Search results for: generating sets
1146 Design of a Permanent Magnet Based Focusing Lens for a Miniature Klystron
Authors: Kumud Singh, Janvin Itteera, Priti Ukarde, Sanjay Malhotra, P. PMarathe, Ayan Bandyopadhay, Rakesh Meena, Vikram Rawat, L. M. Joshi
Abstract:
Application of Permanent magnet technology to high frequency miniature klystron tubes to be utilized for space applications improves the efficiency and operational reliability of these tubes. But nevertheless the task of generating magnetic focusing forces to eliminate beam divergence once the beam crosses the electrostatic focusing regime and enters the drift region in the RF section of the tube throws several challenges. Building a high quality magnet focusing lens to meet beam optics requirement in cathode gun and RF interaction region is considered to be one of the critical issues for these high frequency miniature tubes. In this paper, electromagnetic design and particle trajectory studies in combined electric and magnetic field for optimizing the magnetic circuit using 3D finite element method (FEM) analysis software is presented. A rectangular configuration of the magnet was constructed to accommodate apertures for input and output waveguide sections and facilitate coupling of electromagnetic fields into the input klystron cavity and out from output klystron cavity through coupling loops. Prototype lenses have been built and have been tested after integration with the klystron tube. We discuss the design requirements and challenges, and the results from beam transmission of the prototype lens.Keywords: beam transmission, Brillouin, confined flow, miniature klystron
Procedia PDF Downloads 4421145 Investigation of the Effects of Processing Parameters on Pla Based 3D Printed Tensile Samples
Authors: Saifullah Karimullah
Abstract:
Additive manufacturing techniques are becoming more common with the latest technological advancements. It is composed to bring a revolution in the way products are designed, planned, manufactured, and distributed to end users. Fused deposition modeling (FDM) based 3D printing is one of those promising aspects that have revolutionized the prototyping processes. The purpose of this design and study project is to design a customized laboratory-scale FDM-based 3D printer from locally available sources. The primary goal is to design and fabricate the FDM-based 3D printer. After the fabrication, a tensile test specimen would be designed in Solid Works or [Creo computer-aided design (CAD)] software. A .stl file is generated of the tensile test specimen through slicing software and the G-codes are inserted via a computer for the test specimen to be printed. Different parameters were under studies like printing speed, layer thickness and infill density of the printed object. Some parameters were kept constant such as temperature, extrusion rate, raster orientation etc. Different tensile test specimens were printed for a different sets of parameters of the FDM-based 3d printer. The tensile test specimen were subjected to tensile tests using a universal testing machine (UTM). Design Expert software has been used for analyses, So Different results were obtained from the different tensile test specimens. The best, average and worst specimen were also observed under a compound microscope to investigate the layer bonding in between.Keywords: additive manufacturing techniques, 3D printing, CAD software, UTM machine
Procedia PDF Downloads 1021144 Second Generation Biofuels: A Futuristic Green Deal for Lignocellulosic Waste
Authors: Nivedita Sharma
Abstract:
The global demand for fossil fuels is very high, but their use is not sustainable since its reserves are declining. Additionally, fossil fuels are responsible for the accumulation of greenhouse gases. The emission of greenhouse gases from the transport sector can be reduced by substituting fossil fuels by biofuels. Thus, renewable fuels capable of sequestering carbon dioxide are in high demand. Second‐generation biofuels, which require lignocellulosic biomass as a substrate and ultimately producing ethanol, fall largely in this category. Bioethanol is a favorable and near carbon-neutral renewable biofuel leading to reduction in tailpipe pollutant emission and improving the ambient air quality. Lignocellulose consists of three main components: cellulose, hemicellulose and lignin which can be converted to ethanol with the help of microbial enzymes. Enzymatic hydrolysis of lignocellulosic biomass in 1st step is considered as the most efficient and least polluting methods for generating fermentable hexose and pentose sugars which subsequently are fermented to power alcohol by yeasts in 2nd step of the process. In the present technology, a complete bioconversion process i.e. potential hydrolytic enzymes i.e. cellulase and xylanase producing microorganisms have been isolated from different niches, screened for enzyme production, identified using phenotyping and genotyping, enzyme production, purification and application of enzymes for saccharification of different lignocellulosic biomass followed by fermentation of hydrolysate to ethanol with high yield is to be presented in detail.Keywords: cellulase, xylanase, lignocellulose, bioethanol, microbial enzymes
Procedia PDF Downloads 951143 Computational Studies of the Reactivity Descriptors and the Optoelectronic Properties on the Efficiency Free-Base- and Zn-Porphyrin-Sensitized Solar Cells
Authors: Soraya Abtouche, Zeyneb Ghoualem, Syrine Daoudi, Lina Ouldmohamed, Xavier Assfeld
Abstract:
This work reports density functional theory calculations of the optimized geometries, molecular reactivity, energy gap,and thermodynamic properties of the free base (H2P) and their Zn (II) metallated (ZnP), bearing one, two, or three carboxylic acid groups using the hybrid functional B3LYP, Cam-B3lYP, wb97xd with 6-31G(d,p) basis sets. When donating groups are attached to the molecular dye, the bond lengths are slightly decreased, which is important for the easy transfer of an electron from donating to the accepting group. For all dyes, the highest occupied molecular orbital/lowest occupied molecular orbital analysis results in positive outcomes upon electron injection to the semiconductor and subsequent dye regeneration by the electrolyte. The ionization potential increases with increasing conjugation; therefore, the compound dye attached to one carboxylic acid group has the highest ionization potential. The results show higher efficiencies of those sensitized with ZnP. These results have been explained, taking into account the electronic character of the metal ion, which acts as a mediator in the injection step, and, on the other hand, considering the number of anchoring groups to which it binds to the surface of TiO2.Keywords: DSSC, porphyrin, TD-DFT, electronic properties, donor-acceptor groups
