Search results for: graded element
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3200

Search results for: graded element

2120 Multi-Particle Finite Element Modelling Simulation Based on Cohesive Zone Method of Cold Compaction Behavior of Laminar Al and NaCl Composite Powders

Authors: Yanbing Feng, Deqing Mei, Yancheng Wang, Zichen Chen

Abstract:

With the advantage of low volume density, high specific surface area, light weight and good permeability, porous aluminum material has the potential to be used in automotive, railway, chemistry and construction industries, etc. A layered powder sintering and dissolution method were developed to fabricate the porous surface Al structure with high efficiency. However, the densification mechanism during the cold compaction of laminar composite powders is still unclear. In this study, multi particle finite element modelling (MPFEM) based on the cohesive zone method (CZM) is used to simulate the cold compaction behavior of laminar Al and NaCl composite powders. To obtain its densification mechanism, the macro and micro properties of final compacts are characterized and analyzed. The robustness and accuracy of the numerical model is firstly verified by experimental results and data fitting. The results indicate that the CZM-based multi particle FEM is an effective way to simulate the compaction of the laminar powders and the fracture process of the NaCl powders. In the compaction of the laminar powders, the void is mainly filled by the particle rearrangement, plastic deformation of Al powders and brittle fracture of NaCl powders. Large stress is mainly concentrated within the NaCl powers and the contact force network is formed. The Al powder near the NaCl powder or the mold has larger stress distribution on its contact surface. Therefore, the densification process of cold compaction of laminar Al and NaCl composite powders is successfully analyzed by the CZM-based multi particle FEM.

Keywords: cold compaction, cohesive zone, multi-particle FEM, numerical modeling, powder forming

Procedia PDF Downloads 144
2119 Innovative Grafting of Polyvinylpyrrolidone onto Polybenzimidazole Proton Exchange Membranes for Enhanced High-Temperature Fuel Cell Performance

Authors: Zeyu Zhou, Ziyu Zhao, Xiaochen Yang, Ling AI, Heng Zhai, Stuart Holmes

Abstract:

As a promising sustainable alternative to traditional fossil fuels, fuel cell technology is highly favoured due to its enhanced working efficiency and reduced emissions. In the context of high-temperature fuel cells (operating above 100 °C), the most commonly used proton exchange membrane (PEM) is the Polybenzimidazole (PBI) doped phosphoric acid (PA) membrane. Grafting is a promising strategy to advance PA-doped PBI PEM technology. The existing grafting modification on PBI PEMs mainly focuses on grafting phosphate-containing or alkaline groups onto the PBI molecular chains. However, quaternary ammonium-based grafting approaches face a common challenge. To initiate the N-alkylation reaction, deacidifying agents such as NaH, NaOH, KOH, K2CO3, etc., can lead to ionic crosslinking between the quaternary ammonium group and PBI. Polyvinylpyrrolidone (PVP) is another widely used polymer, the N-heterocycle groups within PVP endow it with a significant ability to absorb PA. Recently, PVP has attracted substantial attention in the field of fuel cells due to its reduced environmental impact and impressive fuel cell performance. However, due to the the poor compatibility of PVP in PBI, few research apply PVP in PA-doped PBI PEMs. This work introduces an innovative strategy to graft PVP onto PBI to form a network-like polymer. Due to the absence of quaternary ammonium groups, PVP does not pose issues related to crosslinking with PBI. Moreover, the nitrogen-containing functional groups on PVP provide PBI with a robust phosphoric acid retention ability. The nuclear magnetic resonance (NMR) hydrogen spectrum analysis results indicate the successful completion of the grafting reaction where N-alkylation reactions happen on both sides of the grafting agent 1,4-bis(chloromethyl)benzene. On one side, the reaction takes place with the hydrogen atoms on the imidazole groups of PBI, while on the other side, it reacts with the terminal amino group of PVP. The XPS results provide additional evidence from the perspective of the element. On synthesized PBI-g-PVP surfaces, there is an absence of chlorine (chlorine in grafting agent 1,4-bis(chloromethyl)benzene is substituted) element but a presence of sulfur element (sulfur element in terminal amino PVP appears in PBI), which demonstrates the occurrence of the grafting reaction and PVP is successfully grafted onto PBI. Prepare these modified membranes into MEA. It was found that during the fuel cell operation, all the grafted membranes showed substantial improvement in maximum current density and peak power density compared to unmodified one. For PBI-g-PVP 30, with a grafting degree of 22.4%, the peak power density reaches 1312 mW cm⁻², marking a 59.6% enhancement compared to the pristine PBI membrane. The improvement is caused by the improved PA binding ability of the membrane after grafting. The AST test result shows that the grafting membranes have better long-term durability and performance than unmodified membranes attributed to the presence of added PA binding sites, which can effectively prevent the PA leaching caused by proton migration. In conclusion, the test results indicate that grafting PVP onto PBI is a promising strategy which can effectively improve the fuel cell performance.

Keywords: fuel cell, grafting modification, PA doping ability, PVP

Procedia PDF Downloads 69
2118 Proton Irradiation Testing on Commercial Enhancement Mode GaN Power Transistor

Authors: L. Boyaci

Abstract:

Two basic equipment of electrical power subsystem of space satellites are Power Conditioning Unit (PCU) and Power Distribution Unit (PDU). Today, the main switching element used in power equipment in satellites is silicon (Si) based radiation-hardened MOSFET. GaNFETs have superior performances over MOSFETs in terms of their conduction and switching characteristics. GaNFET has started to take MOSFET’s place in many applications in industry especially by virtue of its switching performances. If GaNFET can also be used in equipment for space applications, this would be great revolution for future space power subsystem designs. In this study, the effect of proton irradiation on Gallium Nitride based power transistors was investigated. Four commercial enhancement mode GaN power transistors from Efficient Power Conversion Corporation (EPC) are irradiated with 30MeV protons while devices are switching. Flux of 8.2x10⁹ protons/cm²/s is applied for 12.5 seconds to reach ultimate fluence of 10¹¹ protons/cm². Vgs-Ids characteristics are measured and recorded for each device before, during and after irradiation. It was observed that if there would be destructive events. Proton induced permanent damage on devices is not observed. All the devices remained healthy and continued to operate. For two of these devices, further irradiation is applied with same flux for 30 minutes up to a total fluence level of 1.476x10¹³ protons/cm². We observed that GaNFETs are fully functional under this high level of radiation and no destructive events and irreversible failures took place for transistors. Results reveal that irradiated GaNFET in this experiment has radiation tolerance under proton testing and very important candidate for being one of the future power switching element in space.

