has a positive correlation. We further reveal that autophagy degrades p300 expression and then suppresses acetylation of FoxO1. Under autophagic induction conditions, FoxO1 is transported from the cytoplasm to the nucleus and binds to the miR-449a promoter and then promotes miR-449a expression. In addition, either miR-449a overexpression or amiodarone-induced autophagy inhibits cell cycle progression, proliferation, colony formation migration, invasion, and tumor formation of SW480 cells. Our findings indicate that autophagy inducers may have the potential to be used for prevention and treatment of CRC through upregulation of miR-449a expression.

Keywords: autophagy, MiR-449a, FoxO1, colorectal cancer

Procedia PDF Downloads 321
3996 Purple Sweet Potato Anthocyanin Attenuates the Fat-Induced Mortality in Drosophila Melanogaster

Authors: Lijun Wang, Zhen-Yu Chen

Abstract:

A high-fat diet induces the accumulation of lipid hydroperoxides, accelerates the ageing process and causes a greater mortality in Drosophila melanogaster. The purple sweet potato is rich in antioxidant anthocyanin. The present study was to examine if supplementation of purple sweet potato anthocyanin (PSPA) could reduce the mortality of fruit flies fed a high-fat diet. Results showed that the mean lifespan of fruit fly was shortened from 56 to 35 days in a dose-dependent manner when lard in the diet increased from 0% to 20%. PSPA supplementation attenuated partially the lard-induced mortality. The maximum lifespan and 50% survival time were 49 and 27 days for the 10% lard control flies, in contrast, they increased to 57 and 30 days in the PSPA-supplemented fruit flies. PSPA-supplemented diet significantly up-regulated the mRNA of superoxide dismutase, catalase and Rpn11, compared with those in the control lard diet. In addition, PSPA supplementation could restore the climbing ability of fruit flies fed a 10% lard diet. It was concluded that the lifespan-prolonging activity of PSPA was most likely mediated by modulating the genes of SOD, CAT and Rpn11.

Keywords: purple sweet potato, anthocyanin, high-fat diet, oxidative stress

Procedia PDF Downloads 268
3995 Toxic Activity of the Entomopathogenic Fungus Beauveria bassiana on the Wistar Rat Rattus norvegicus

Authors: F. Haddadj, S. Hamdi, M. Khames, A. Kadi, S. Zenia, A. Smai, H. Saadi, B. Doumandji-Mitiche

Abstract:

The use of a biopesticide based on a microorganism scale requires particular care including safety against the useful auxiliary fauna and mammals among other human beings. Due to its persistence in soil and its apparent human and animal safety, Beauveria bassiana is a cryptogram used for controlling pests organizations, particularly in the locust where its effectiveness has been proven by several highly studies. This fungus is also called for greater respect for biotic communities and the environment. Indeed, biopesticides have several environmental benefits: biodegradability, their activity and selectivity decrease unintended non-target species effects, decreased resistance to some of them. It is in this sense that we contribute by presenting our work on the safety of B. bassiana against mammals. For this we conducted a toxicological study of this fungus strain on Wistar rats Rattus norvegicus, first its effect on weight gain. In a second time were performed histological target organ is the liver. After 20 days of treatment, the results of the toxicological studies have shown that B. bassiana caused no change in the physiological state of rats or weight gain, behavior and diet. On cuts in liver histology revealed no disturbance on the organ.

Keywords: entomopathogenic fungus, B. bassiana, Rattus norvegicus, toxicological study, environment

Procedia PDF Downloads 315
3994 Modeling Aeration of Sharp Crested Weirs by Using Support Vector Machines

Authors: Arun Goel

Abstract:

The present paper attempts to investigate the prediction of air entrainment rate and aeration efficiency of a free over-fall jets issuing from a triangular sharp crested weir by using regression based modelling. The empirical equations, support vector machine (polynomial and radial basis function) models and the linear regression techniques were applied on the triangular sharp crested weirs relating the air entrainment rate and the aeration efficiency to the input parameters namely drop height, discharge, and vertex angle. It was observed that there exists a good agreement between the measured values and the values obtained using empirical equations, support vector machine (Polynomial and rbf) models, and the linear regression techniques. The test results demonstrated that the SVM based (Poly & rbf) model also provided acceptable prediction of the measured values with reasonable accuracy along with empirical equations and linear regression techniques in modelling the air entrainment rate and the aeration efficiency of a free over-fall jets issuing from triangular sharp crested weir. Further sensitivity analysis has also been performed to study the impact of input parameter on the output in terms of air entrainment rate and aeration efficiency.