Procedia PDF Downloads 771142 Scientific Linux Cluster for BIG-DATA Analysis (SLBD): A Case of Fayoum University
Authors: Hassan S. Hussein, Rania A. Abul Seoud, Amr M. Refaat
Abstract:
Scientific researchers face in the analysis of very large data sets that is increasing noticeable rate in today’s and tomorrow’s technologies. Hadoop and Spark are types of software that developed frameworks. Hadoop framework is suitable for many Different hardware platforms. In this research, a scientific Linux cluster for Big Data analysis (SLBD) is presented. SLBD runs open source software with large computational capacity and high performance cluster infrastructure. SLBD composed of one cluster contains identical, commodity-grade computers interconnected via a small LAN. SLBD consists of a fast switch and Gigabit-Ethernet card which connect four (nodes). Cloudera Manager is used to configure and manage an Apache Hadoop stack. Hadoop is a framework allows storing and processing big data across the cluster by using MapReduce algorithm. MapReduce algorithm divides the task into smaller tasks which to be assigned to the network nodes. Algorithm then collects the results and form the final result dataset. SLBD clustering system allows fast and efficient processing of large amount of data resulting from different applications. SLBD also provides high performance, high throughput, high availability, expandability and cluster scalability.Keywords: big data platforms, cloudera manager, Hadoop, MapReduce
Procedia PDF Downloads 3551141 Power Supply by Soil Battery and Production of Hydrogen Fuel for Greenhouse and Space Heating
Authors: Mohsen Azarmjoo, Yasaman Azarmjoo, Zahra Alikhani Koopaei
Abstract:
The increasing global population and continued growth in energy consumption underscore the need for renewable and sustainable energy sources more than ever. Soil batteries are a method for generating electrical energy by using recycled materials. Recycled materials include galvanized and copper sheets and recycled tires. Additionally, hydrogen, being a clean and efficient fuel, has the potential to replace fossil fuels. Consequently, hydrogen production from water presents a sustainable solution for energy supply. By utilizing aged materials, hydrogen production becomes more cost-effective and environmentally friendly. This article focuses on energy-deprived agricultural lands, explaining how soil batteries and hydrogen can provide the necessary energy for agricultural equipment, such as irrigation, lighting, greenhouse ventilation, and heating. The article explores the benefits of utilizing this method, emphasizing its potential to reduce environmental pollution through the use of recyclable materials. It is worth mentioning that these technologies face challenges, but their progress toward achieving zero-energy consumer standards positions them as promising future technologies for electricity generation. This article provides detailed insights into emerging technologies using a constructed case study involving soil batteries and a hydrogen fuel production device.Keywords: electricity generation, soil batteries, tires, hydrogen, heat supply, water, aged materials, recycling, agricultural lands
Procedia PDF Downloads 621140 Student's Perception on the Relationship between Teacher's Supportive Teaching, Thwarting Teaching, Their Needed Satisfaction, Frustration, and Motivational Regulation at Vocational High School
Authors: Chi C. Lin, Chih. H. Hsieh, Chi H. Lin
Abstract:
The present study attempted to develop and test a self-determination theory dual-process model among teachers’ need supportive teaching, need thwarting teaching, and students’ need satisfaction, need frustration, and motivation regulation on vocational high school learners. This study adopted a survey questionnaire method. Participants were 736 (472 males, 264 females) vocational high school students in Taiwan. The instrument included five sets: the Teachers’ Need Supportive Teaching Scale, the Teachers’ Need Thwart Teaching Scale, the Need Satisfaction Scale, the Need Frustration Scale, and the Motivational Regulation Scale. A Structural equation modeling was used for the data analyses, results indicated that (1) teachers’ need supportive teaching had direct effects on students’ need satisfaction; (2) teachers’ thwarting teaching also had a direct effect on students’ need frustration; (3) teachers’ need supportive teaching had a negative direct effect on students’ need frustration; (4) students’ need satisfaction had direct effects on their autonomous motivation and control motivation, respectively; (5) students’ need frustration also had direct effects on their control motivation and motivation, respectively; (6) the model proposed in this study fit mostly with the empirical data.Keywords: motivational regulation, need satisfaction, need frustration, supportive teaching, thwart teaching, vocational high school students
Procedia PDF Downloads 1331139 Psychological Factors Affecting Breastfeeding: An Exploratory Study among Breastfeeding Moms
Authors: Marwa Abdussalam
Abstract:
Breastfeeding is a unique emotional bond between a mother and their offspring. Though breastfeeding may be natural, it is not something mothers are born with; some still struggle to breastfeed their babies. Various factors can influence the breastfeeding experience, such as the mode of delivery, the mother’s health condition, proper latching, etc. In addition, psychological factors have been known to influence breastfeeding ability, duration, and milk supply. Some mothers struggle to breastfeed their babies because they perceive they have a low milk supply and or don’t have the ability to breastfeed their babies. Most of these perceptions result either from their own past experience or from the ‘comments’ of their caregivers. So, it is of utmost essential to understand such psychological factors affecting breastfeeding so that necessary steps can be taken to educate breastfeeding mothers. The study explored the role of psychological factors that affect breastfeeding. Data were collected from fifteen breastfeeding mothers using a semi-structured interview schedule. A total of 10 questions were included in the interview schedule. Questions were sequenced in a funnel pattern, beginning with open-ended questions and then moving on to close-ended questions. Data were analyzed using Braun and Clarke’s Thematic Analysis technique. This technique involves identifying the codes, generating themes, naming them, and finally reviewing them. Results indicated that breastfeeding self-efficacy perceived insufficient milk supply, and lack of knowledge were the psychological factors affecting breastfeeding. The results of this study can be used to help mothers who are struggling with breastfeeding by developing interventions aimed at improving breastfeeding self-efficacy.Keywords: breastfeeding, breastfeeding self-efficacy, perceived insufficient milk supply, Thematic Analysis