Keywords: enhancement mode GaN power transistors, proton irradiation effects, radiation tolerance

Procedia PDF Downloads 145
2117 Critical Conditions for the Initiation of Dynamic Recrystallization Prediction: Analytical and Finite Element Modeling

Authors: Pierre Tize Mha, Mohammad Jahazi, Amèvi Togne, Olivier Pantalé

Abstract:

Large-size forged blocks made of medium carbon high-strength steels are extensively used in the automotive industry as dies for the production of bumpers and dashboards through the plastic injection process. The manufacturing process of the large blocks starts with ingot casting, followed by open die forging and a quench and temper heat treatment process to achieve the desired mechanical properties and numerical simulation is widely used nowadays to predict these properties before the experiment. But the temperature gradient inside the specimen remains challenging in the sense that the temperature before loading inside the material is not the same, but during the simulation, constant temperature is used to simulate the experiment because it is assumed that temperature is homogenized after some holding time. Therefore to be close to the experiment, real distribution of the temperature through the specimen is needed before the mechanical loading. Thus, We present here a robust algorithm that allows the calculation of the temperature gradient within the specimen, thus representing a real temperature distribution within the specimen before deformation. Indeed, most numerical simulations consider a uniform temperature gradient which is not really the case because the surface and core temperatures of the specimen are not identical. Another feature that influences the mechanical properties of the specimen is recrystallization which strongly depends on the deformation conditions and the type of deformation like Upsetting, Cogging...etc. Indeed, Upsetting and Cogging are the stages where the greatest deformations are observed, and a lot of microstructural phenomena can be observed, like recrystallization, which requires in-depth characterization. Complete dynamic recrystallization plays an important role in the final grain size during the process and therefore helps to increase the mechanical properties of the final product. Thus, the identification of the conditions for the initiation of dynamic recrystallization is still relevant. Also, the temperature distribution within the sample and strain rate influence the recrystallization initiation. So the development of a technique allowing to predict the initiation of this recrystallization remains challenging. In this perspective, we propose here, in addition to the algorithm allowing to get the temperature distribution before the loading stage, an analytical model leading to determine the initiation of this recrystallization. These two techniques are implemented into the Abaqus finite element software via the UAMP and VUHARD subroutines for comparison with a simulation where an isothermal temperature is imposed. The Artificial Neural Network (ANN) model to describe the plastic behavior of the material is also implemented via the VUHARD subroutine. From the simulation, the temperature distribution inside the material and recrystallization initiation is properly predicted and compared to the literature models.

Keywords: dynamic recrystallization, finite element modeling, artificial neural network, numerical implementation

Procedia PDF Downloads 78
2116 Slope Stability and Landslides Hazard Analysis, Limitations of Existing Approaches, and a New Direction

Authors: Alisawi Alaa T., Collins P. E. F.

Abstract:

The analysis and evaluation of slope stability and landslide hazards are landslide hazards are critically important in civil engineering projects and broader considerations of safety. The level of slope stability risk should be identified due to its significant and direct financial and safety effects. Slope stability hazard analysis is performed considering static and/or dynamic loading circumstances. To reduce and/or prevent the failure hazard caused by landslides, a sophisticated and practical hazard analysis method using advanced constitutive modeling should be developed and linked to an effective solution that corresponds to the specific type of slope stability and landslides failure risk. Previous studies on slope stability analysis methods identify the failure mechanism and its corresponding solution. The commonly used approaches include used approaches include limit equilibrium methods, empirical approaches for rock slopes (e.g., slope mass rating and Q-slope), finite element or finite difference methods, and district element codes. This study presents an overview and evaluation of these analysis techniques. Contemporary source materials are used to examine these various methods on the basis of hypotheses, the factor of safety estimation, soil types, load conditions, and analysis conditions and limitations. Limit equilibrium methods play a key role in assessing the level of slope stability hazard. The slope stability safety level can be defined by identifying the equilibrium of the shear stress and shear strength. The slope is considered stable when the movement resistance forces are greater than those that drive the movement with a factor of safety (ratio of the resistance of the resistance of the driving forces) that is greater than 1.00. However, popular and practical methods, including limit equilibrium approaches, are not effective when the slope experiences complex failure mechanisms, such as progressive failure, liquefaction, internal deformation, or creep. The present study represents the first episode of an ongoing project that involves the identification of the types of landslides hazards, assessment of the level of slope stability hazard, development of a sophisticated and practical hazard analysis method, linkage of the failure type of specific landslides conditions to the appropriate solution and application of an advanced computational method for mapping the slope stability properties in the United Kingdom, and elsewhere through geographical information system (GIS) and inverse distance weighted spatial interpolation(IDW) technique. This study investigates and assesses the different assesses the different analysis and solution techniques to enhance the knowledge on the mechanism of slope stability and landslides hazard analysis and determine the available solutions for each potential landslide failure risk.

Keywords: slope stability, finite element analysis, hazard analysis, landslides hazard

Procedia PDF Downloads 93
2115 Additive Weibull Model Using Warranty Claim and Finite Element Analysis Fatigue Analysis

Authors: Kanchan Mondal, Dasharath Koulage, Dattatray Manerikar, Asmita Ghate

Abstract:

This paper presents an additive reliability model using warranty data and Finite Element Analysis (FEA) data. Warranty data for any product gives insight to its underlying issues. This is often used by Reliability Engineers to build prediction model to forecast failure rate of parts. But there is one major limitation in using warranty data for prediction. Warranty periods constitute only a small fraction of total lifetime of a product, most of the time it covers only the infant mortality and useful life zone of a bathtub curve. Predicting with warranty data alone in these cases is not generally provide results with desired accuracy. Failure rate of a mechanical part is driven by random issues initially and wear-out or usage related issues at later stages of the lifetime. For better predictability of failure rate, one need to explore the failure rate behavior at wear out zone of a bathtub curve. Due to cost and time constraints, it is not always possible to test samples till failure, but FEA-Fatigue analysis can provide the failure rate behavior of a part much beyond warranty period in a quicker time and at lesser cost. In this work, the authors proposed an Additive Weibull Model, which make use of both warranty and FEA fatigue analysis data for predicting failure rates. It involves modeling of two data sets of a part, one with existing warranty claims and other with fatigue life data. Hazard rate base Weibull estimation has been used for the modeling the warranty data whereas S-N curved based Weibull parameter estimation is used for FEA data. Two separate Weibull models’ parameters are estimated and combined to form the proposed Additive Weibull Model for prediction.

Keywords: bathtub curve, fatigue, FEA, reliability, warranty, Weibull

Procedia PDF Downloads 66
2114 The Effect of Adhesion on the Frictional Hysteresis Loops at a Rough Interface

Authors: M. Bazrafshan, M. B. de Rooij, D. J. Schipper

Abstract:

Frictional hysteresis is the phenomenon in which mechanical contacts are subject to small (compared to contact area) oscillating tangential displacements. In the presence of adhesion at the interface, the contact repulsive force increases leading to a higher static friction force and pre-sliding displacement. This paper proposes a boundary element model (BEM) for the adhesive frictional hysteresis contact at the interface of two contacting bodies of arbitrary geometries. In this model, adhesion is represented by means of a Dugdale approximation of the total work of adhesion at local areas with a very small gap between the two bodies. The frictional contact is divided into sticking and slipping regions in order to take into account the transition from stick to slip (pre-sliding regime). In the pre-sliding regime, the stick and slip regions are defined based on the local values of shear stress and normal pressure. In the studied cases, a fixed normal force is applied to the interface and the friction force varies in such a way to start gross sliding in one direction reciprocally. For the first case, the problem is solved at the smooth interface between a ball and a flat for different values of work of adhesion. It is shown that as the work of adhesion increases, both static friction and pre-sliding distance increase due to the increase in the contact repulsive force. For the second case, the rough interface between a glass ball against a silicon wafer and a DLC (Diamond-Like Carbon) coating is considered. The work of adhesion is assumed to be identical for both interfaces. As adhesion depends on the interface roughness, the corresponding contact repulsive force is different for these interfaces. For the smoother interface, a larger contact repulsive force and consequently, a larger static friction force and pre-sliding distance are observed.

