Search results for: egg quality parameters
16167 Numerical and Sensitivity Analysis of Modeling the Newcastle Disease Dynamics
Authors: Nurudeen Oluwasola Lasisi
Abstract:
Newcastle disease is a highly contagious disease of birds caused by a para-myxo virus. In this paper, we presented Novel quarantine-adjusted incident and linear incident of Newcastle disease model equations. We considered the dynamics of transmission and control of Newcastle disease. The existence and uniqueness of the solutions were obtained. The existence of disease-free points was shown, and the model threshold parameter was examined using the next-generation operator method. The sensitivity analysis was carried out in order to identify the most sensitive parameters of the disease transmission. This revealed that as parameters β,ω, and ᴧ increase while keeping other parameters constant, the effective reproduction number R_ev increases. This implies that the parameters increase the endemicity of the infection of individuals. More so, when the parameters μ,ε,γ,δ_1, and α increase, while keeping other parameters constant, the effective reproduction number R_ev decreases. This implies the parameters decrease the endemicity of the infection as they have negative indices. Analytical results were numerically verified by the Differential Transformation Method (DTM) and quantitative views of the model equations were showcased. We established that as contact rate (β) increases, the effective reproduction number R_ev increases, as the effectiveness of drug usage increases, the R_ev decreases and as the quarantined individual decreases, the R_ev decreases. The results of the simulations showed that the infected individual increases when the susceptible person approaches zero, also the vaccination individual increases when the infected individual decreases and simultaneously increases the recovery individual.Keywords: disease-free equilibrium, effective reproduction number, endemicity, Newcastle disease model, numerical, Sensitivity analysis
Procedia PDF Downloads 4516166 Food Losses Reducing by Extending the Minimum Durability Date of Thermally Processed Products
Authors: Dorota Zielińska, Monika Trząskowska, Anna Łepecka, Katarzyna Neffe-Skocińska, Beata Bilska, Marzena Tomaszewska, Danuta Kołożyn-Krajewska
Abstract:
Minimum durability date (MDD) labeled food is known to have a long shelf life. A properly stored or transported food retains its physical, chemical, microbiological, and sensory properties up to MDD. The aim of the study was to assess the sensory quality and microbiological safety of selected thermally processed products,i.e., mayonnaise, jam, and canned tuna within and after MDD. The scope of the study was to determine the markers of microbiological quality, i.e., the total viable count (TVC), the Enterobacteriaceae count and the total yeast and mold (TYMC) count on the last day of MDD and after 1 and 3 months of storage, after the MDD expired. In addition, the presence of Salmonella and Listeria monocytogenes was examined on the last day of MDD. The sensory quality of products was assessed by quantitative descriptive analysis (QDA), the intensity of differentiators (quality features), and overall quality were defined and determined. It was found that during three months storage of tested food products, after the MDD expired, the microbiological quality slightly decreased, however, regardless of the tested sample, TVC was at the level of <3 log cfu/g, similarly, the Enterobacretiaceae, what indicates the good microbiological quality of the tested foods. The TYMC increased during storage but did not exceed 2 logs cfu/g of product. Salmonella and Listeria monocytogenes were not found in any of the tested food samples. The sensory quality of mayonnaise negatively changed during storage. After three months from the expiry of MDD, a decrease in the "fat" and "egg" taste and aroma intensity, as well as the "density" were found. The "sour" taste intensity of blueberry jam after three months of storage was slightly higher, compared to the jam tested on the last day of MDD, without affecting the overall quality. In the case of tuna samples, an increase in the "fishy" taste and aroma intensity was observed during storage, and the overall quality did not change. Tested thermally processed products (mayonnaise, jam, and canned tuna) were characterized by good microbiological and sensory quality on the last day of MDD, as well as after three months of storage under conditions recommended by the producer. These findings indicate the possibility of reducing food losses by extending or completely abolishing the MDD of selected thermal processed food products.Keywords: food wastes, food quality and safety, mayonnaise, jam, tuna
Procedia PDF Downloads 13116165 Modification of a Human Powered Lawn Mower
Authors: Akinwale S. O., Koya O. A.