Procedia PDF Downloads 1071138 Culture as an Intervening Variable While Assessing Japanese Influence on Vietnam: 1991-2018
Authors: Teresa Mili
Abstract:
The significance of political and economic factors have barely been neglected while assessing bilateral relations, but the significance of culture as a soft power in Japan-Vietnam relations has largely been understated. While the close ties had their birth ever since the 14th century, this paper sets out with an inductive lens to analyze the role of culture as a variable in bilateral relations. Vietnam, which then had a history of war devastation had taken refuge in Japan and later sought inspiration from Japan’s economy with the simultaneous influence of culture since Japan was a developed nation, and Vietnam a third world country. Evidencing facts with illustrations, the paper shows how the twenty-first century has brought a growing bond as well as the onset of stronger ties between the two states based, primarily, on an emerging convergence of interests and culture. The cultural influence of Japan may be seen much in the Vietnamese cities, through evidences like the growing numbers of Japanese items on sale. The variety in cultural influence may be seen through the acceptance of Japanese fashion trends, mange comic, pop music, cuisine, tourism, Japanese studies and language, the translations of Japanese literature which are very much popular at Vietnam. Using secondary sources as well as assessing travel accounts and official websites, this research work will try to find out how much Japanese culture has influenced Vietnam and whether such influences will be strong enough to qualify culture as an intervening variable in the bilateral relations.Keywords: influence, culture, language, cold war
Procedia PDF Downloads 1611137 Arithmetic Operations Based on Double Base Number Systems
Authors: K. Sanjayani, C. Saraswathy, S. Sreenivasan, S. Sudhahar, D. Suganya, K. S. Neelukumari, N. Vijayarangan
Abstract:
Double Base Number System (DBNS) is an imminent system of representing a number using two bases namely 2 and 3, which has its application in Elliptic Curve Cryptography (ECC) and Digital Signature Algorithm (DSA).The previous binary method representation included only base 2. DBNS uses an approximation algorithm namely, Greedy Algorithm. By using this algorithm, the number of digits required to represent a larger number is less when compared to the standard binary method that uses base 2 algorithms. Hence, the computational speed is increased and time being reduced. The standard binary method uses binary digits 0 and 1 to represent a number whereas the DBNS method uses binary digit 1 alone to represent any number (canonical form). The greedy algorithm uses two ways to represent the number, one is by using only the positive summands and the other is by using both positive and negative summands. In this paper, arithmetic operations are used for elliptic curve cryptography. Elliptic curve discrete logarithm problem is the foundation for most of the day to day elliptic curve cryptography. This appears to be a momentous hard slog compared to digital logarithm problem. In elliptic curve digital signature algorithm, the key generation requires 160 bit of data by usage of standard binary representation. Whereas, the number of bits required generating the key can be reduced with the help of double base number representation. In this paper, a new technique is proposed to generate key during encryption and extraction of key in decryption.Keywords: cryptography, double base number system, elliptic curve cryptography, elliptic curve digital signature algorithm
Procedia PDF Downloads 3941136 The Application of AI in Developing Assistive Technologies for Non-Verbal Individuals with Autism
Authors: Ferah Tesfaye Admasu
Abstract:
Autism Spectrum Disorder (ASD) often presents significant communication challenges, particularly for non-verbal individuals who struggle to express their needs and emotions effectively. Assistive technologies (AT) have emerged as vital tools in enhancing communication abilities for this population. Recent advancements in artificial intelligence (AI) hold the potential to revolutionize the design and functionality of these technologies. This study explores the application of AI in developing intelligent, adaptive, and user-centered assistive technologies for non-verbal individuals with autism. Through a review of current AI-driven tools, including speech-generating devices, predictive text systems, and emotion-recognition software, this research investigates how AI can bridge communication gaps, improve engagement, and support independence. Machine learning algorithms, natural language processing (NLP), and facial recognition technologies are examined as core components in creating more personalized and responsive communication aids. The study also discusses the challenges and ethical considerations involved in deploying AI-based AT, such as data privacy and the risk of over-reliance on technology. Findings suggest that integrating AI into assistive technologies can significantly enhance the quality of life for non-verbal individuals with autism, providing them with greater opportunities for social interaction and participation in daily activities. However, continued research and development are needed to ensure these technologies are accessible, affordable, and culturally sensitive.Keywords: artificial intelligence, autism spectrum disorder, non-verbal communication, assistive technology, machine learning
Procedia PDF Downloads 191135 Brain Tumor Segmentation Based on Minimum Spanning Tree
Authors: Simeon Mayala, Ida Herdlevær, Jonas Bull Haugsøen, Shamundeeswari Anandan, Sonia Gavasso, Morten Brun
Abstract:
In this paper, we propose a minimum spanning tree-based method for segmenting brain tumors. The proposed method performs interactive segmentation based on the minimum spanning tree without tuning parameters. The steps involve preprocessing, making a graph, constructing a minimum spanning tree, and a newly implemented way of interactively segmenting the region of interest. In the preprocessing step, a Gaussian filter is applied to 2D images to remove the noise. Then, the pixel neighbor graph is weighted by intensity differences and the corresponding minimum spanning tree is constructed. The image is loaded in an interactive window for segmenting the tumor. The region of interest and the background are selected by clicking to split the minimum spanning tree into two trees. One of these trees represents the region of interest and the other represents the background. Finally, the segmentation given by the two trees is visualized. The proposed method was tested by segmenting two different 2D brain T1-weighted magnetic resonance image data sets. The comparison between our results and the standard gold segmentation confirmed the validity of the minimum spanning tree approach. The proposed method is simple to implement and the results indicate that it is accurate and efficient.Keywords: brain tumor, brain tumor segmentation, minimum spanning tree, segmentation, image processing
Procedia PDF Downloads 1191134 Two-Phase Flow Study of Airborne Transmission Control in Dental Practices
Authors: Mojtaba Zabihi, Stephen Munro, Jonathan Little, Ri Li, Joshua Brinkerhoff, Sina Kheirkhah
Abstract:
Occupational Safety and Health Administration (OSHA) identified dental workers at the highest risk of contracting COVID-19. This is because aerosol-generating procedures (AGP) during dental practices generate aerosols ( < 5µm) and droplets. These particles travel at varying speeds, in varying directions, and for varying durations. If these particles bear infectious viruses, their spreading causes airborne transmission of the virus in the dental room, exposing dentists, hygienists, dental assistants, and even other dental clinic clients to the infection risk. Computational fluid dynamics (CFD) simulation of two-phase flows based on a discrete phase model (DPM) is carried out to study the spreading of aerosol and droplets in a dental room. The simulation includes momentum, heat, and mass transfers between the particles and the airflow. Two simulations are conducted and compared. One simulation focuses on the effects of room ventilation in winter and summer on the particles' travel. The other simulation focuses on the control of aerosol and droplets' spreading. A suction collector is added near the source of aerosol and droplets, creating a flow sink in order to remove the particles. The effects of the suction flow on the aerosol and droplet travel are studied. The suction flow can remove aerosols and also reduce the spreading of droplets.Keywords: aerosols, computational fluid dynamics, COVID-19, dental, discrete phase model, droplets, two-phase flow
Procedia PDF Downloads 2631133 Land Cover Remote Sensing Classification Advanced Neural Networks Supervised Learning
Authors: Eiman Kattan
Abstract:
This study aims to evaluate the impact of classifying labelled remote sensing images conventional neural network (CNN) architecture, i.e., AlexNet on different land cover scenarios based on two remotely sensed datasets from different point of views such as the computational time and performance. Thus, a set of experiments were conducted to specify the effectiveness of the selected convolutional neural network using two implementing approaches, named fully trained and fine-tuned. For validation purposes, two remote sensing datasets, AID, and RSSCN7 which are publicly available and have different land covers features were used in the experiments. These datasets have a wide diversity of input data, number of classes, amount of labelled data, and texture patterns. A specifically designed interactive deep learning GPU training platform for image classification (Nvidia Digit) was employed in the experiments. It has shown efficiency in training, validation, and testing. As a result, the fully trained approach has achieved a trivial result for both of the two data sets, AID and RSSCN7 by 73.346% and 71.857% within 24 min, 1 sec and 8 min, 3 sec respectively. However, dramatic improvement of the classification performance using the fine-tuning approach has been recorded by 92.5% and 91% respectively within 24min, 44 secs and 8 min 41 sec respectively. The represented conclusion opens the opportunities for a better classification performance in various applications such as agriculture and crops remote sensing.Keywords: conventional neural network, remote sensing, land cover, land use
Procedia PDF Downloads 3691132 A Fuzzy Inference System for Predicting Air Traffic Demand Based on Socioeconomic Drivers
Authors: Nur Mohammad Ali, Md. Shafiqul Alam, Jayanta Bhusan Deb, Nowrin Sharmin
Abstract:
The past ten years have seen significant expansion in the aviation sector, which during the previous five years has steadily pushed emerging countries closer to economic independence. It is crucial to accurately forecast the potential demand for air travel to make long-term financial plans. To forecast market demand for low-cost passenger carriers, this study suggests working with low-cost airlines, airports, consultancies, and governmental institutions' strategic planning divisions. The study aims to develop an artificial intelligence-based methods, notably fuzzy inference systems (FIS), to determine the most accurate forecasting technique for domestic low-cost carrier demand in Bangladesh. To give end users real-world applications, the study includes nine variables, two sub-FIS, and one final Mamdani Fuzzy Inference System utilizing a graphical user interface (GUI) made with the app designer tool. The evaluation criteria used in this inquiry included mean square error (MSE), accuracy, precision, sensitivity, and specificity. The effectiveness of the developed air passenger demand prediction FIS is assessed using 240 data sets, and the accuracy, precision, sensitivity, specificity, and MSE values are 90.83%, 91.09%, 90.77%, and 2.09%, respectively.Keywords: aviation industry, fuzzy inference system, membership function, graphical user interference
Procedia PDF Downloads 701131 The Impact of Motivation, Trust, and National Cultural Differences on Knowledge Sharing within the Context of Electronic Mail
Authors: Said Abdullah Al Saifi
Abstract:
The goal of this research is to examine the impact of trust, motivation, and national culture on knowledge sharing within the context of electronic mail. This study is quantitative and survey based. In order to conduct the research, 200 students from a leading university in New Zealand were chosen randomly to participate in a questionnaire survey. Motivation and trust were found to be significantly and positively related to knowledge sharing. The research findings illustrated that face saving, face gaining, and individualism positively moderates the relationship between motivation and knowledge sharing. In addition, collectivism culture negatively moderates the relationship between motivation and knowledge sharing. Moreover, the research findings reveal that face saving, individualism, and collectivism culture positively moderate the relationship between trust and knowledge sharing. In addition, face gaining culture negatively moderates the relationship between trust and knowledge sharing. This study sets out several implications for researchers and practitioners. The study produces an integrative model that shows how attributes of national culture impact knowledge sharing through the use of emails. A better understanding of the relationship between knowledge sharing and trust, motivation, and national culture differences will increase individuals’ ability to make wise choices when sharing knowledge with those from different cultures.Keywords: knowledge sharing, motivation, national culture, trust
Procedia PDF Downloads 3471130 Comparison of Whole-Body Vibration and Plyometric Exercises on Explosive Power in Non-Athlete Girl Students
Authors: Fereshteh Zarei, Mahdi Kohandel
Abstract:
The aim of this study was investigate and compare plyometric and vibration exercises on muscle explosive power in non-athlete female students. For this purpose, 45 female students from non-athletes selected target then divided in to the three groups, two experimental and one control groups. From all groups were getting pre-tested. Experimental A did whole-body vibration exercises involved standing on one of machine vibration with frequency 30 Hz, amplitude 10 mm and in 5 different postures. Training for each position was 40 seconds with 60 seconds rest between it, and each season 5 seconds was added to duration of each body condition, until time up to 2 minutes for each postures. Exercises were done three times a week for 2 month. Experimental group B did plyometric exercises that include jumping, such as horizontal, vertical, and skipping .They included 10 times repeat for 5 set in each season. Intensity with increasing repetitions and sets were added. At this time, asked from control group that keep a daily activity and avoided strength training, explosive power and. after do exercises by groups we measured factors again. One-way analysis of variance and paired t statistical methods were used to analyze the data. There was significant difference in the amount of explosive power between the control and vibration groups (p=0/048) there was significant difference between the control and plyometric groups (019/0 = p). But between vibration and plyometric groups didn't observe significant difference in the amount of explosive power.Keywords: vibration, plyometric, exercises, explosive power, non-athlete
Procedia PDF Downloads 4511129 Convolutional Neural Networks-Optimized Text Recognition with Binary Embeddings for Arabic Expiry Date Recognition
Authors: Mohamed Lotfy, Ghada Soliman
Abstract:
Recognizing Arabic dot-matrix digits is a challenging problem due to the unique characteristics of dot-matrix fonts, such as irregular dot spacing and varying dot sizes. This paper presents an approach for recognizing Arabic digits printed in dot matrix format. The proposed model is based on Convolutional Neural Networks (CNN) that take the dot matrix as input and generate embeddings that are rounded to generate binary representations of the digits. The binary embeddings are then used to perform Optical Character Recognition (OCR) on the digit images. To overcome the challenge of the limited availability of dotted Arabic expiration date images, we developed a True Type Font (TTF) for generating synthetic images of Arabic dot-matrix characters. The model was trained on a synthetic dataset of 3287 images and 658 synthetic images for testing, representing realistic expiration dates from 2019 to 2027 in the format of yyyy/mm/dd. Our model achieved an accuracy of 98.94% on the expiry date recognition with Arabic dot matrix format using fewer parameters and less computational resources than traditional CNN-based models. By investigating and presenting our findings comprehensively, we aim to contribute substantially to the field of OCR and pave the way for advancements in Arabic dot-matrix character recognition. Our proposed approach is not limited to Arabic dot matrix digit recognition but can also be extended to text recognition tasks, such as text classification and sentiment analysis.Keywords: computer vision, pattern recognition, optical character recognition, deep learning
Procedia PDF Downloads 921128 Intra-miR-ExploreR, a Novel Bioinformatics Platform for Integrated Discovery of MiRNA:mRNA Gene Regulatory Networks
Authors: Surajit Bhattacharya, Daniel Veltri, Atit A. Patel, Daniel N. Cox
Abstract:
miRNAs have emerged as key post-transcriptional regulators of gene expression, however identification of biologically-relevant target genes for this epigenetic regulatory mechanism remains a significant challenge. To address this knowledge gap, we have developed a novel tool in R, Intra-miR-ExploreR, that facilitates integrated discovery of miRNA targets by incorporating target databases and novel target prediction algorithms, using statistical methods including Pearson and Distance Correlation on microarray data, to arrive at high confidence intragenic miRNA target predictions. We have explored the efficacy of this tool using Drosophila melanogaster as a model organism for bioinformatics analyses and functional validation. A number of putative targets were obtained which were also validated using qRT-PCR analysis. Additional features of the tool include downloadable text files containing GO analysis from DAVID and Pubmed links of literature related to gene sets. Moreover, we are constructing interaction maps of intragenic miRNAs, using both micro array and RNA-seq data, focusing on neural tissues to uncover regulatory codes via which these molecules regulate gene expression to direct cellular development.Keywords: miRNA, miRNA:mRNA target prediction, statistical methods, miRNA:mRNA interaction network