Keywords: boundary element model, frictional hysteresis, adhesion, roughness, pre-sliding

Procedia PDF Downloads 163
2113 Analysis of Compressive and Tensile Response of Pumpkin Flesh, Peel and Unpeeled Tissues Using Experimental and FEA

Authors: Maryam Shirmohammadi, Prasad K. D. V. Yarlagadda, YuanTong Gu

Abstract:

The mechanical damage on the agricultural crop during and after harvesting can create high volume of damage on tissue. Uniaxial compression and tensile loading were performed on flesh and peel samples of pumpkin. To investigate the structural changes on the tissue, Scanning Electron Microscopy (SEM) was used to capture the cellular structure change before and after loading on tissue for tensile, compression and indentation tests. To obtain required mechanical properties of tissue for the finite element analysis (FEA) model, laser measurement sensors were used to record the lateral displacement of tissue under the compression loading. Uniaxial force versus deformation data were recorded using Universal Testing Machine for both tensile and compression tests. The experimental Results were employed to develop a material model with failure criteria. The results obtained by the simulation were compared with those obtained by experiments. Note that although modelling food materials’ behaviour is not a new concept however, majority of previous studies focused on elastic behaviour and damages under linear limit, this study, however, has developed FEA models for tensile and compressive loading of pumpkin flesh and peel samples using, as the first study, both elastic and elasto-plastic material types. In addition, pumpkin peel and flesh tissues were considered as two different materials with different properties under mechanical loadings. The tensile and compression loadings were used to develop the material model for a composite structure for FEA model of mechanical peeling of pumpkin as a tough skinned vegetable.

Keywords: compressive and tensile response, finite element analysis, poisson’s ratio, elastic modulus, elastic and plastic response, rupture and bio-yielding

Procedia PDF Downloads 327
2112 The Influence of Steel Connection on Fire Resistance of Composite Steel-Framed Buildings

Authors: Mohammed Kadhim, Zhaohui Huang

Abstract:

Steel connections can play an important role in enhancing the robustness of structures under fire conditions. Therefore, it is significant to examine the influence of steel connections on the fire resistance of composite steel-framed buildings. In this paper, both the behavior of steel connections and their influence on composite steel frame are analyzed using the non-linear finite element computer software VULCAN at ambient and elevated temperatures. The chosen frame is subjected to ISO834 fire. The comparison between end plate connections, pinned connection, and rigid connection has been carried out. By applying different compartment fires, some cases are studied to show the behavior of steel connection when the fire is applied at certain beams. In addition, different plate thickness and deferent applied loads have been analyzed to examine the behavior of chosen steel connection under ISO834 fire. It was found from the analytical results that the beam with extended end plate is stronger and has better performance in terms of axial forces than those beams with flush end plate connection. It was also found that extended end plate connection has highest limiting temperatures compared to the flush end plate connection. In addition, it was found that the performance of end-plate connections is very close to rigid connection and very far from pinned connections. Furthermore, plate thickness has less effect on the influence of steel connection on fire resistance. In conclusion, the behavior of composite steel framed buildings is largely dependent on the steel connection due to their high impact under fire condition. It is recommended to consider the extended end-plate in the design proposes because of its higher properties compared to the flush end plate connection. Finally, this paper shows a steel connection has an important effect on the fire resistance of composite steel framed buildings.

Keywords: composite steel-framed buildings, connection behavior, end-plate connections, finite element modeling, fire resistance

Procedia PDF Downloads 154
2111 Analytical Model of Locomotion of a Thin-Film Piezoelectric 2D Soft Robot Including Gravity Effects

Authors: Zhiwu Zheng, Prakhar Kumar, Sigurd Wagner, Naveen Verma, James C. Sturm

Abstract:

Soft robots have drawn great interest recently due to a rich range of possible shapes and motions they can take on to address new applications, compared to traditional rigid robots. Large-area electronics (LAE) provides a unique platform for creating soft robots by leveraging thin-film technology to enable the integration of a large number of actuators, sensors, and control circuits on flexible sheets. However, the rich shapes and motions possible, especially when interacting with complex environments, pose significant challenges to forming well-generalized and robust models necessary for robot design and control. In this work, we describe an analytical model for predicting the shape and locomotion of a flexible (steel-foil-based) piezoelectric-actuated 2D robot based on Euler-Bernoulli beam theory. It is nominally (unpowered) lying flat on the ground, and when powered, its shape is controlled by an array of piezoelectric thin-film actuators. Key features of the models are its ability to incorporate the significant effects of gravity on the shape and to precisely predict the spatial distribution of friction against the contacting surfaces, necessary for determining inchworm-type motion. We verified the model by developing a distributed discrete element representation of a continuous piezoelectric actuator and by comparing its analytical predictions to discrete-element robot simulations using PyBullet. Without gravity, predicting the shape of a sheet with a linear array of piezoelectric actuators at arbitrary voltages is straightforward. However, gravity significantly distorts the shape of the sheet, causing some segments to flatten against the ground. Our work includes the following contributions: (i) A self-consistent approach was developed to exactly determine which parts of the soft robot are lifted off the ground, and the exact shape of these sections, for an arbitrary array of piezoelectric voltages and configurations. (ii) Inchworm-type motion relies on controlling the relative friction with the ground surface in different sections of the robot. By adding torque-balance to our model and analyzing shear forces, the model can then determine the exact spatial distribution of the vertical force that the ground is exerting on the soft robot. Through this, the spatial distribution of friction forces between ground and robot can be determined. (iii) By combining this spatial friction distribution with the shape of the soft robot, in the function of time as piezoelectric actuator voltages are changed, the inchworm-type locomotion of the robot can be determined. As a practical example, we calculated the performance of a 5-actuator system on a 50-µm thick steel foil. Piezoelectric properties of commercially available thin-film piezoelectric actuators were assumed. The model predicted inchworm motion of up to 200 µm per step. For independent verification, we also modelled the system using PyBullet, a discrete-element robot simulator. To model a continuous thin-film piezoelectric actuator, we broke each actuator into multiple segments, each of which consisted of two rigid arms with appropriate mass connected with a 'motor' whose torque was set by the applied actuator voltage. Excellent agreement between our analytical model and the discrete-element simulator was shown for both for the full deformation shape and motion of the robot.

Keywords: analytical modeling, piezoelectric actuators, soft robot locomotion, thin-film technology

Procedia PDF Downloads 171
2110 Model of Cosserat Continuum Dispersion in a Half-Space with a Scatterer

Authors: Francisco Velez, Juan David Gomez

Abstract:

Dispersion effects on the Scattering for a semicircular canyon in a micropolar continuum are analyzed, by using a computational finite element scheme. The presence of microrotational waves and the dispersive SV waves affects the propagation of elastic waves. Here, a contrast with the classic model is presented, and the dependence with the micropolar parameters is studied.