Abstract:
The need to provide ecologically-friendly and effective lawn mowing solution is crucial for the well-being of humans. This study involved the modification of a human-powered lawn mower designed to cut tall grasses in residential areas. This study designed and fabricated a reel-type mower blade system and a pedal-powered test rig for the blade system. It also evaluated the performance of the machine. The machine was tested on some overgrown grass plots at College of Education Staff School Ilesa. Parameters such as theoretical field capacity, field efficiency and effective field capacity were determined from the data gathered. The quality of cut achieved by the unit was also documented. Test results showed that the fabricated cutting system produced a theoretical field capacity of 0.11 ha/h and an effective field capacity of 0.08ha/h. Moreover, the unit’s cutting system showed a substantial improvement over existing reel mower designs in its ability to cut on both the forward and reverse phases of its motion. This study established that the blade system described herein has the capacity to cut tall grasses. Hence, this device can therefore eliminate the need for powered mowers entirely on small residential lawns.Keywords: effective field capacity, field efficiency, theoretical field capacity, quality of cut
Procedia PDF Downloads 14816164 Stochastic Modeling for Parameters of Modified Car-Following Model in Area-Based Traffic Flow
Authors: N. C. Sarkar, A. Bhaskar, Z. Zheng
Abstract:
The driving behavior in area-based (i.e., non-lane based) traffic is induced by the presence of other individuals in the choice space from the driver’s visual perception area. The driving behavior of a subject vehicle is constrained by the potential leaders and leaders are frequently changed over time. This paper is to determine a stochastic model for a parameter of modified intelligent driver model (MIDM) in area-based traffic (as in developing countries). The parametric and non-parametric distributions are presented to fit the parameters of MIDM. The goodness of fit for each parameter is measured in two different ways such as graphically and statistically. The quantile-quantile (Q-Q) plot is used for a graphical representation of a theoretical distribution to model a parameter and the Kolmogorov-Smirnov (K-S) test is used for a statistical measure of fitness for a parameter with a theoretical distribution. The distributions are performed on a set of estimated parameters of MIDM. The parameters are estimated on the real vehicle trajectory data from India. The fitness of each parameter with a stochastic model is well represented. The results support the applicability of the proposed modeling for parameters of MIDM in area-based traffic flow simulation.Keywords: area-based traffic, car-following model, micro-simulation, stochastic modeling
Procedia PDF Downloads 14716163 The Antecedents of Brand Loyalty on Female Cosmetics Buying Behavior
Authors: Velly Anatasia
Abstract:
The worldwide annual expenditure for cosmetics is estimated at U.S. $18 billion and many players in the field are competing aggressively to capture more and more markets. Players in the cosmetics industry strive to be the foremost by establish customer loyalty. Furthermore, customer loyalty is portrayed by brand loyalty. Therefore, brand loyalty is the key determine of winning the competition in tight market. This study examines the influence of brand loyalty on cosmetics buying behavior of female consumers in Jakarta as capital of Indonesia. The seven factors of brand loyalty are brand name, Product quality, price, design, promotion, servicesquality and store environment. The paper adopted descriptive analysis, factor loading and multiple regression approach to test the hypotheses. The data has been collected by using questionnaires which were distributed and self-administered to 125female respondents accustomed using cosmetics. The findings of this study indicated that promotion has shown strong correlation with brand loyalty. The research results showed that there is positive and significant relationship between factors of brand loyalty (brand name, product quality, price, design, promotion, services quality and store environment) with cosmetics brand loyalty.Keywords: brand loyalty, brand name, product quality, service quality, promotion
Procedia PDF Downloads 40416162 The Influence of Audio on Perceived Quality of Segmentation
Authors: Silvio Ricardo Rodrigues Sanches, Bianca Cogo Barbosa, Beatriz Regina Brum, Cléber Gimenez Corrêa
Abstract:
To evaluate the quality of a segmentation algorithm, the authors use subjective or objective metrics. Although subjective metrics are more accurate than objective ones, objective metrics do not require user feedback to test an algorithm. Objective metrics require subjective experiments only during their development. Subjective experiments typically display to users some videos (generated from frames with segmentation errors) that simulate the environment of an application domain. This user feedback is crucial information for metric definition. In the subjective experiments applied to develop some state-of-the-art metrics used to test segmentation algorithms, the videos displayed during the experiments did not contain audio. Audio is an essential component in applications such as videoconference and augmented reality. If the audio influences the user’s perception, using only videos without audio in subjective experiments can compromise the efficiency of an objective metric generated using data from these experiments. This work aims to identify if the audio influences the user’s perception of segmentation quality in background substitution applications with audio. The proposed approach used a subjective method based on formal video quality assessment methods. The results showed that audio influences the quality of segmentation perceived by a user.Keywords: background substitution, influence of audio, segmentation evaluation, segmentation quality