Procedia PDF Downloads 5061127 Developing Problem Solving Skills through a Project-Based Course as Part of a Lifelong Learning for Engineering Students
Authors: Robin Lok Wang Ma
Abstract:
The purpose of this paper is to investigate how engineering students’ motivation and interests are maintained in their journeys. In recent years, different pedagogies of teaching, including entrepreneurship, experiential and lifelong learning, as well as dream builder, etc., have been widely used for education purposes. University advocates hands-on practice, learning by experiencing and experimenting throughout different courses. Students are not limited to gaining knowledge via traditional lectures, laboratory demonstrations, tutorials, and so on. The capability to identify both complex problems and their corresponding solutions in daily life are one of the criteria/skill sets required for graduates to obtain their careers at professional organizations and companies. A project-based course, namely Mechatronic Design and Prototyping, was developed for students to design and build a physical prototype for solving existing problems in their daily lives, thereby encouraging them as an entrepreneur to explore further possibilities to commercialize their designed prototypes and launch them to the market. Feedbacks from students show that they are keen to propose their own ideas freely with guidance from the instructor instead of using either suggested or assigned topics. Proposed ideas of the prototypes reflect that if students’ interests are maintained, they acquire the knowledge and skills they need, including essential communication, logical thinking, and, more importantly, problem solving for their lifelong learning journey.Keywords: problem solving, lifelong learning, entrepreneurship, engineering
Procedia PDF Downloads 921126 Predictive Modeling of Student Behavior in Virtual Reality: A Machine Learning Approach
Authors: Gayathri Sadanala, Shibam Pokhrel, Owen Murphy
Abstract:
In the ever-evolving landscape of education, Virtual Reality (VR) environments offer a promising avenue for enhancing student engagement and learning experiences. However, understanding and predicting student behavior within these immersive settings remain challenging tasks. This paper presents a comprehensive study on the predictive modeling of student behavior in VR using machine learning techniques. We introduce a rich data set capturing student interactions, movements, and progress within a VR orientation program. The dataset is divided into training and testing sets, allowing us to develop and evaluate predictive models for various aspects of student behavior, including engagement levels, task completion, and performance. Our machine learning approach leverages a combination of feature engineering and model selection to reveal hidden patterns in the data. We employ regression and classification models to predict student outcomes, and the results showcase promising accuracy in forecasting behavior within VR environments. Furthermore, we demonstrate the practical implications of our predictive models for personalized VR-based learning experiences and early intervention strategies. By uncovering the intricate relationship between student behavior and VR interactions, we provide valuable insights for educators, designers, and developers seeking to optimize virtual learning environments.Keywords: interaction, machine learning, predictive modeling, virtual reality
Procedia PDF Downloads 1401125 Photoluminescence and Spectroscopic Studies of Tm3+ Ions Doped Lead Tungsten Tellurite Glasses for Visible Red and Near-Ir Laser Applications
Authors: M. Venkateswarlu, Srinivasa Rao Allam, S. K. Mahamuda, K. Swapna, G. Vijaya Prakash
Abstract:
Lead Tungsten Tellurite (LTT) glasses doped with different concentrations of Tm3+ ions were prepared by using melt quenching technique and characterized through optical absorption, photoluminescence and decay spectral studies to know the feasibility of using these glasses as luminescent devices in visible Red and NIR regions. By using optical absorption spectral data, the energy band gaps for all the glasses were evaluated and were found to be in the range of 2.34-2.59 eV; which is very useful for the construction of optical devices. Judd-Ofelt (J-O)theory has been applied to the optical absorption spectral profiles to calculate the J-O intensity parameters Ωλ (λ=2, 4 and 6) and consecutively used to evaluate various radiative properties such as radiative transition probability (AR), radiative lifetimes (τ_R) and branching ratios (β_R) for the prominent luminescent levels. The luminescence spectra for all the LTT glass samples have shown two intense peaks in bright red and Near Infrared regions at 650 nm (1G4→3F4) and 800 nm (3H4→3H6) respectively for which effective bandwidths (〖Δλ〗_P), experimental branching ratios (β_exp) and stimulated emission cross-sections (σ_se) are evaluated. The decay profiles for all the glasses were also recorded to measure the quantum efficiency of the prepared LTT glasses by coupling the radiative and experimental lifetimes. From the measured emission cross-sections, quantum efficiency and CIE chromaticity coordinates, it was found that 0.5 mol% of Tm3+ ions doped LTT glass is most suitable for generating bright visible red and NIR lasers to operate at 650 and 800 nm respectively.Keywords: glasses, JO parameters, optical materials, thullium
Procedia PDF Downloads 2511124 Recent Progress in Wave Rotor Combustion
Authors: Mohamed Razi Nalim, Shahrzad Ghadiri
Abstract:
With current concerns regarding global warming, demand for a society with greater environmental awareness significantly increases. With gradual development in hybrid and electric vehicles and the availability of renewable energy resources, increasing efficiency in fossil fuel and combustion engines seems a faster solution toward sustainability and reducing greenhouse gas emissions. This paper aims to provide a comprehensive review of recent progress in wave rotor combustor, one of the combustion concepts with considerable potential to improve power output and emission standards. A wave rotor is an oscillatory flow device that uses the unsteady gas dynamic concept to transfer energy by generating pressure waves. From a thermodynamic point of view, unlike conventional positive-displacement piston engines which follow the Brayton cycle, wave rotors offer higher cycle efficiency due to pressure gain during the combustion process based on the Humphrey cycle. First, the paper covers all recent and ongoing computational and experimental studies around the world with a quick look at the milestones in the history of wave rotor development. Second, the main similarity and differences in the ignition system of the wave rotor with piston engines are considered. Also, the comparison is made with another pressure gain device, rotating detonation engines. Next, the main challenges and research needs for wave rotor combustor commercialization are discussed.Keywords: wave rotor combustor, unsteady gas dynamic, pre-chamber jet ignition, pressure gain combustion, constant-volume combustion