Keywords: scattering, semicircular canyon, wave dispersion, micropolar medium, FEM modeling

Procedia PDF Downloads 537
2109 Design and Fabrication of Stiffness Reduced Metallic Locking Compression Plates through Topology Optimization and Additive Manufacturing

Authors: Abdulsalam A. Al-Tamimi, Chris Peach, Paulo Rui Fernandes, Paulo J. Bartolo

Abstract:

Bone fixation implants currently used to treat traumatic fractured bones and to promote fracture healing are built with biocompatible metallic materials such as stainless steel, cobalt chromium and titanium and its alloys (e.g., CoCrMo and Ti6Al4V). The noticeable stiffness mismatch between current metallic implants and host bone associates with negative outcomes such as stress shielding which causes bone loss and implant loosening leading to deficient fracture treatment. This paper, part of a major research program to design the next generation of bone fixation implants, describes the combined use of three-dimensional (3D) topology optimization (TO) and additive manufacturing powder bed technology (Electron Beam Melting) to redesign and fabricate the plates based on the current standard one (i.e., locking compression plate). Topology optimization is applied with an objective function to maximize the stiffness and constraint by volume reductions (i.e., 25-75%) in order to obtain optimized implant designs with reduced stress shielding phenomenon, under different boundary conditions (i.e., tension, bending, torsion and combined loads). The stiffness of the original and optimised plates are assessed through a finite-element study. The TO results showed actual reduction in the stiffness for most of the plates due to the critical values of volume reduction. Additionally, the optimized plates fabricated using powder bed techniques proved that the integration between the TO and additive manufacturing presents the capability of producing stiff reduced plates with acceptable tolerances.

Keywords: additive manufacturing, locking compression plate, finite element, topology optimization

Procedia PDF Downloads 195
2108 Simulation of Bird Strike on Airplane Wings by Using SPH Methodology

Authors: Tuğçe Kiper Elibol, İbrahim Uslan, Mehmet Ali Guler, Murat Buyuk, Uğur Yolum

Abstract:

According to the FAA report, 142603 bird strikes were reported for a period of 24 years, between 1990 – 2013. Bird strike with aerospace structures not only threaten the flight security but also cause financial loss and puts life in danger. The statistics show that most of the bird strikes are happening with the nose and the leading edge of the wings. Also, a substantial amount of bird strikes is absorbed by the jet engines and causes damage on blades and engine body. Crash proof designs are required to overcome the possibility of catastrophic failure of the airplane. Using computational methods for bird strike analysis during the product development phase has considerable importance in terms of cost saving. Clearly, using simulation techniques to reduce the number of reference tests can dramatically affect the total cost of an aircraft, where for bird strike often full-scale tests are considered. Therefore, development of validated numerical models is required that can replace preliminary tests and accelerate the design cycle. In this study, to verify the simulation parameters for a bird strike analysis, several different numerical options are studied for an impact case against a primitive structure. Then, a representative bird mode is generated with the verified parameters and collided against the leading edge of a training aircraft wing, where each structural member of the wing was explicitly modeled. A nonlinear explicit dynamics finite element code, LS-DYNA was used for the bird impact simulations. SPH methodology was used to model the behavior of the bird. Dynamic behavior of the wing superstructure was observed and will be used for further design optimization purposes.

Keywords: bird impact, bird strike, finite element modeling, smoothed particle hydrodynamics

Procedia PDF Downloads 320
2107 The Design and Implementation of an Enhanced 2D Mesh Switch

Authors: Manel Langar, Riad Bourguiba, Jaouhar Mouine

Abstract:

In this paper, we propose the design and implementation of an enhanced wormhole virtual channel on chip router. It is a heart of a mesh NoC using the XY deterministic routing algorithm. It is characterized by its simple virtual channel allocation strategy which allows reducing area and complexity of connections without affecting the performance. We implemented our router on a Tezzaron process to validate its performances. This router is a basic element that will be used later to design a 3D mesh NoC.

Keywords: NoC, mesh, router, 3D NoC

Procedia PDF Downloads 560
2106 Fluorescence-Based Biosensor for Dopamine Detection Using Quantum Dots

Authors: Sylwia Krawiec, Joanna Cabaj, Karol Malecha

Abstract:

Nowadays, progress in the field of the analytical methods is of great interest for reliable biological research and medical diagnostics. Classical techniques of chemical analysis, despite many advantages, do not permit to obtain immediate results or automatization of measurements. Chemical sensors have displaced the conventional analytical methods - sensors combine precision, sensitivity, fast response and the possibility of continuous-monitoring. Biosensor is a chemical sensor, which except of conventer also possess a biologically active material, which is the basis for the detection of specific chemicals in the sample. Each biosensor device mainly consists of two elements: a sensitive element, where is recognition of receptor-analyte, and a transducer element which receives the signal and converts it into a measurable signal. Through these two elements biosensors can be divided in two categories: due to the recognition element (e.g immunosensor) and due to the transducer (e.g optical sensor). Working of optical sensor is based on measurements of quantitative changes of parameters characterizing light radiation. The most often analyzed parameters include: amplitude (intensity), frequency or polarization. Changes in the optical properties one of the compound which reacts with biological material coated on the sensor is analyzed by a direct method, in an indirect method indicators are used, which changes the optical properties due to the transformation of the testing species. The most commonly used dyes in this method are: small molecules with an aromatic ring, like rhodamine, fluorescent proteins, for example green fluorescent protein (GFP), or nanoparticles such as quantum dots (QDs). Quantum dots have, in comparison with organic dyes, much better photoluminescent properties, better bioavailability and chemical inertness. These are semiconductor nanocrystals size of 2-10 nm. This very limited number of atoms and the ‘nano’-size gives QDs these highly fluorescent properties. Rapid and sensitive detection of dopamine is extremely important in modern medicine. Dopamine is very important neurotransmitter, which mainly occurs in the brain and central nervous system of mammals. Dopamine is responsible for the transmission information of moving through the nervous system and plays an important role in processes of learning or memory. Detection of dopamine is significant for diseases associated with the central nervous system such as Parkinson or schizophrenia. In developed optical biosensor for detection of dopamine, are used graphene quantum dots (GQDs). In such sensor dopamine molecules coats the GQD surface - in result occurs quenching of fluorescence due to Resonance Energy Transfer (FRET). Changes in fluorescence correspond to specific concentrations of the neurotransmitter in tested sample, so it is possible to accurately determine the concentration of dopamine in the sample.