Keywords: air entrainment rate, dissolved oxygen, weir, SVM, regression

Procedia PDF Downloads 436
3993 Semi-Analytic Method in Fast Evaluation of Thermal Management Solution in Energy Storage System

Authors: Ya Lv

Abstract:

This article presents the application of the semi-analytic method (SAM) in the thermal management solution (TMS) of the energy storage system (ESS). The TMS studied in this work is fluid cooling. In fluid cooling, both effective heat conduction and heat convection are indispensable due to the heat transfer from solid to fluid. Correspondingly, an efficient TMS requires a design investigation of the following parameters: fluid inlet temperature, ESS initial temperature, fluid flow rate, working c rate, continuous working time, and materials properties. Their variation induces a change of thermal performance in the battery module, which is usually evaluated by numerical simulation. Compared to complicated computation resources and long computation time in simulation, the SAM is developed in this article to predict the thermal influence within a few seconds. In SAM, a fast prediction model is reckoned by combining numerical simulation with theoretical/empirical equations. The SAM can explore the thermal effect of boundary parameters in both steady-state and transient heat transfer scenarios within a short time. Therefore, the SAM developed in this work can simplify the design cycle of TMS and inspire more possibilities in TMS design.

Keywords: semi-analytic method, fast prediction model, thermal influence of boundary parameters, energy storage system

Procedia PDF Downloads 155
3992 Attribute Analysis of Quick Response Code Payment Users Using Discriminant Non-negative Matrix Factorization

Authors: Hironori Karachi, Haruka Yamashita

Abstract:

Recently, the system of quick response (QR) code is getting popular. Many companies introduce new QR code payment services and the services are competing with each other to increase the number of users. For increasing the number of users, we should grasp the difference of feature of the demographic information, usage information, and value of users between services. In this study, we conduct an analysis of real-world data provided by Nomura Research Institute including the demographic data of users and information of users’ usages of two services; LINE Pay, and PayPay. For analyzing such data and interpret the feature of them, Nonnegative Matrix Factorization (NMF) is widely used; however, in case of the target data, there is a problem of the missing data. EM-algorithm NMF (EMNMF) to complete unknown values for understanding the feature of the given data presented by matrix shape. Moreover, for comparing the result of the NMF analysis of two matrices, there is Discriminant NMF (DNMF) shows the difference of users features between two matrices. In this study, we combine EMNMF and DNMF and also analyze the target data. As the interpretation, we show the difference of the features of users between LINE Pay and Paypay.

Keywords: data science, non-negative matrix factorization, missing data, quality of services

Procedia PDF Downloads 131
3991 Prediction of Music Track Popularity: A Machine Learning Approach

Authors: Syed Atif Hassan, Luv Mehta, Syed Asif Hassan

Abstract:

Hit song science is a field of investigation wherein machine learning techniques are applied to music tracks in order to extract such features from audio signals which can capture information that could explain the popularity of respective tracks. Record companies invest huge amounts of money into recruiting fresh talents and churning out new music each year. Gaining insight into the basis of why a song becomes popular will result in tremendous benefits for the music industry. This paper aims to extract basic musical and more advanced, acoustic features from songs while also taking into account external factors that play a role in making a particular song popular. We use a dataset derived from popular Spotify playlists divided by genre. We use ten genres (blues, classical, country, disco, hip-hop, jazz, metal, pop, reggae, rock), chosen on the basis of clear to ambiguous delineation in the typical sound of their genres. We feed these features into three different classifiers, namely, SVM with RBF kernel, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model at the end. Predicting song popularity is particularly important for the music industry as it would allow record companies to produce better content for the masses resulting in a more competitive market.