Procedia PDF Downloads 821123 Evolution and Obstacles Encountered in the Realm of Sports Tourism in Pakistan
Authors: Muhammad Saleem
Abstract:
Tourism stands as one of the swiftly expanding sectors globally, contributing to 10% of the overall worldwide GDP. It holds a vital role in generating income, fostering employment opportunities, alleviating poverty, facilitating foreign exchange earnings, and advancing intercultural understanding. This industry encompasses a spectrum of activities, encompassing transportation, communication, hospitality, catering, entertainment, and advertising. The objective of this study is to assess the evolution and obstacles encountered by sports tourism in Pakistan. In pursuit of this objective, relevant literature has been scrutinized, while data has been acquired from 60 respondents, employing a simple random sampling approach for analysis. The survey comprised close-ended inquiries directed towards all participants. Analytical tools such as mean, mode, median, graphs, and percentages have been employed for data analysis. The findings revealed through robust analysis, indicate that the mean, mode, and median tools consistently yield results surpassing the 70% mark, underscoring that heightened development within sports tourism significantly augments its progress. Effective governance demonstrates a favorable influence on sports tourism, with increased government-provided safety and security potentially amplifying its expansion, thus attracting a higher number of tourists and consequently propelling the growth of the sports tourism sector. This study holds substantial significance for both academic scholars and industry practitioners within Pakistan's tourism landscape, as previous explorations in this realm have been relatively limited.Keywords: obstacles-spots, evolution-tourism, sports-pakistan, sports-obstacles-pakistan
Procedia PDF Downloads 541122 Rapid Detection and Differentiation of Camel Pox, Contagious Ecthyma and Papilloma Viruses in Clinical Samples of Camels Using a Multiplex PCR
Authors: A. I. Khalafalla, K. A. Al-Busada, I. M. El-Sabagh
Abstract:
Pox and pox-like diseases of camels are a group of exanthematous skin conditions that have become increasingly important economically. They may be caused by three distinct viruses: camelpox virus (CMPV), camel contagious ecthyma virus (CCEV) and camel papillomavirus (CAPV). These diseases are difficult to differentiate based on clinical presentation in disease outbreaks. Molecular methods such as PCR targeting species-specific genes have been developed and used to identify CMPV and CCEV, but not simultaneously in a single tube. Recently, multiplex PCR has gained reputation as a convenient diagnostic method with cost- and time–saving benefits. In the present communication, we describe the development, optimization and validation a multiplex PCR assays able to detect simultaneously the genome of the three viruses in one single test allowing for rapid and efficient molecular diagnosis. The assay was developed based on the evaluation and combination of published and new primer sets, and was applied to the detection of 110 tissue samples. The method showed high sensitivity, and the specificity was confirmed by PCR-product sequencing. In conclusion, this rapid, sensitive and specific assay is considered a useful method for identifying three important viruses in specimens from camels and as part of a molecular diagnostic regime.Keywords: multiplex PCR, diagnosis, pox and pox-like diseases, camels
Procedia PDF Downloads 4631121 A Diagnostic Comparative Analysis of on Simultaneous Localization and Mapping (SLAM) Models for Indoor and Outdoor Route Planning and Obstacle Avoidance
Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari
Abstract:
In robotics literature, the simultaneous localization and mapping (SLAM) is commonly associated with a priori-posteriori problem. The autonomous vehicle needs a neutral map to spontaneously track its local position, i.e., “localization” while at the same time a precise path estimation of the environment state is required for effective route planning and obstacle avoidance. On the other hand, the environmental noise factors can significantly intensify the inherent uncertainties in using odometry information and measurements obtained from the robot’s exteroceptive sensor which in return directly affect the overall performance of the corresponding SLAM. Therefore, the current work is primarily dedicated to provide a diagnostic analysis of six SLAM algorithms including FastSLAM, L-SLAM, GraphSLAM, Grid SLAM and DP-SLAM. A SLAM simulated environment consisting of two sets of landmark locations and robot waypoints was set based on modified EKF and UKF in MATLAB using two separate maps for indoor and outdoor route planning subject to natural and artificial obstacles. The simulation results are expected to provide an unbiased platform to compare the estimation performances of the five SLAM models as well as on the reliability of each SLAM model for indoor and outdoor applications.Keywords: route planning, obstacle, estimation performance, FastSLAM, L-SLAM, GraphSLAM, Grid SLAM, DP-SLAM
Procedia PDF Downloads 4431120 Recommendations Using Online Water Quality Sensors for Chlorinated Drinking Water Monitoring at Drinking Water Distribution Systems Exposed to Glyphosate
Authors: Angela Maria Fasnacht
Abstract:
Detection of anomalies due to contaminants’ presence, also known as early detection systems in water treatment plants, has become a critical point that deserves an in-depth study for their improvement and adaptation to current requirements. The design of these systems requires a detailed analysis and processing of the data in real-time, so it is necessary to apply various statistical methods appropriate to the data generated, such as Spearman’s Correlation, Factor Analysis, Cross-Correlation, and k-fold Cross-validation. Statistical analysis and methods allow the evaluation of large data sets to model the behavior of variables; in this sense, statistical treatment or analysis could be considered a vital step to be able to develop advanced models focused on machine learning that allows optimized data management in real-time, applied to early detection systems in water treatment processes. These techniques facilitate the development of new technologies used in advanced sensors. In this work, these methods were applied to identify the possible correlations between the measured parameters and the presence of the glyphosate contaminant in the single-pass system. The interaction between the initial concentration of glyphosate and the location of the sensors on the reading of the reported parameters was studied.Keywords: glyphosate, emergent contaminants, machine learning, probes, sensors, predictive
Procedia PDF Downloads 1201119 Development of Deep Neural Network-Based Strain Values Prediction Models for Full-Scale Reinforced Concrete Frames Using Highly Flexible Sensing Sheets
Authors: Hui Zhang, Sherif Beskhyroun
Abstract:
Structural Health monitoring systems (SHM) are commonly used to identify and assess structural damage. In terms of damage detection, SHM needs to periodically collect data from sensors placed in the structure as damage-sensitive features. This includes abnormal changes caused by the strain field and abnormal symptoms of the structure, such as damage and deterioration. Currently, deploying sensors on a large scale in a building structure is a challenge. In this study, a highly stretchable strain sensors are used in this study to collect data sets of strain generated on the surface of full-size reinforced concrete (RC) frames under extreme cyclic load application. This sensing sheet can be switched freely between the test bending strain and the axial strain to achieve two different configurations. On this basis, the deep neural network prediction model of the frame beam and frame column is established. The training results show that the method can accurately predict the strain value and has good generalization ability. The two deep neural network prediction models will also be deployed in the SHM system in the future as part of the intelligent strain sensor system.Keywords: strain sensing sheets, deep neural networks, strain measurement, SHM system, RC frames
Procedia PDF Downloads 981118 An Examination of the Link between Social Enterprise Orientation of an Organization and the Pursuit of Corporate Sustainability
Authors: Susan P. Teru, Jerome Nyameh
Abstract:
Many contemporary organizations are placing a greater emphasis on business enterprise systems as a means of generating higher levels of economic development and sustainability. Many business research and literature has also concur that enterprise drive economic development, giving little or no credit to social enterprise, whose profit is reinvest to the community development compare to the business enterprise that share their profit to shareholders. Economic development and corporate sustainability includes economic policies that affect the beneficiaries of the economic entity and how it support corporate sustainability as a multifaceted concept that requires organizational change and adaptation on different levels. In this paper, we provide a closer examination of this suggested link between the social enterprise orientation of an organization and the pursuit of corporate sustainability. We suggest that producing social enterprise increments may be best achieved by orienting social enterprise entrepreneurs system to promote economic development and corporate sustainability, which is the new approach to organizational excellent. To this end, we describe a new approach to the social enterprise process that includes social entrepreneur and the key drivers of economic development and corporate sustainability at each stage. We present a model of social enterprise that incorporates the main ideas of the paper and suggests a new perspective for thinking about how to foster and manage social enterprise to achieve high levels of economic development and corporate sustainability as a new ways of achieving organizational excellence. Specifically, we seek to assess (1) what constitutes a corporate sustainability-oriented organization culture, (2) whether it is possible for organizations to display a unified corporate sustainability as a result of social enterprise (3) whether organizations can become more sustainable through social enterprise change.Keywords: social enterprise orientation, organization, the pursuit of corporate sustainability, business and management
Procedia PDF Downloads 4211117 Optimized Techniques for Reducing the Reactive Power Generation in Offshore Wind Farms in India
Authors: Pardhasaradhi Gudla, Imanual A.
Abstract:
The generated electrical power in offshore needs to be transmitted to grid which is located in onshore by using subsea cables. Long subsea cables produce reactive power, which should be compensated in order to limit transmission losses, to optimize the transmission capacity, and to keep the grid voltage within the safe operational limits. Installation cost of wind farm includes the structure design cost and electrical system cost. India has targeted to achieve 175GW of renewable energy capacity by 2022 including offshore wind power generation. Due to sea depth is more in India, the installation cost will be further high when compared to European countries where offshore wind energy is already generating successfully. So innovations are required to reduce the offshore wind power project cost. This paper presents the optimized techniques to reduce the installation cost of offshore wind firm with respect to electrical transmission systems. This technical paper provides the techniques for increasing the current carrying capacity of subsea cable by decreasing the reactive power generation (capacitance effect) of the subsea cable. There are many methods for reactive power compensation in wind power plants so far in execution. The main reason for the need of reactive power compensation is capacitance effect of subsea cable. So if we diminish the cable capacitance of cable then the requirement of the reactive power compensation will be reduced or optimized by avoiding the intermediate substation at midpoint of the transmission network.Keywords: offshore wind power, optimized techniques, power system, sub sea cable
Procedia PDF Downloads 192