Procedia PDF Downloads 11816161 Response Solutions of 2-Dimensional Elliptic Degenerate Quasi-Periodic Systems With Small Parameters
Authors: Song Ni, Junxiang Xu
Abstract:
This paper concerns quasi-periodic perturbations with parameters of 2-dimensional degenerate systems. If the equilibrium point of the unperturbed system is elliptic-type degenerate. Assume that the perturbation is real analytic quasi-periodic with diophantine frequency. Without imposing any assumption on the perturbation, we can use a path of equilibrium points to tackle with the Melnikov non-resonance condition, then by the Leray-Schauder Continuation Theorem and the Kolmogorov-Arnold-Moser technique, it is proved that the equation has a small response solution for many sufficiently small parameters.Keywords: quasi-periodic systems, KAM-iteration, degenerate equilibrium point, response solution
Procedia PDF Downloads 8616160 Static Analysis Deployment Model for Code Quality on Research and Development Projects of Software Development
Authors: Jeong-Hyun Park, Young-Sik Park, Hyo-Teag Jung
Abstract:
This paper presents static analysis deployment model for code quality on R&D Projects of SW Development. The proposed model includes the scope of R&D projects and index for static analysis of source code, operation model and execution process, environments and infrastructure system for R&D projects of SW development. There is the static analysis result of pilot project as case study based on the proposed deployment model and environment, and strategic considerations for success operation of the proposed static analysis deployment model for R&D Projects of SW Development. The proposed static analysis deployment model in this paper will be adapted and improved continuously for quality upgrade of R&D projects, and customer satisfaction of developed source codes and products.Keywords: static analysis, code quality, coding rules, automation tool
Procedia PDF Downloads 52116159 Statistical Process Control in Manufacturing, a Case Study on an Iranian Automobile Company
Authors: M. E. Khiav, D. J. Borah, H. T. S. Santos, V. T. Faria
Abstract:
For automobile companies, it has become very important to ensure sound quality in manufacturing and assembling in order to prevent occurrence of defects and to reduce the amount of parts replacements to be done in the service centers during the warranty period. Statistical Process Control (SPC) is widely used as the tool to analyze the quality of such processes and plays a significant role in the improvement of the processes by identifying the patterns and the location of the defects. In this paper, a case study has been conducted on an Iranian automobile company. This paper performs a quality analysis of a particular component called “Internal Bearing for the Back Wheel” of a particular car model, manufactured by the company, based on the 10 million data received from its service centers located all over the country. By creating control charts including X bar–S charts and EWMA charts, it has been observed after the year 2009, the specific component underwent frequent failures and there has been a sharp dip in the average distance covered by the cars till the specific component requires replacement/maintenance. Correlation analysis was performed to find out the reasons that might have affected the quality of the specific component in all the cars produced by the company after the year 2009. Apart from manufacturing issues, some political and environmental factors have been identified to have a potential impact on the quality of the component. A maiden attempt has been made to analyze the quality issues within an Iranian automobile manufacturer; such issues often get neglected in developing countries. The paper also discusses the possibility of political scenario of Iran and the country’s environmental conditions affecting the quality of the end products, which not only strengthens the extant literature but also provides a new direction for future research.Keywords: capability analysis, car manufacturing, statistical process control, quality control, quality tools
Procedia PDF Downloads 38016158 Development of Total Maximum Daily Load Using Water Quality Modelling as an Approach for Watershed Management in Malaysia
Authors: S. A. Che Osmi, W. M. F. Wan Ishak, H. Kim, M. A. Azman, M. A. Ramli
Abstract:
River is one of important water sources for many activities including industrial and domestic usage such as daily usage, transportation, power supply and recreational activities. However, increasing activities in a river has grown the sources of pollutant enters the water bodies, and degraded the water quality of the river. It becomes a challenge to develop an effective river management to ensure the water sources of the river are well managed and regulated. In Malaysia, several approaches for river management have been implemented such as Integrated River Basin Management (IRBM) program for coordinating the management of resources in a natural environment based on river basin to ensure their sustainability lead by Department of Drainage and Irrigation (DID), Malaysia. Nowadays, Total Maximum Daily Load (TMDL) is one of the best approaches for river management in Malaysia. TMDL implementation is regulated and implemented in the United States. A study on the development of TMDL in Malacca River has been carried out by doing water quality monitoring, the development of water quality model by using Environmental Fluid Dynamic Codes (EFDC), and TMDL implementation plan. The implementation of TMDL will help the stakeholders and regulators to control and improve the water quality of the river. It is one of the good approaches for river management in Malaysia.Keywords: EFDC, river management, TMDL, water quality modelling
Procedia PDF Downloads 32816157 Comparison of the Effect of Nano Calcium Carbonate and CaCO₃ on Egg Production, Egg Traits and Calcium Retention in Laying Japanese Quail