Keywords: classifier, machine learning, music tracks, popularity, prediction

Procedia PDF Downloads 666
3990 Quantitative Structure-Property Relationship Study of Base Dissociation Constants of Some Benzimidazoles

Authors: Sanja O. Podunavac-Kuzmanović, Lidija R. Jevrić, Strahinja Z. Kovačević

Abstract:

Benzimidazoles are a group of compounds with significant antibacterial, antifungal and anticancer activity. The studied compounds consist of the main benzimidazole structure with different combinations of substituens. This study is based on the two-dimensional and three-dimensional molecular modeling and calculation of molecular descriptors (physicochemical and lipophilicity descriptors) of structurally diverse benzimidazoles. Molecular modeling was carried out by using ChemBio3D Ultra version 14.0 software. The obtained 3D models were subjected to energy minimization using molecular mechanics force field method (MM2). The cutoff for structure optimization was set at a gradient of 0.1 kcal/Åmol. The obtained set of molecular descriptors was used in principal component analysis (PCA) of possible similarities and dissimilarities among the studied derivatives. After the molecular modeling, the quantitative structure-property relationship (QSPR) analysis was applied in order to get the mathematical models which can be used in prediction of pKb values of structurally similar benzimidazoles. The obtained models are based on statistically valid multiple linear regression (MLR) equations. The calculated cross-validation parameters indicate the high prediction ability of the established QSPR models. This study is financially supported by COST action CM1306 and the project No. 114-451-347/2015-02, financially supported by the Provincial Secretariat for Science and Technological Development of Vojvodina.

Keywords: benzimidazoles, chemometrics, molecular modeling, molecular descriptors, QSPR

Procedia PDF Downloads 290
3989 The Phylogenetic Investigation of Candidate Genes Related to Type II Diabetes in Man and Other Species

Authors: Srijoni Banerjee

Abstract:

Sequences of some of the candidate genes (e.g., CPE, CDKAL1, GCKR, HSD11B1, IGF2BP2, IRS1, LPIN1, PKLR, TNF, PPARG) implicated in some of the complex disease, e.g. Type II diabetes in man has been compared with other species to investigate phylogenetic affinity. Based on mRNA sequence of these genes of 7 to 8 species, using bioinformatics tools Mega 5, Bioedit, Clustal W, distance matrix was obtained. Phylogenetic trees were obtained by NJ and UPGMA clustering methods. The results of the phylogenetic analyses show that of the species compared: Xenopus l., Danio r., Macaca m., Homo sapiens s., Rattus n., Mus m. and Gallus g., Bos taurus, both NJ and UPGMA clustering show close affinity between clustering of Homo sapiens s. (Man) with Rattus n. (Rat), Mus m. species for the candidate genes, except in case of Lipin1 gene. The results support the functional similarity of these genes in physiological and biochemical process involving man and mouse/rat. Therefore, in understanding the complex etiology and treatment of the complex disease mouse/rate model is the best laboratory choice for experimentation.

Keywords: phylogeny, candidate gene of type-2 diabetes, CPE, CDKAL1, GCKR, HSD11B1, IGF2BP2, IRS1, LPIN1, PKLR, TNF, PPARG

Procedia PDF Downloads 321
3988 Contact-Impact Analysis of Continuum Compliant Athletic Systems

Authors: Theddeus Tochukwu Akano, Omotayo Abayomi Fakinlede

Abstract:

Proper understanding of the behavior of compliant mechanisms use by athletes is important in order to avoid catastrophic failure. Such compliant mechanisms like the flex-run require the knowledge of their dynamic response and deformation behavior under quickly varying loads. The modeling of finite deformations of the compliant athletic system is described by Neo-Hookean model under contact-impact conditions. The dynamic impact-contact governing equations for both the target and impactor are derived based on the updated Lagrangian approach. A method where contactor and target are considered as a united body is applied in the formulation of the principle of virtual work for the bodies. In this paper, methods of continuum mechanics and nonlinear finite element method were deployed to develop a model that could capture the behavior of the compliant athletic system under quickly varying loads. A hybrid system of symbolic algebra (AceGEN) and a compiled back end (AceFEM) were employed, leveraging both ease of use and computational efficiency. The simulated results reveal the effect of the various contact-impact conditions on the deformation behavior of the impacting compliant mechanism.