Keywords: biosensor, dopamine, fluorescence, quantum dots

Procedia PDF Downloads 358
2105 The Biomechanical Analysis of Pelvic Osteotomies Applied for Developmental Dysplasia of the Hip Treatment in Pediatric Patients

Authors: Suvorov Vasyl, Filipchuk Viktor

Abstract:

Developmental Dysplasia of the Hip (DDH) is a frequent pathology in pediatric orthopedist’s practice. Neglected or residual cases of DDH in walking patients are usually treated using pelvic osteotomies. Plastic changes take place in hinge points due to acetabulum reorientation during surgery. Classically described hinge points and a traditional division of pelvic osteotomies on reshaping and reorientation are currently debated. The purpose of this article was to evaluate biomechanical changes during the most commonly used pelvic osteotomies (Salter, Dega, Pemberton) for DDH treatment in pediatric patients. Methods: virtual pelvic models of 2- and 6-years old patients were created, material properties were assigned, pelvic osteotomies were simulated and biomechanical changes were evaluated using finite element analysis (FEA). Results: it was revealed that the patient's age has an impact on pelvic bones and cartilages density (in younger patients the pelvic elements are more pliable - p<0.05). Stress distribution after each of the abovementioned pelvic osteotomy was assessed in 2- and 6-years old patients’ pelvic models; hinge points were evaluated. The new term "restriction point" was introduced, which means a place where restriction of acetabular deformity correction occurs. Pelvic ligaments attachment points were mainly these restriction points. Conclusions: it was found out that there are no purely reshaping and reorientation pelvic osteotomies as previously believed; the pelvic ring acts as a unit in carrying out the applied load. Biomechanical overload of triradiate cartilage during Salter osteotomy in 2-years old patient and in 2- and 6-years old patients during Pemberton osteotomy was revealed; overload of the posterior cortical layer in the greater sciatic notch in 2-years old patient during Dega osteotomy was revealed. Level of Evidence – Level IV, prognostic.

Keywords: developmental dysplasia of the hip, pelvic osteotomy, finite element analysis, hinge point, biomechanics

Procedia PDF Downloads 90
2104 Modified Weibull Approach for Bridge Deterioration Modelling

Authors: Niroshan K. Walgama Wellalage, Tieling Zhang, Richard Dwight

Abstract:

State-based Markov deterioration models (SMDM) sometimes fail to find accurate transition probability matrix (TPM) values, and hence lead to invalid future condition prediction or incorrect average deterioration rates mainly due to drawbacks of existing nonlinear optimization-based algorithms and/or subjective function types used for regression analysis. Furthermore, a set of separate functions for each condition state with age cannot be directly derived by using Markov model for a given bridge element group, which however is of interest to industrial partners. This paper presents a new approach for generating Homogeneous SMDM model output, namely, the Modified Weibull approach, which consists of a set of appropriate functions to describe the percentage condition prediction of bridge elements in each state. These functions are combined with Bayesian approach and Metropolis Hasting Algorithm (MHA) based Markov Chain Monte Carlo (MCMC) simulation technique for quantifying the uncertainty in model parameter estimates. In this study, factors contributing to rail bridge deterioration were identified. The inspection data for 1,000 Australian railway bridges over 15 years were reviewed and filtered accordingly based on the real operational experience. Network level deterioration model for a typical bridge element group was developed using the proposed Modified Weibull approach. The condition state predictions obtained from this method were validated using statistical hypothesis tests with a test data set. Results show that the proposed model is able to not only predict the conditions in network-level accurately but also capture the model uncertainties with given confidence interval.

Keywords: bridge deterioration modelling, modified weibull approach, MCMC, metropolis-hasting algorithm, bayesian approach, Markov deterioration models

Procedia PDF Downloads 722
2103 Study Properties of Bamboo Composite after Treatment Surface by Chemical Method

Authors: Kiatnarong Supapanmanee, Ekkarin Phongphinittana, Pongsak Nimdum

Abstract:

Natural fibers are readily available raw materials that are widely used as composite materials. The most common problem facing many researchers with composites made from this fiber is the adhesion between the natural fiber contact surface and the matrix material. Part of the problem is due to the hydrophilic properties of natural fibers and the hydrophobic properties of the matrix material. Based on the aforementioned problems, this research selected bamboo fiber, which is a strong natural fiber in the research study. The first step was to study the effect of the mechanical properties of the pure bamboo strip by testing the tensile strength of different measurement lengths. The bamboo strip was modified surface with sodium hydroxide (NaOH) at 6wt% concentrations for different soaking periods. After surface modification, the physical and mechanical properties of the pure bamboo strip fibers were studied. The modified and unmodified bamboo strips were molded into a composite material using epoxy as a matrix to compare the mechanical properties and adhesion between the fiber surface and the material with tensile and bending tests. In addition, the results of these tests were compared with the finite element method (FEM). The results showed that the length of the bamboo strip affects the strength of the fibers, with shorter fibers causing higher tensile stress. Effects of surface modification of bamboo strip with NaOH, this chemical eliminates lignin and hemicellulose, resulting in the smaller dimension of the bamboo strip and increased density. From the pretreatment results above, it was found that the treated bamboo strip and composite material had better Ultimate tensile stress and Young's modulus. Moreover, that results in better adhesion between bamboo fiber and matrix material.

Keywords: bamboo fiber, bamboo strip, composite material, bamboo composite, pure bamboo, surface modification, mechanical properties of bamboo, bamboo finite element method

Procedia PDF Downloads 86
2102 Computer-Integrated Surgery of the Human Brain, New Possibilities

Authors: Ugo Galvanetto, Pirto G. Pavan, Mirco Zaccariotto

Abstract:

The discipline of Computer-integrated surgery (CIS) will provide equipment able to improve the efficiency of healthcare systems and, which is more important, clinical results. Surgeons and machines will cooperate in new ways that will extend surgeons’ ability to train, plan and carry out surgery. Patient specific CIS of the brain requires several steps: 1 - Fast generation of brain models. Based on image recognition of MR images and equipped with artificial intelligence, image recognition techniques should differentiate among all brain tissues and segment them. After that, automatic mesh generation should create the mathematical model of the brain in which the various tissues (white matter, grey matter, cerebrospinal fluid …) are clearly located in the correct positions. 2 – Reliable and fast simulation of the surgical process. Computational mechanics will be the crucial aspect of the entire procedure. New algorithms will be used to simulate the mechanical behaviour of cutting through cerebral tissues. 3 – Real time provision of visual and haptic feedback A sophisticated human-machine interface based on ergonomics and psychology will provide the feedback to the surgeon. The present work will address in particular point 2. Modelling the cutting of soft tissue in a structure as complex as the human brain is an extremely challenging problem in computational mechanics. The finite element method (FEM), that accurately represents complex geometries and accounts for material and geometrical nonlinearities, is the most used computational tool to simulate the mechanical response of soft tissues. However, the main drawback of FEM lies in the mechanics theory on which it is based, classical continuum Mechanics, which assumes matter is a continuum with no discontinuity. FEM must resort to complex tools such as pre-defined cohesive zones, external phase-field variables, and demanding remeshing techniques to include discontinuities. However, all approaches to equip FEM computational methods with the capability to describe material separation, such as interface elements with cohesive zone models, X-FEM, element erosion, phase-field, have some drawbacks that make them unsuitable for surgery simulation. Interface elements require a-priori knowledge of crack paths. The use of XFEM in 3D is cumbersome. Element erosion does not conserve mass. The Phase Field approach adopts a diffusive crack model instead of describing true tissue separation typical of surgical procedures. Modelling discontinuities, so difficult when using computational approaches based on classical continuum Mechanics, is instead easy for novel computational methods based on Peridynamics (PD). PD is a non-local theory of mechanics formulated with no use of spatial derivatives. Its governing equations are valid at points or surfaces of discontinuity, and it is, therefore especially suited to describe crack propagation and fragmentation problems. Moreover, PD does not require any criterium to decide the direction of crack propagation or the conditions for crack branching or coalescence; in the PD-based computational methods, cracks develop spontaneously in the way which is the most convenient from an energy point of view. Therefore, in PD computational methods, crack propagation in 3D is as easy as it is in 2D, with a remarkable advantage with respect to all other computational techniques.