Authors: Farhad Ahmadi, Hammed Kimiaee
Abstract:
Context: This research study focuses on the effect of different levels and sources of calcium on egg production, egg traits, and calcium retention in laying Japanese quail. The study aims to determine the impact of nano calcium carbonate (NCC) and calcium carbonate (CC) on these factors. Research Aim: The main objective of this research is to investigate the effect of different levels and sources of calcium on egg production, egg traits, and calcium retention in laying Japanese quail. Specifically, the study aims to compare the effects of NCC and CC on these parameters. Methodology: The research was conducted using a total of 280 laying quail with an average age of 8 weeks. The quails were randomly distributed in a completely randomized design (CRD) with 7 treatments, 4 replications, and 10 quails in each pen. The study lasted for 90 days. The experimental diets included a control group (T1) with a basal diet consisting of 3.17% CaCO₃, and other groups supplemented with different levels (0.5%, 0.1%, and 0.15%) of either calcium carbonate (CC) or nano calcium carbonate (NCC). The quails had free access to water and feed throughout the study period. Findings: The results of the study showed that NCC at the levels of 0.1% and 0.15% (T6 and T7) improved eggshell thickness, shell thickness, and shell breaking strength compared to the control group. Although not statistically significant, there was an increasing trend in quail egg production and calcium retention in the calcareous shell of the egg in birds that consumed the experimental diets containing different levels of NCC compared to the control and other treatment groups. Theoretical Importance: This research contributes to our understanding of the effect of NCC and CC on egg production, egg traits, and calcium retention in laying Japanese quail. It highlights the potential benefits of using NCC as a calcium source in quail diets, specifically in improving the quantity and quality of eggs and calcium retention. Data Collection and Analysis Procedures: Quail egg production was recorded monthly for each treatment group. At the end of the study, a total of 40 eggs (10 eggs/replicate) from each treatment group were randomly selected for analysis. Parameters such as eggshell thickness, shell thickness, shell breaking strength, and calcium retention were measured. Statistical analysis was performed to compare the results between the different treatment groups. Questions Addressed: This research aimed to answer the following questions: What is the effect of different levels and sources of calcium on egg production, egg traits, and calcium retention in laying Japanese quail? How does nano calcium carbonate compare to calcium carbonate in terms of these parameters? Conclusion: In conclusion, this study suggests that NCC at the levels of 0.1% and 0.15% can improve the quantity and quality of eggs and calcium retention in laying Japanese quail. These findings highlight the potential benefits of using NCC as a calcium source in quail diets. Further research could be conducted to explore the mechanisms behind these improvements and optimize the dosage of NCC for maximum effect.Keywords: egg, calcium, nanoparticles, retention
Procedia PDF Downloads 8516156 Effects of IPPC Permits on Ambient Air Quality
Authors: C. Cafaro, P. Ceci, L. De Giorgi
Abstract:
The aim of this paper is to give an assessment of environmental effects of IPPC permit conditions of installations that are in the specific territory with a high concentration of industrial activities. The IPPC permit is the permit that each operator should hold to operate the installation as stated by the directive 2010/75/UE on industrial emissions (integrated pollution prevention and control), known as IED (Industrial Emissions Directive). The IPPC permit includes all the measures necessary to achieve a high level of protection of the environment as a whole, also defining the monitoring requirements as measurement methodology, frequency, and evaluation procedure. The emissions monitoring of a specific plant may also give indications of the contribution of these emissions on the air quality of a definite area. So, it is clear that the IPPC permits are important tools both to improve the environmental framework and to achieve the air quality standards, assisting in assessing the possible industrial sources contributions to air pollution.Keywords: IPPC, IED, emissions, permits, air quality, large combustion plants
Procedia PDF Downloads 45216155 Influence of Race and Lactation Stage on the Composition of Traditional Cheese Goat Type Kamaria Manufactured by Protease of Original Replacement Goat, Statistical Approach
Authors: Bounmediene Farida, Nouani Abdelouahab, Bellal Mouloud
Abstract:
The present study examined the influence of two production parameters namely genetic factor (race) and physiological factors (stage of lactation) on the composition of the traditional goat cheese made using the enzyme extract of caprine origin and commercial rennet. The results obtained show that the goat cheese of the Alpine race is richer in fat and protein than Saanen and Local breeds. Similar variations were observed depending on the stage of lactation for the third stage. Thus, analysis of the products obtained show that there is no difference in quality between the cheeses obtained with rennet and those obtained with goat coagulase. In addition, principal component analysis (PCA) made from individuals (races and stages of lactation) and variables (physicochemical parameters goat cheese) divides people into two groups: The first group includes cheeses races Alpine, Saanen and local third stages of lactation. This group corresponds to samples of the richest cheese in a useful matter. The second group includes cheeses from the three races in the second stage of lactation. This group corresponds to cheeses that have low contents in a useful matter.Keywords: goat cheese, goat coagulase, rennet, coagulation