Keywords: eigenvalue problems, finite element method, robin boundary condition, sturm-liouville problem

Procedia PDF Downloads 473
3987 Design and Realization of Double-Delay Line Canceller (DDLC) Using Fpga

Authors: A. E. El-Henawey, A. A. El-Kouny, M. M. Abd –El-Halim

Abstract:

Moving target indication (MTI) which is an anti-clutter technique that limits the display of clutter echoes. It uses the radar received information primarily to display moving targets only. The purpose of MTI is to discriminate moving targets from a background of clutter or slowly-moving chaff particles as shown in this paper. Processing system in these radars is so massive and complex; since it is supposed to perform a great amount of processing in very short time, in most radar applications the response of a single canceler is not acceptable since it does not have a wide notch in the stop-band. A double-delay canceler is an MTI delay-line canceler employing the two-delay-line configuration to improve the performance by widening the clutter-rejection notches, as compared with single-delay cancelers. This canceler is also called a double canceler, dual-delay canceler, or three-pulse canceler. In this paper, a double delay line canceler is chosen for study due to its simplicity in both concept and implementation. Discussing the implementation of a simple digital moving target indicator (DMTI) using FPGA which has distinct advantages compared to other application specific integrated circuit (ASIC) for the purposes of this work. The FPGA provides flexibility and stability which are important factors in the radar application.

Keywords: FPGA, MTI, double delay line canceler, Doppler Shift

Procedia PDF Downloads 647
3986 Urban Resilince and Its Prioritised Components: Analysis of Industrial Township Greater Noida

Authors: N. Mehrotra, V. Ahuja, N. Sridharan

Abstract:

Resilience is an all hazard and a proactive approach, require a multidisciplinary input in the inter related variables of the city system. This research based to identify and operationalize indicators for assessment in domain of institutions, infrastructure and knowledge, all three operating in task oriented community networks. This paper gives a brief account of the methodology developed for assessment of Urban Resilience and its prioritized components for a target population within a newly planned urban complex integrating Surajpur and Kasna village as nodes. People’s perception of Urban Resilience has been examined by conducting questionnaire survey among the target population of Greater Noida. As defined by experts, Urban Resilience of a place is considered to be both a product and process of operation to regain normalcy after an event of disturbance of certain level. Based on this methodology, six indicators are identified that contribute to perception of urban resilience both as in the process of evolution and as an outcome. The relative significance of 6 R’ has also been identified. The dependency factor of various resilience indicators have been explored in this paper, which helps in generating new perspective for future research in disaster management. Based on the stated factors this methodology can be applied to assess urban resilience requirements of a well planned town, which is not an end in itself, but calls for new beginnings.

Keywords: disaster, resilience, system, urban

Procedia PDF Downloads 461
3985 Region-Specific Secretory Protein, α2M, in Male Reproductive Tract of the Blue Crab And Its Dynamics during Sperm transit towards Female Spermatheca

Authors: Thanyaporn Senarai, Rapeepun Vanichviriyakit, Shinji Miyata, Chihiro Sato, Prapee Sretarugsa, Wattana Weerachatyanukul, Ken Kitajima

Abstract:

In this study, we characterized a region-specific 250 kDa protein that was secreted of MSD fluid, which is believed to play dual functions in forming a spermatophoric wall for sperm physical protection, and in sperm membrane modification as part of sperm maturation process. The partial amino acid sequence and N-terminal sequencing revealed that the MSD-specific 250 kDa protein showed a high similarity with a plasma-rich protein, α-2 macroglobulin (α2M), so termed pp-α2M. This protein was a large glycoprotein contained predominantly mannose and GlcNAc. The expression of pp-α2M mRNA was detected in spermatic duct (SD), androgenic gland (AG) and hematopoietic tissue, while the protein expression was rather specific to the apical cytoplasm of MSD epithelium. The secretory pp-α2M in MSD fluid was acquired onto the MSD sperm membrane and was also found within the matrix of the acrosome. Distally, pp-α2M was removed from spermathecal sperm membrane, while its level kept constant in the sperm AC. Together the results indicate that pp-α2M is a 250 kDa region-specific secretory protein which plays roles in sperm physical protection and also acts as maturation factor in the P. pelagicus sperm.