Keywords: computational mechanics, peridynamics, finite element, biomechanics

Procedia PDF Downloads 70
2101 Geometric Imperfections in Lattice Structures: A Simulation Strategy to Predict Strength Variability

Authors: Xavier Lorang, Ahmadali Tahmasebimoradi, Chetra Mang, Sylvain Girard

Abstract:

The additive manufacturing processes (e.g. selective laser melting) allow us to produce lattice structures which have less weight, higher impact absorption capacity, and better thermal exchange property compared to the classical structures. Unfortunately, geometric imperfections (defects) in the lattice structures are by-products results of the manufacturing process. These imperfections decrease the lifetime and the strength of the lattice structures and alternate their mechanical responses. The objective of the paper is to present a simulation strategy which allows us to take into account the effect of the geometric imperfections on the mechanical response of the lattice structure. In the first part, an identification method of geometric imperfection parameters of the lattice structure based on point clouds is presented. These point clouds are based on tomography measurements. The point clouds are fed into the platform LATANA (LATtice ANAlysis) developed by IRT-SystemX to characterize the geometric imperfections. This is done by projecting the point clouds of each microbeam along the beam axis onto a 2D surface. Then, by fitting an ellipse to the 2D projections of the points, the geometric imperfections are characterized by introducing three parameters of an ellipse; semi-major/minor axes and angle of rotation. With regard to the calculated parameters of the microbeam geometric imperfections, a statistical analysis is carried out to determine a probability density law based on a statistical hypothesis. The microbeam samples are randomly drawn from the density law and are used to generate lattice structures. In the second part, a finite element model for the lattice structure with the simplified geometric imperfections (ellipse parameters) is presented. This numerical model is used to simulate the generated lattice structures. The propagation of the uncertainties of geometric imperfections is shown through the distribution of the computed mechanical responses of the lattice structures.

Keywords: additive manufacturing, finite element model, geometric imperfections, lattice structures, propagation of uncertainty

Procedia PDF Downloads 180
2100 Effect of Dietary Graded Levels of L-Theanine on Growth Performance, Carcass Traits, Meat Quality, and Immune Response of Broilers

Authors: Muhammad Saeed, Sun Chao

Abstract:

L-theanine is water soluble non-proteinous amino acid found in green tea leaves. Despite the availability of abundant literature on green tea, studies on the use of L-theanine as an additive in animals especially broilers are scanty. The objective of this study was to evaluate the effectiveness of different dietary levels of L-theanine on growth performance, meat quality, growth, immune response and blood chemistry in broilers. A total of 400 day-old chicks were randomly divided into four treatment groups (A, B, C, and D) using a complete randomized design. Treatments were as follows: A; control (basal diet), B; basal diet+100 mg L-theanine / kg diet, C; basal diet+ 200 mg L-theanine / kg diet, and D; basal diet+ 300 mg L-theanine / kg diet. Results revealed that intermediate level of L-theanine (200 mg/ kg diet, group C) showed better results in terms of BWG, FC, and FCR compared with control and other L-theanine levels. The live weight eviscerated weight and gizzard weight was higher in all L-theanine levels as compared to that of the control group. The heaviest (P > 0.05) spleen and bursa were found in group C (200 mg L-theanine / kg diet). Analysis of meat colors according to yellowness (b*), redness (a*), and lightness (L*) showed significantly higher values of a* and b* in L-theanine groups. Supplementing broiler diet with L-theanine minimized (P=0.02) total cholesterol contents in serum. Further analysis revealed , lower mRNA expression of TNF-α and IL-6 in thymus and IFN- γ and IL-2 in spleen was observed in L-theanine group It is concluded that supplementation of L-theanine at 200mg/kg diet showed better results in terms of performance and it could be utilized as a natural feed additive alternative to antibiotics to improve overall performance of broilers. Increasing the levels up to 300 mg L-theanine /kg diet may has deleterious effects on performance and other health aspects.

Keywords: blood chemistry, broilers growth, L-theanine, meat quality

Procedia PDF Downloads 245
2099 Evaluation of Elements Impurities in Drugs According to Pharmacopoeia by use FESEM-EDS Technique

Authors: Rafid Doulab

Abstract:

Elemental Impurities in the Pharmaceuticals industryis are indispensable to ensure pharmaceuticalssafety for 24 elements. Although atomic absorption and inductively coupled plasma are used in the U.S Pharmacopeia and the European Pharmacopoeia, FESEM with energy dispersive spectrometers can be applied as an alternative analysis method for quantitative and qualitative results for a variety of elements without chemical pretreatment, unlike other techniques. This technique characterizes by shortest time, with more less contamination, no reagent consumption, and generation of minimal residue or waste, as well as sample preparations time limiting, with minimal analysis error. Simple dilution for powder or direct analysis for liquid, we analyzed the usefulness of EDS method in testing with field emission scanning electron microscopy (FESEM, SUPRA 55 Carl Zeiss Germany) with an X-ray energy dispersion (XFlash6l10 Bruker Germany). The samples analyzed directly without coating by applied 5µ of known concentrated diluted sample on carbon stub with accelerated voltage according to sample thickness, the result for this spot was in atomic percentage, and by Avogadro converted factor, the final result will be in microgram. Conclusion and recommendation: The conclusion of this study is application of FESEM-EDS in US pharmacopeia and ICH /Q3D guideline to reach a high-precision and accurate method in element impurities analysis of drugs or bulk materials to determine the permitted daily exposure PDE in liquid or solid specimens, and to obtain better results than other techniques, by the way it does not require complex methods or chemicals for digestion, which interfere with the final results with the possibility of to keep the sample at any time for re analysis. The recommendation is to use this technique in pharmacopeia as standard methods like inductively coupled plasma both ICP-AES, ICP-OES, and ICP-MS.

Keywords: pharmacopoeia, FESEM-EDS, element impurities, atomic concentration

Procedia PDF Downloads 112
2098 Finite Element Analysis for Earing Prediction Incorporating the BBC2003 Material Model with Fully Implicit Integration Method: Derivation and Numerical Algorithm

Authors: Sajjad Izadpanah, Seyed Hadi Ghaderi, Morteza Sayah Irani, Mahdi Gerdooei

Abstract:

In this research work, a sophisticated yield criterion known as BBC2003, capable of describing planar anisotropic behaviors of aluminum alloy sheets, was integrated into the commercial finite element code ABAQUS/Standard via a user subroutine. The complete formulation of the implementation process using a fully implicit integration scheme, i.e., the classic backward Euler method, is presented, and relevant aspects of the yield criterion are introduced. In order to solve nonlinear differential and algebraic equations, the line-search algorithm was adopted in the user-defined material subroutine (UMAT) to expand the convergence domain of the iterative Newton-Raphson method. The developed subroutine was used to simulate a challenging computational problem with complex stress states, i.e., deep drawing of an anisotropic aluminum alloy AA3105. The accuracy and stability of the developed subroutine were confirmed by comparing the numerically predicted earing and thickness variation profiles with the experimental results, which showed an excellent agreement between numerical and experimental earing and thickness profiles. The integration of the BBC2003 yield criterion into ABAQUS/Standard represents a significant contribution to the field of computational mechanics and provides a useful tool for analyzing the mechanical behavior of anisotropic materials subjected to complex loading conditions.