Procedia PDF Downloads 32416154 A Full Factorial Analysis of Microhardness Variation in Bead Welds Deposited by the Process Cold Wire Gas Metal Arc Welding (CW-GMAW)
Authors: R. A. Ribeiro, P. D. Angelo Assunção, E. M. Braga
Abstract:
The microhardness in weld beads is a function of the microstructure obtained in the welding process, and this by its time is dependent of the input variables established at the outset of the process. In this study the influence of angle between the plate and the cold wire, the position in which the cold wire is introduced and the rate in which this introduction is made are assessed as input parameters in CW-GMAW process. This paper looks to show that ordinary changes in the frame of CW-GMAW can improve microhardness, which is expected to vary as the input parameters change. To properly correlate the changes in the input parameters to consequent changes in microhardness of the weld bead, a full factorial design was employed. In fact, changes in the operational parameters improved the overall microhardness of the weld bead, which in turns can be an indication of improvement in the resistance to abrasive wear, constituting a cheap way to augment the abrasion wear resistance of welds used for cladding.Keywords: abrasion, CW-GMAW, full factorial design, microhardness
Procedia PDF Downloads 54916153 Science and Monitoring Underpinning River Restoration: A Case Study
Authors: Geoffrey Gilfillan, Peter Barham, Lisa Smallwood, David Harper
Abstract:
The ‘Welland for People and Wildlife’ project aimed to improve the River Welland’s ecology and water quality, and to make it more accessible to the community of Market Harborough. A joint monitoring project by the Welland Rivers Trust & University of Leicester was incorporated into the design. The techniques that have been used to measure its success are hydrological, geomorphological, and water quality monitoring, species and habitat surveys, and community engagement. Early results show improvements to flow and habitat diversity, water quality and biodiversity of the river environment. Barrier removal has increased stickleback mating activity, and decreased parasitically infected fish in sample catches. The habitats provided by the berms now boast over 25 native plant species, and the river is clearer, cleaner and with better-oxygenated water.Keywords: community engagement, ecological monitoring, river restoration, water quality
Procedia PDF Downloads 23216152 Habitat Studies of Etheria elliptica in Some Water Bodies (River Ogbese and Owena Reservoir) in Ondo State, Nigeria
Authors: O. O. Olawusi-Peters, M. O. Adediran, O. A. Ajibare
Abstract:
Etheria elliptica population is declining due to various human activities on the freshwater habitat. This necessitate the habitat study of the mussel in river Ogbese and Owena reservoir in Ondo state, Nigeria in order to know the status of the organism within the ecosystem. Thirty (30) specimens each from River Ogbese and Owena reservoir were sampled between May and August 2012. The meristic variables such as length, breadth, shell thickness and weight of the mussel were measured. Also, some physico-chemical parameters, flow rate and soil profile of the two rivers were studied. In River Ogbese, the weight, length, breadth and thickness variables obtained were; 49.73g, 8.42cm, 3.78cm and 0.53cm respectively. In Owena reservoir, the values were; 111.17g, 8.80cm, 6.64cm, 0.22cm respectively. The condition factor showed that the samples from Owena reservoir (K = 16.33) were healthier than River Ogbese (K = 8.34). Also, the length-weight relationship indicated isometric growth in both water bodies (Ogbese r2 = 0.68; Owena r2 = 0.66). In River Ogbese, the physico-chemical parameters obtained were; temperature (24.3oC), pH (7.12), TDS (72ppm), DO (3.2mg/l), conductivity (145µ), BOD (0.7mg/l). The mean temperature (24.1oC), pH (7.69), TDS (102ppm), DO (3.1mg/l), conductivity (183µ), BOD (0.8mg/l) were obtained from Owena reservoir. The soil samples values obtained from both water bodies are; River Ogbese –phosphorus; 78.78, calcium; 3.60, magnesium; 1.90 and organic matter; 0.17. Owena reservoir - Phosphorus; 3.34, calcium; 4.40, magnesium; 1.20 and organic matter; 0.66. The river flow rate was 0.22m/s for Owena reservoir and 0.26m/s for river Ogbese. The study revealed that Etheria elliptica in Owena reservoir and Ogbese were in good and healthy conditions despite the various human activities on the water bodies. The water quality parameters obtained were within the preferred requirements of the mussels.Keywords: Etheria elliptica, mussels, Owena reservoir, River Ogbese
Procedia PDF Downloads 51016151 The Development and Survival of Solea aegyptiaca Raised on Artemia franciscana Supplemented with Four Distinct Microalgae Species Cultivated on Two Sources of Seawater
Authors: Hanan Mohamed Khairy
Abstract:
This study used two water sources (Eastern Harbour (EH) and MaxWell (MW)) to assess suitable water sources to enhance Solea aegyptiaca aquaculture from the larval to the juvenile stage. Initially, the nutritional value of four microalgae (Chlorella salina, Tetraselmis chuii, Nannochloropsis salina, and N. oculata) was evaluated in the two water sources. When compared to EH, MW with a high nitrate level increased the algal biomass and the biochemical makeup of all species. Among the species under investigation, MW-N. salina had the highest growth and biochemical contents. It also produced Artemia franciscana, which had much higher levels of arachidonic acid (ARA), eicosapentaenoic acid (EPA ), and docosahexaenoic acid (DHA) than EH. Secondly, from 10–48 days post-hatch at a density of 15 larvae/L, Artemia-enriched MW-N salina was employed to improve S. aegyptiaca quality in both water sources. When compared to the strain raised on EH, the MW-S. aegyptiaca showed a noteworthy rise in morphometric parameters, albino percentages, and the greatest concentrations of ARA, EPA, and DHA (35.9, 6.1, and 15.9 µg/g, respectively). According to the study, MW-S. aegyptiaca albinism is caused by a high dietary and ARA content. From microalgae to S. aegyptiaca, the quality of the entire food chain is greatly influenced by the seawater supply.Keywords: albinism, Artemia franciscana, fatty acids, microalgae, seawater sources, Solea aegyptiaca