Keywords: alpha-2 macroglobulin, blue swimming crab, sperm maturation, spermatic duct

Procedia PDF Downloads 329
3984 Influence of Optical Fluence Distribution on Photoacoustic Imaging

Authors: Mohamed K. Metwally, Sherif H. El-Gohary, Kyung Min Byun, Seung Moo Han, Soo Yeol Lee, Min Hyoung Cho, Gon Khang, Jinsung Cho, Tae-Seong Kim

Abstract:

Photoacoustic imaging (PAI) is a non-invasive and non-ionizing imaging modality that combines the absorption contrast of light with ultrasound resolution. Laser is used to deposit optical energy into a target (i.e., optical fluence). Consequently, the target temperature rises, and then thermal expansion occurs that leads to generating a PA signal. In general, most image reconstruction algorithms for PAI assume uniform fluence within an imaging object. However, it is known that optical fluence distribution within the object is non-uniform. This could affect the reconstruction of PA images. In this study, we have investigated the influence of optical fluence distribution on PA back-propagation imaging using finite element method. The uniform fluence was simulated as a triangular waveform within the object of interest. The non-uniform fluence distribution was estimated by solving light propagation within a tissue model via Monte Carlo method. The results show that the PA signal in the case of non-uniform fluence is wider than the uniform case by 23%. The frequency spectrum of the PA signal due to the non-uniform fluence has missed some high frequency components in comparison to the uniform case. Consequently, the reconstructed image with the non-uniform fluence exhibits a strong smoothing effect.

Keywords: finite element method, fluence distribution, Monte Carlo method, photoacoustic imaging

Procedia PDF Downloads 378
3983 Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Temporal Convolutional Network for Remaining Useful Life Prediction of Lithium Ion Batteries

Authors: Jing Zhao, Dayong Liu, Shihao Wang, Xinghua Zhu, Delong Li

Abstract:

Uhumanned Underwater Vehicles generally operate in the deep sea, which has its own unique working conditions. Lithium-ion power batteries should have the necessary stability and endurance for use as an underwater vehicle’s power source. Therefore, it is essential to accurately forecast how long lithium-ion batteries will last in order to maintain the system’s reliability and safety. In order to model and forecast lithium battery Remaining Useful Life (RUL), this research suggests a model based on Complete Ensemble Empirical Mode Decomposition with Adaptive noise-Temporal Convolutional Net (CEEMDAN-TCN). In this study, two datasets, NASA and CALCE, which have a specific gap in capacity data fluctuation, are used to verify the model and examine the experimental results in order to demonstrate the generalizability of the concept. The experiments demonstrate the network structure’s strong universality and ability to achieve good fitting outcomes on the test set for various battery dataset types. The evaluation metrics reveal that the CEEMDAN-TCN prediction performance of TCN is 25% to 35% better than that of a single neural network, proving that feature expansion and modal decomposition can both enhance the model’s generalizability and be extremely useful in industrial settings.

Keywords: lithium-ion battery, remaining useful life, complete EEMD with adaptive noise, temporal convolutional net

Procedia PDF Downloads 158
3982 Prediction of Road Accidents in Qatar by 2022

Authors: M. Abou-Amouna, A. Radwan, L. Al-kuwari, A. Hammuda, K. Al-Khalifa

Abstract:

There is growing concern over increasing incidences of road accidents and consequent loss of human life in Qatar. In light to the future planned event in Qatar, World Cup 2022; Qatar should put into consideration the future deaths caused by road accidents, and past trends should be considered to give a reasonable picture of what may happen in the future. Qatar roads should be arranged and paved in a way that accommodate high capacity of the population in that time, since then there will be a huge number of visitors from the world. Qatar should also consider the risk issues of road accidents raised in that period, and plan to maintain high level to safety strategies. According to the increase in the number of road accidents in Qatar from 1995 until 2012, an analysis of elements affecting and causing road accidents will be effectively studied. This paper aims to identify and criticize the factors that have high effect on causing road accidents in the state of Qatar, and predict the total number of road accidents in Qatar 2022. Alternative methods are discussed and the most applicable ones according to the previous researches are selected for further studies. The methods that satisfy the existing case in Qatar were the multiple linear regression model (MLR) and artificial neutral network (ANN). Those methods are analyzed and their findings are compared. We conclude that by using MLR the number of accidents in 2022 will become 355,226 accidents, and by using ANN 216,264 accidents. We conclude that MLR gave better results than ANN because the artificial neutral network doesn’t fit data with large range varieties.