Keywords: BBC2003 yield function, plastic anisotropy, fully implicit integration scheme, line search algorithm, explicit and implicit integration schemes

Procedia PDF Downloads 68
2097 Distribution and Ecological Risk Assessment of Trace Elements in Sediments along the Ganges River Estuary, India

Authors: Priyanka Mondal, Santosh K. Sarkar

Abstract:

The present study investigated the spatiotemporal distribution and ecological risk assessment of trace elements of surface sediments (top 0 - 5 cm; grain size ≤ 0.63 µm) in relevance to sediment quality characteristics along the Ganges River Estuary, India. Sediment samples were collected during ebb tide from intertidal regions covering seven sampling sites of diverse environmental stresses. The elements were analyzed with the help of ICPAES. This positive, mixohaline, macro-tidal estuary has global significance contributing ecological and economic services. Presence of fine-clayey particle (47.03%) enhances the adsorption as well as transportation of trace elements. There is a remarkable inter-metallic variation (mg kg-1 dry weight) in the distribution pattern in the following manner: Al (31801± 15943) > Fe (23337± 7584) > Mn (461±147) > S(381±235) > Zn(54 ±18) > V(43 ±14) > Cr(39 ±15) > As (34±15) > Cu(27 ±11) > Ni (24 ±9) > Se (17 ±8) > Co(11 ±3) > Mo(10 ± 2) > Hg(0.02 ±0.01). An overall trend of enrichment of majority of trace elements was very much pronounced at the site Lot 8, ~ 35km upstream of the estuarine mouth. In contrast, the minimum concentration was recorded at site Gangasagar, mouth of the estuary, with high energy profile. The prevalent variations in trace element distribution are being liable for a set of cumulative factors such as hydrodynamic conditions, sediment dispersion pattern and textural variations as well as non-homogenous input of contaminants from point and non-point sources. In order to gain insight into the trace elements distribution, accumulation, and their pollution status, geoaccumulation index (Igeo) and enrichment factor (EF) were used. The Igeo indicated that surface sediments were moderately polluted with As (0.60) and Mo (1.30) and strongly contaminated with Se (4.0). The EF indicated severe pollution of Se (53.82) and significant pollution of As (4.05) and Mo (6.0) and indicated the influx of As, Mo and Se in sediments from anthropogenic sources (such as industrial and municipal sewage, atmospheric deposition, agricultural run-off, etc.). The significant role of the megacity Calcutta in relevance to the untreated sewage discharge, atmospheric inputs and other anthropogenic activities is worthwhile to mention. The ecological risk for different trace elements was evaluated using sediment quality guidelines, effects range low (ERL), and effect range median (ERM). The concentration of As, Cu and Ni at 100%, 43% and 86% of the sampling sites has exceeded the ERL value while none of the element concentration exceeded ERM. The potential ecological risk index values revealed that As at 14.3% of the sampling sites would pose relatively moderate risk to benthic organisms. The effective role of finer clay particles for trace element distribution was revealed by multivariate analysis. The authors strongly recommend regular monitoring emphasizing on accurate appraisal of the potential risk of trace elements for effective and sustainable management of this estuarine environment.

Keywords: pollution assessment, sediment contamination, sediment quality, trace elements

Procedia PDF Downloads 254
2096 Development of Electric Generator and Water Purifier Cart

Authors: Luisito L. Lacatan, Gian Carlo J. Bergonia, Felipe C. Buado III, Gerald L. Gono, Ron Mark V. Ortil, Calvin A. Yap

Abstract:

This paper features the development of a Mobile Self-sustaining Electricity Generator for water distillation process with MCU- based wireless controller & indicator designed to solve the problem of scarcity of clean water. It is a fact that pure water is precious nowadays and its value is more precious to those who do not have or enjoy it. There are many water filtration products in existence today. However, none of these products fully satisfies the needs of families needing clean drinking water. All of the following products require either large sums of money or extensive maintenance, and some products do not even come with a guarantee of potable water. The proposed project was designed to alleviate the problem of scarcity of potable water in the country and part of the purpose was also to identify the problem or loopholes of the project such as the distance and speed required to produce electricity using a wheel and alternator, the required time for the heating element to heat up, the capacity of the battery to maintain the heat of the heating element and the time required for the boiler to produce a clean and potable water. The project has three parts. The first part included the researchers’ effort to plan every part of the project from the conversion of mechanical energy to electrical energy, from purifying water to potable drinking water to the controller and indicator of the project using microcontroller unit (MCU). This included identifying the problem encountered and any possible solution to prevent and avoid errors. Gathering and reviewing related studies about the project helped the researcher reduce and prevent any problems before they could be encountered. It also included the price and quantity of materials used to control the budget.

Keywords: mobile, self – sustaining, electricity generator, water distillation, wireless battery indicator, wireless water level indicator

Procedia PDF Downloads 305
2095 Finite Element Analysis of the Anaconda Device: Efficiently Predicting the Location and Shape of a Deployed Stent

Authors: Faidon Kyriakou, William Dempster, David Nash

Abstract:

Abdominal Aortic Aneurysm (AAA) is a major life-threatening pathology for which modern approaches reduce the need for open surgery through the use of stenting. The success of stenting though is sometimes jeopardized by the final position of the stent graft inside the human artery which may result in migration, endoleaks or blood flow occlusion. Herein, a finite element (FE) model of the commercial medical device AnacondaTM (Vascutek, Terumo) has been developed and validated in order to create a numerical tool able to provide useful clinical insight before the surgical procedure takes place. The AnacondaTM device consists of a series of NiTi rings sewn onto woven polyester fabric, a structure that despite its column stiffness is flexible enough to be used in very tortuous geometries. For the purposes of this study, a FE model of the device was built in Abaqus® (version 6.13-2) with the combination of beam, shell and surface elements; the choice of these building blocks was made to keep the computational cost to a minimum. The validation of the numerical model was performed by comparing the deployed position of a full stent graft device inside a constructed AAA with a duplicate set-up in Abaqus®. Specifically, an AAA geometry was built in CAD software and included regions of both high and low tortuosity. Subsequently, the CAD model was 3D printed into a transparent aneurysm, and a stent was deployed in the lab following the steps of the clinical procedure. Images on the frontal and sagittal planes of the experiment allowed the comparison with the results of the numerical model. By overlapping the experimental and computational images, the mean and maximum distances between the rings of the two models were measured in the longitudinal, and the transverse direction and, a 5mm upper bound was set as a limit commonly used by clinicians when working with simulations. The two models showed very good agreement of their spatial positioning, especially in the less tortuous regions. As a result, and despite the inherent uncertainties of a surgical procedure, the FE model allows confidence that the final position of the stent graft, when deployed in vivo, can also be predicted with significant accuracy. Moreover, the numerical model run in just a few hours, an encouraging result for applications in the clinical routine. In conclusion, the efficient modelling of a complicated structure which combines thin scaffolding and fabric has been demonstrated to be feasible. Furthermore, the prediction capabilities of the location of each stent ring, as well as the global shape of the graft, has been shown. This can allow surgeons to better plan their procedures and medical device manufacturers to optimize their designs. The current model can further be used as a starting point for patient specific CFD analysis.