Procedia PDF Downloads 1716150 Electrospinning Parameters: Effect on the Morphology of Polylactic Acid/Polybutylene Succinate Fibers
Authors: Hamad Al-Turaif, Usman Saeed
Abstract:
The development of nanofibers with the help of electrospinning is being prioritized as a method of choice because of the simplicity and efficiency of the process. The parameters of the electrospinning process effectively convert the polymer solution into an electrospun final product made of the desired diameter of nanofiber. The aim of the study presented is to recognize and analyze the effect of proposed parameters on biodegradable and biocompatible polylactic acid (PLA)/polybutylene succinate (PBS) nanofiber developed by the electrospinning process. The morphology of the fiber is characterized by implementing Scanning Electron Microscope. Studies were conducted to characterize the result of using different electrospinning parameters on the final diameter and orientation of fiber. It was determined that varying polymer solution concentration, feed rate, and applied voltage show different outcomes. The best results were obtained at 6% polymer solution concentration, 20 kV, and 0.5 ml/h, which can be applicable for biomedical applications. Finally, protein adsorption and mechanical testing were conducted on the PLA/PBS fiber.Keywords: electrospinning, polylactic acid, polybutylene succinate, morphology
Procedia PDF Downloads 13316149 Optimization of E-motor Control Parameters for Electrically Propelled Vehicles by Integral Squared Method
Authors: Ibrahim Cicek, Melike Nikbay
Abstract:
Electrically propelled vehicles, either road or aerial vehicles are studied on contemporarily for their robust maneuvers and cost-efficient transport operations. The main power generating systems of such vehicles electrified by selecting proper components and assembled as e-powertrain. Generally, e-powertrain components selected considering the target performance requirements. Since the main component of propulsion is the drive unit, e-motor control system is subjected to achieve the performance targets. In this paper, the optimization of e-motor control parameters studied by Integral Squared Method (ISE). The overall aim is to minimize power consumption of such vehicles depending on mission profile and maintaining smooth maneuvers for passenger comfort. The sought-after values of control parameters are computed using the Optimal Control Theory. The system is modeled as a closed-loop linear control system with calibratable parameters.Keywords: optimization, e-powertrain, optimal control, electric vehicles
Procedia PDF Downloads 13316148 Development of an Automatic Calibration Framework for Hydrologic Modelling Using Approximate Bayesian Computation
Authors: A. Chowdhury, P. Egodawatta, J. M. McGree, A. Goonetilleke
Abstract:
Hydrologic models are increasingly used as tools to predict stormwater quantity and quality from urban catchments. However, due to a range of practical issues, most models produce gross errors in simulating complex hydraulic and hydrologic systems. Difficulty in finding a robust approach for model calibration is one of the main issues. Though automatic calibration techniques are available, they are rarely used in common commercial hydraulic and hydrologic modelling software e.g. MIKE URBAN. This is partly due to the need for a large number of parameters and large datasets in the calibration process. To overcome this practical issue, a framework for automatic calibration of a hydrologic model was developed in R platform and presented in this paper. The model was developed based on the time-area conceptualization. Four calibration parameters, including initial loss, reduction factor, time of concentration and time-lag were considered as the primary set of parameters. Using these parameters, automatic calibration was performed using Approximate Bayesian Computation (ABC). ABC is a simulation-based technique for performing Bayesian inference when the likelihood is intractable or computationally expensive to compute. To test the performance and usefulness, the technique was used to simulate three small catchments in Gold Coast. For comparison, simulation outcomes from the same three catchments using commercial modelling software, MIKE URBAN were used. The graphical comparison shows strong agreement of MIKE URBAN result within the upper and lower 95% credible intervals of posterior predictions as obtained via ABC. Statistical validation for posterior predictions of runoff result using coefficient of determination (CD), root mean square error (RMSE) and maximum error (ME) was found reasonable for three study catchments. The main benefit of using ABC over MIKE URBAN is that ABC provides a posterior distribution for runoff flow prediction, and therefore associated uncertainty in predictions can be obtained. In contrast, MIKE URBAN just provides a point estimate. Based on the results of the analysis, it appears as though ABC the developed framework performs well for automatic calibration.Keywords: automatic calibration framework, approximate bayesian computation, hydrologic and hydraulic modelling, MIKE URBAN software, R platform
Procedia PDF Downloads 30916147 The Implementation of Teaching and Learning Quality Assurance System at the Chaoyang University of Technology for Academic Year 2013-2015
Authors: Ting Hsiang Chang
Abstract:
Nowadays in Taiwan, higher education, which was previously more emphasized on teaching-oriented approaches, has gradually shifted to an approach more focusing on students learning outcomes. With student employment rate as an important indicator for University Program Evaluation periodically held by the Ministry of Education, it becomes extremely critical for a university to build up a teaching and learning quality assurance system to bridge the gap between learning and practice. Teaching and Learning Quality Assurance System has been built and implemented at Chaoyang University of Technology for years and has received substantial results. By employing various forms of evaluation and performance appraisals, the effectiveness of teaching and learning can consistently be tracked as a means of ensuring teaching and learning quality. This study aims to explore the evaluation system of teaching and learning quality assurance system at the Chaoyang University of Technology by means of content analysis. The study contents the evaluation reports on the teaching and learning quality assurance at the Chaoyang University of Technology in the Academic Year 2013-2015. The quantitative results of the assessment were analyzed using the five-point Likert Scale. Quality assurance Committee meetings were further held for examining and discussions on the results. To the end, the annual evaluation report is to be produced as references used to improve approaches in both teaching and learning. The findings indicate that there is a respective relationship between the overall teaching evaluation items and the teaching goals and core competencies. In addition, graduates’ feedbacks were also collected for further analysis to examine if the current educational planning is able to achieve the university’s teaching goal and cultivation of core competencies.Keywords: core competencies, teaching and learning quality assurance system, teaching goals, university program evaluation
Procedia PDF Downloads 29316146 Physicochemical, Heavy Metals Analysis of Some Multi-Floral Algerian Honeys
Authors: Assia Amri, Naima Layachi, Ali Ladjama
Abstract:
The characterization of some Algerian honey was carried out on the basis of their physico-chemical properties: moisture,hydroxy methyl furfural, diastase activity, pH,free, total and lactonic acidity, electrical conductivity, minerals and proline content. Studied samples are found to be low in moisture and therefore safe from fermentation, low in HMF level and high in diastase activity. Additionally the diastase activity and the HMF content are widely recognized parameters indicating the freshness of honey. Phenolic compounds present in honey are classified into two groups - simple phenols and polyphenols. The simple phenols in honey are various phenol acids, but polyphenols are various flavonoids and flavonides. The aim of our work was to determine antioxidant properties of various Algerian honey samples–the total phenol content, total flavonoids content, as well as honey anti radical activity.The quality of honey samples differs on account of various factors such as season, packaging and processing conditions, floral source, geographical origin and storage period. It is important that precautions should be taken to ensure standardization and rationalization of beekeeping techniques, manufacturing procedures and storing processes to improve honey quality.Keywords: honey, physico-chemical characterization, phenolic coumpound, HMF, diastase activity
Procedia PDF Downloads 42316145 An Artificial Intelligence Framework to Forecast Air Quality
Authors: Richard Ren
Abstract:
Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms
Procedia PDF Downloads 13016144 Supergranulation and Its Turbulent Convection
Authors: U. Paniveni
Abstract:
A few parameters of supergranular cells are studied using intensity patterns from the Kodaikanal Solar Observatory and Dopplergrams from SOHO. The turbulent aspect of the solar supergranulation is established by examining the interrelationships amongst the parameters characterizing a supergranular cell, namely size, lifetime, area, perimeter, fractal dimension, and horizontal flow velocity. The complexity of supergranular cells depicted by their fractal dimension is indicative of their non-laminar characteristics. The findings corroborate Kolmogorov’s theory of turbulence. Some parameters of supergranular cells also show a latitudinal dependence. Supergranulation is a synonym of convective phenomenon and hence can shed light on the physical conditions in the convection zone of the Sun. It plays a major role in the transport and dispersal of magnetic fields that may have a relation to the phases of the solar cycle.Keywords: sun, granulation, convection, turbulence
Procedia PDF Downloads 4216143 Commissioning of a Flattening Filter Free (FFF) using an Anisotropic Analytical Algorithm (AAA)
Authors: Safiqul Islam, Anamul Haque, Mohammad Amran Hossain
Abstract:
Aim: To compare the dosimetric parameters of the flattened and flattening filter free (FFF) beam and to validate the beam data using anisotropic analytical algorithm (AAA). Materials and Methods: All the dosimetric data’s (i.e. depth dose profiles, profile curves, output factors, penumbra etc.) required for the beam modeling of AAA were acquired using the Blue Phantom RFA for 6 MV, 6 FFF, 10MV & 10FFF. Progressive resolution Optimizer and Dose Volume Optimizer algorithm for VMAT and IMRT were are also configured in the beam model. Beam modeling of the AAA were compared with the measured data sets. Results: Due to the higher and lover energy component in 6FFF and 10 FFF the surface doses are 10 to 15% higher compared to flattened 6 MV and 10 MV beams. FFF beam has a lower mean energy compared to the flattened beam and the beam quality index were 6 MV 0.667, 6FFF 0.629, 10 MV 0.74 and 10 FFF 0.695 respectively. Gamma evaluation with 2% dose and 2 mm distance criteria for the Open Beam, IMRT and VMAT plans were also performed and found a good agreement between the modeled and measured data. Conclusion: We have successfully modeled the AAA algorithm for the flattened and FFF beams and achieved a good agreement with the calculated and measured value.Keywords: commissioning of a Flattening Filter Free (FFF) , using an Anisotropic Analytical Algorithm (AAA), flattened beam, parameters
