Response Solutions of 2-Dimensional Elliptic Degenerate Quasi-Periodic Systems With Small Parameters
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 87758
Response Solutions of 2-Dimensional Elliptic Degenerate Quasi-Periodic Systems With Small Parameters

Authors: Song Ni, Junxiang Xu

Abstract:

This paper concerns quasi-periodic perturbations with parameters of 2-dimensional degenerate systems. If the equilibrium point of the unperturbed system is elliptic-type degenerate. Assume that the perturbation is real analytic quasi-periodic with diophantine frequency. Without imposing any assumption on the perturbation, we can use a path of equilibrium points to tackle with the Melnikov non-resonance condition, then by the Leray-Schauder Continuation Theorem and the Kolmogorov-Arnold-Moser technique, it is proved that the equation has a small response solution for many sufficiently small parameters.

Keywords: quasi-periodic systems, KAM-iteration, degenerate equilibrium point, response solution

Procedia PDF Downloads 86