Keywords: AAA, efficiency, finite element analysis, stent deployment

Procedia PDF Downloads 188
2094 Effects of Bed Type, Corm Weight and Lifting Time on Quantitative and Qualitative Criteria of Saffron (Crocus sativus L.)

Authors: A. Mollafilabi, A. Koocheki, P. Rezvani Moghaddam, M. Nassiri Mahalati

Abstract:

In order to study the effects of corm weights and times of corm lifting saffron in different planting beds, an experiment was conducted as Factorial layout based on a Randomized Complete Block Design with three replications at the Fadak Research Center of Agricultural Research in Food Science during 2010. Treatments were two corm weights (8-10, 10 < g), two planting beds (stone wool and peat moss) and five levels of lifting time (mi-June, early July, mid-July, early August and mid-August). No. of corms were 457 corms.m-2 and for 40 days and were stored for 90 days in incubation, 85% relative humidity and 25°C temperature in the darkness. Then, saffron corms were transferred to growth chamber with 17 °C in 8 hours light and 16 hours darkness. Characteristics were number of flower, fresh weight of flower, dry weight of flower, fresh and dry weight of stigma, fresh and dry weight of style, fresh and dry weight of stigma+style and Picrocrocin, Safronal and Crocin contents of saffron were measured. Results showed that the corm weight, bed type and time of corm lifting had significant effects on economical yield of saffron such as picked flowers, dry weight of stigma and fresh weight of flowers. The highest saffron economical yield was obtained in interaction of corm weight, 10 g, peat moss and lifting time in mid-June as much as 5.2 g.m-2. This yield is 11 fold of average yield of Iranian farms. Picrocrocin, Safranal and Crocin contents was graded as excellent thread in peat moss under controlled conditions compared with ISO Standard of 203.

Keywords: corm density, dry stigma, safranal-flowering, yield saffron

Procedia PDF Downloads 329
2093 Ground Track Assessment Using Electrical Resistivity Tomography Application

Authors: Noryani Natasha Yahaya, Anas Ibrahim, Juraidah Ahmad, Azura Ahmad, Mohd Ikmal Fazlan Rosli, Zailan Ramli, Muhd Sidek Muhd Norhasri

Abstract:

The subgrade formation is an important element of the railway structure which holds overall track stability. Conventional track maintenance involves many substructure component replacements, as well as track re-ballasting on a regular basis is partially contributed to the embankment's long-term settlement problem. For subgrade long-term stability analysis, the geophysical method is commonly being used to diagnose those hidden sources/mechanisms of track deterioration problems that the normal visual method is unable to detect. Electrical resistivity tomography (ERT) is one of the applicable geophysical tools that are helpful in railway subgrade inspection/track monitoring due to its flexibility and reliability of the analysis. The ERT was conducted at KM 23.0 of Pinang Tunggal track to investigate the subgrade of railway track through the characterization/mapping on track formation profiling which was directly generated using 2D analysis of Res2dinv software. The profiles will allow examination of the presence and spatial extent of a significant subgrade layer and screening of any poor contact of soil boundary. Based on the finding, there is a mix/interpretation/intermixing of an interlayer between the sub-ballast and the sand. Although the embankment track considered here is at no immediate risk of settlement effect or any failure, the regular monitoring of track’s location will allow early correction maintenance if necessary. The developed data of track formation clearly shows the similarity of the side view with the assessed track. The data visualization in the 2D section of the track embankment agreed well with the initial assumption based on the main element structure general side view.

Keywords: ground track, assessment, resistivity, geophysical railway, method

Procedia PDF Downloads 147
2092 The Effect of Eight Weeks of Aerobic Training on Indices of Cardio-Respiratory and Exercise Tolerance in Overweight Women with Chronic Asthma

Authors: Somayeh Negahdari, Mohsen Ghanbarzadeh, Masoud Nikbakht, Heshmatolah Tavakol

Abstract:

Asthma, obesity and overweight are the main factors causing change within the heart and respiratory airways. Asthma symptoms are normally observed during exercising. Epidemiological studies have indicated asthma symptoms occurring due to certain lifestyle habits; for example, a sedentary lifestyle. In this study, eight weeks of aerobic exercises resulted in a positive effect overall in overweight women experiencing mild chronic asthma. The quasi-experimental applied research has been done based on experimental and control groups. The experimental group (seven patients) and control group (n = 7) were graded before and after the test. According to the Borg dyspnea and fatigue Perception Index, the training intensity has determined. Participants in the study performed a sub-maximal aerobic activity schedule (45% to 80% of maximum heart rate) for two months, while the control group (n = 7) stayed away from aerobic exercise. Data evaluation and analysis of covariance compared both the pre-test and post-test with paired t-test at significance level of P≤ 0.05. After eight weeks of exercise, the results of the experimental group show a significant decrease in resting heart rate, systolic blood pressure, minute ventilation, while a significant increase in maximal oxygen uptake and tolerance activity (P ≤ 0.05). In the control group, there was no significant difference in these parameters ((P ≤ 0.05). The results indicate the aerobic activity can strengthen the respiratory muscles, while other physiological factors could result in breathing and heart recovery. Aerobic activity also resulted in favorable changes in cardiovascular parameters, and exercise tolerance of overweight women with chronic asthma.

Keywords: asthma, respiratory cardiac index, exercise tolerance, aerobic, overweight

Procedia PDF Downloads 229
2091 Investigating Undrained Behavior of Noor Sand Using Triaxial Compression Test

Authors: Hossein Motaghedi, Siavash Salamatpoor, Abbas Mokhtari

Abstract:

Noor costal city which is located in Mazandaran province, Iran, regularly visited by many tourists. Accordingly, many tall building and heavy structures are going to be constructed over this coastal area. This region is overlaid by poorly graded clean sand and because of high water level, is susceptible to liquefaction. In this study, undrained triaxial tests under isotropic consolidation were conducted on the reconstituted samples of Noor sand, which underlies a densely populated, seismic region of southern bank of Caspian Sea. When the strain level is large enough, soil samples under shearing tend to be in a state of continuous deformation under constant shear and normal stresses. There exists a correlation between the void ratio and mean effective principal stress, which is referred to as the ultimate steady state line (USSL). Soil behavior can be achieved by expressing the state of effective confining stress and defining the location of this point relative to the steady state line. Therefore, one can say that sand behavior not only is dependent to relative density but also a description of stress state has to be defined. The current study tries to investigate behavior of this sand under different conditions such as confining effective stress and relative density using undrained monotonic triaxial compression tests. As expected, the analyzed results show that the sand behavior varies from dilative to contractive state while initial isotropic effective stress increases. Therefore, confining effective stress level will directly affect the overall behavior of sand. The observed behavior obtained from the conducted tests is then compared with some previously tested sands including Yamuna, Ganga, and Toyoura.

Keywords: noor sand, liquefaction, undrained test, steady state

Procedia PDF Downloads 424