Procedia PDF Downloads 30116142 Design of Transformerless Electric Energy Router in Smart Home
Authors: Weidong Fu, Qingsong Wang, Wei Hua, Ming Cheng, Giuseppe Buja
Abstract:
A single-phase transformerless electric energy router (TL-EER) is proposed for renewable energy management and power quality improvement in smart homes. The proposed TL-EER only contains four semiconductor switching devices, which reduces costs greatly compared to traditional electric energy routers. TL-EER functions as intelligent systems that optimize the flow and distribution of energy within a grid, enabling seamless interaction between generation, storage, and consumption. In addition, TL-EER operates in multiple modes and could be converted to diverse topologies by changing the states of relays. As for power quality, voltage and current compensating methods are adapted. Thus, high-quality electrical energy could be transferred to the load, and the grid-side power factor could be improved. Finally, laboratory prototypes are established to validate the effectiveness of the system.Keywords: transformerless, electric energy router, power flow, power quality, power factor
Procedia PDF Downloads 1716141 Plackett-Burman Design to Evaluate the Influence of Operating Parameters on Anaerobic Orthophosphate Release from Enhanced Biological Phosphorus Removal Sludge
Authors: Reza Salehi, Peter L. Dold, Yves Comeau
Abstract:
The aim of the present study was to investigate the effect of a total of 6 operating parameters including pH (X1), temperature (X2), stirring speed (X3), chemical oxygen demand (COD) (X4), volatile suspended solids (VSS) (X5) and time (X6) on anaerobic orthophosphate release from enhanced biological phosphorus removal (EBPR) sludge. An 8-run Plackett Burman design was applied and the statistical analysis of the experimental data was performed using Minitab16.2.4 software package. The Analysis of variance (ANOVA) results revealed that temperature, COD, VSS and time had a significant effect with p-values of less than 0.05 whereas pH and stirring speed were identified as non-significant parameters, but influenced orthophosphate release from the EBPR sludge. The mathematic expression obtained by the first-order multiple linear regression model between orthophosphate release from the EBPR sludge (Y) and the operating parameters (X1-X6) was Y=18.59+1.16X1-3.11X2-0.81X3+3.79X4+9.89X5+4.01X6. The model p-value and coefficient of determination (R2) value were 0.026 and of 99.87%, respectively, which indicates the model is significant and the predicted values of orthophosphate release from the EBPR sludge have been excellently correlated with the observed values.Keywords: anaerobic, operating parameters, orthophosphate release, Plackett-Burman design
Procedia PDF Downloads 28016140 Application of Nonlinear Model to Optimize the Coagulant Dose in Drinking Water Treatment
Authors: M. Derraz, M.Farhaoui
Abstract:
In the water treatment processes, the determination of the optimal dose of the coagulant is an issue of particular concern. Coagulant dosing is correlated to raw water quality which depends on some parameters (turbidity, ph, temperature, conductivity…). The objective of this study is to provide water treatment operators with a tool that enables to predict and replace, sometimes, the manual method (jar testing) used in this plant to predict the optimum coagulant dose. The model is constructed using actual process data for a water treatment plant located in the middle of Morocco (Meknes).Keywords: coagulation process, aluminum sulfate, model, coagulant dose
Procedia PDF Downloads 27916139 Impact of Audit Committee on Earning Quality of Listed Consumer Goods Companies in Nigeria
Authors: Usman Yakubu, Muktar Haruna
Abstract:
The paper examines the impact of the audit committee on the earning quality of the listed consumer goods sector in Nigeria. The study used data collected from annual reports and accounts of the 13 sampled companies for the periods 2007 to 2018. Data were analyzed by means of descriptive statistics to provide summary statistics for the variables; also, correlation analysis was carried out using the Pearson correlation technique for the correlation between the dependent and independent variables. Regression was employed using the Generalized Least Square technique since the data has both time series and cross sectional attributes (panel data). It was found out that the audit committee had a positive and significant influence on the earning quality in the listed consumer goods companies in Nigeria. Thus, the study recommends that competency and personal integrity should be the worthwhile attributes to be considered while constituting the committee; this could enhance the quality of accounting information. In addition to that majority of the committee members should be independent directors in order to allow a high level of independency to be exercised.Keywords: earning quality, corporate governance, audit committee, financial reporting
Procedia PDF Downloads 17616138 Influence of Optimization Method on Parameters Identification of Hyperelastic Models
Authors: Bale Baidi Blaise, Gilles Marckmann, Liman Kaoye, Talaka Dya, Moustapha Bachirou, Gambo Betchewe, Tibi Beda
Abstract:
This work highlights the capabilities of particles swarm optimization (PSO) method to identify parameters of hyperelastic models. The study compares this method with Genetic Algorithm (GA) method, Least Squares (LS) method, Pattern Search Algorithm (PSA) method, Beda-Chevalier (BC) method and the Levenberg-Marquardt (LM) method. Four classic hyperelastic models are used to test the different methods through parameters identification. Then, the study compares the ability of these models to reproduce experimental Treloar data in simple tension, biaxial tension and pure shear.Keywords: particle swarm optimization, identification, hyperelastic, model
Procedia PDF Downloads 171