Keywords: road safety, prediction, accident, model, Qatar

Procedia PDF Downloads 258
3981 Developing a Hybrid Method to Diagnose and Predict Sports Related Concussions with Machine Learning

Authors: Melody Yin

Abstract:

Concussions impact a large amount of adolescents; they make up as much as half of the diagnosed concussions in America. This research proposes a hybrid machine learning model based on the combination of human/knowledge-based domains and computer-generated feature rankings to improve the accuracy of diagnosing sports related concussion (SRC). Using a data set of symptoms collected on the sideline post-SRC events, the symptom selection criteria method has been developed by using Google AutoML's important score function to identify the top 10 symptom features. In addition, symptom domains have been introduced as another parameter, categorizing the symptoms into physical, cognitive, sleep, and emotional domains. The hybrid machine learning model has been trained with a combination of the top 10 symptoms and 4 domains. From the results, the hybrid model was the best performer for symptom resolution time prediction in 2 and 4-week thresholds. This research is a proof of concept study in the use of domains along with machine learning in order to improve concussion prediction accuracy. It is also possible that the use of domains can make the model more efficient due to reduced training time. This research examines the use of a hybrid method in predicting sports-related concussion. This achievement is based on data preprocessing, using a hybrid method to select criteria to achieve high performance.

Keywords: hybrid model, machine learning, sports related concussion, symptom resolution time

Procedia PDF Downloads 169
3980 Multi-Omics Investigation of Ferroptosis-Related Gene Expression in Ovarian Aging and the Impact of Nutritional Intervention

Authors: Chia-Jung Li, Kuan-Hao Tsui

Abstract:

As women age, the quality of their oocytes deteriorates irreversibly, leading to reduced fertility. To better understand the role of Ferroptosis-related genes in ovarian aging, we employed a multi-omics analysis approach, including spatial transcriptomics, single-cell RNA sequencing, human ovarian pathology, and clinical biopsies. Our study identified excess lipid peroxide accumulation in aging germ cells, metal ion accumulation via oxidative reduction, and the interaction between ferroptosis and cellular energy metabolism. We used multi-histological prediction of ferroptosis key genes to evaluate 75 patients with ovarian aging insufficiency and then analyzed changes in hub genes after supplementing with DHEA, Ubiquinol CoQ10, and Cleo-20 T3 for two months. Our results demonstrated a significant increase in TFRC, GPX4, NCOA4, and SLC3A2, which were consistent with our multi-component prediction. We theorized that these supplements increase the mitochondrial tricarboxylic acid cycle (TCA) or electron transport chain (ETC), thereby increasing antioxidant enzyme GPX4 levels and reducing lipid peroxide accumulation and ferroptosis. Overall, our findings suggest that supplementation intervention significantly improves IVF outcomes in senescent cells by enhancing metal ion and energy metabolism and enhancing oocyte quality in aging women.

Keywords: multi-omics, nutrients, ferroptosis, ovarian aging

Procedia PDF Downloads 104
3979 Early Warning System of Financial Distress Based On Credit Cycle Index

Authors: Bi-Huei Tsai

Abstract:

Previous studies on financial distress prediction choose the conventional failing and non-failing dichotomy; however, the distressed extent differs substantially among different financial distress events. To solve the problem, “non-distressed”, “slightly-distressed” and “reorganization and bankruptcy” are used in our article to approximate the continuum of corporate financial health. This paper explains different financial distress events using the two-stage method. First, this investigation adopts firm-specific financial ratios, corporate governance and market factors to measure the probability of various financial distress events based on multinomial logit models. Specifically, the bootstrapping simulation is performed to examine the difference of estimated misclassifying cost (EMC). Second, this work further applies macroeconomic factors to establish the credit cycle index and determines the distressed cut-off indicator of the two-stage models using such index. Two different models, one-stage and two-stage prediction models, are developed to forecast financial distress, and the results acquired from different models are compared with each other, and with the collected data. The findings show that the two-stage model incorporating financial ratios, corporate governance and market factors has the lowest misclassification error rate. The two-stage model is more accurate than the one-stage model as its distressed cut-off indicators are adjusted according to the macroeconomic-based credit cycle index.

Keywords: Multinomial logit model, corporate governance, company failure, reorganization, bankruptcy

Procedia PDF Downloads 378