Search results for: damaged reinforced concrete structures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6492

Search results for: damaged reinforced concrete structures

5412 Enhancement of Dune Sand from the Western Erg (Algeria) in the Formulation of New Concrete

Authors: Ahmed Tafraoui, Gilles Escadeillas, Thierry Vidal

Abstract:

The southern Algeria is known for its huge sand dunes that cover part of its territory (Sahara). This sand has features that allow a glimpse of a recovery in the construction field in the form of Ultra High Performance Concrete (UHPC). This type of concrete using a large amount of silica fume, ultra fine addition that gives very high performance but is also relatively rare and expensive. Replacing it with another addition to equivalent properties, such as metakaolin, can also be considered. The objective of this study is to both enhance the sand dunes of Erg south west western Algeria but also reduce manufacturing costs of Ultra High Performance Concrete to incorporating metakaolin to instead of silica fume. Performances to determine mechanical performance are instantaneous, compression and bending. Initially, we characterized the Algerian sand dune. Then, we have to find a formulation of UHPC, adequate in terms of implementation and to replace silica fume by metakaolin. Finally, we studied the actual value of the sand dune. Concrete obtained have very high mechanical performance, up to a compressive strength of 250 MPa, a tensile strength of 45 MPa by bending with the method of heat treatment. This study shows that the enhancement of dune sand studied is quite possible in UHPC, and in particular UHPC bundles and the replacement of silica fume by metakaolin do not alter the properties of these concretes.

Keywords: Ultra High Performance Concrete, sand dune, formulations, silica fume, metakaolin, strength

Procedia PDF Downloads 470
5411 Experimental Study of Mechanical and Durability Properties of HPC Made with Binary Blends of Cement

Authors: Vatsal Patel, Niraj Shah

Abstract:

The aim of the research reported in this paper is to assess the Strength and durability performance of High Performance Concrete containing different percentages of waste marble powder produced from marble industry. Concrete mixes possessing a target mean compressive strength of 70MPa were prepared with 0%,5%,10%,15% and 20% cement replacement by waste marble powder with W/B =0.33. More specifically, the compressive strength, flexural strength, chloride penetration, sorptivity and accelerated corrosion were determined. Concrete containing 10% waste marble powder proved to have best Mechanical and durability properties than other mixtures made with binary blends. However, poorer performance was noticeable when replacement percentage was higher. The replacement of Waste Marble Powder will have major environmental benefits.

Keywords: durability, high performance concrete, marble waste powder, sorptivity, accelerated corrosion

Procedia PDF Downloads 345
5410 Estimation of Slab Depth, Column Size and Rebar Location of Concrete Specimen Using Impact Echo Method

Authors: Y. T. Lee, J. H. Na, S. H. Kim, S. U. Hong

Abstract:

In this study, an experimental research for estimation of slab depth, column size and location of rebar of concrete specimen is conducted using the Impact Echo Method (IE) based on stress wave among non-destructive test methods. Estimation of slab depth had total length of 1800×300 and 6 different depths including 150 mm, 180 mm, 210 mm, 240 mm, 270 mm and 300 mm. The concrete column specimen was manufactured by differentiating the size into 300×300×300 mm, 400×400×400 mm and 500×500×500 mm. In case of the specimen for estimation of rebar, rebar of ∅22 mm was used in a specimen of 300×370×200 and arranged at 130 mm and 150 mm from the top to the rebar top. As a result of error rate of slab depth was overall mean of 3.1%. Error rate of column size was overall mean of 1.7%. Mean error rate of rebar location was 1.72% for top, 1.19% for bottom and 1.5% for overall mean showing relative accuracy.

Keywords: impact echo method, estimation, slab depth, column size, rebar location, concrete

Procedia PDF Downloads 351
5409 On Compression Properties of Honeycomb Structures Using Flax/PLA Composite as Core Material

Authors: S. Alsubari, M. Y. M. Zuhri, S. M. Sapuan, M. R. Ishaks

Abstract:

Sandwich structures based on cellular cores are increasingly being utilized as energy-absorbing components in the industry. However, determining ideal structural configurations remains challenging. This chapter compares the compression properties of flax fiber-reinforced polylactic acid (PLA) of empty honeycomb core, foam-filled honeycomb and double cell wall square interlocking core sandwich structure under quasi-static compression loading. The square interlocking core is fabricated through a slotting technique, whereas the honeycomb core is made using a corrugated mold that was initially used to create the corrugated core composite profile, which is then cut into corrugated webs and assembled to form the honeycomb core. The sandwich structures are tested at a crosshead displacement rate of 2 mm/min. The experimental results showed that honeycomb outperformed the square interlocking core in terms of their strength capability and SEA by around 14% and 34%, respectively. It is observed that the foam-filled honeycomb collapse in a progressive mode, exhibiting noticeable advantages over the empty honeycomb; this is attributed to the interaction between the honeycomb wall and foam filler. Interestingly, the average SEAs of foam-filled and empty honeycomb cores have no significant difference, around 8.7kJ/kg and 8.2kJ/kg, respectively. In contrast, its strength capability is clearly pronounced, in which the foam-filled core outperforms the empty counterparts by around 33%. Finally, the results for empty and foam-filled cores were significantly superior to aluminum cores published in the literature.

Keywords: compressive strength, flax, honeycomb core, specific energy absorption

Procedia PDF Downloads 83
5408 Design of New Sustainable Pavement Concrete: An Experimental Road

Authors: Manuel Rosales, Francisco Agrela, Julia Rosales

Abstract:

The development of concrete pavements that include recycled waste with active and predictive safety features is a possible approach to mitigate the harmful impacts of the construction industry, such as CO2 emissions and the consumption of energy and natural resources during the construction and maintenance of road infrastructure. This study establishes the basis for formulating new smart materials for concrete pavements and carrying out the in-situ implementation of an experimental road section. To this end, a comprehensive recycled pavement solution is developed that combines eco-hybrid cement made with 25% mixed recycled aggregate powder (pMRA) and biomass bottom ash powder (pBBA) and a 30% substitution of natural aggregate by MRA and BBA. This work is grouped in three lines. 1) construction materials with high rates of use of recycled material, 2) production processes with efficient consumption of natural resources and use of cleaner energies, and 3) implementation and monitoring of road section with sustainable concrete made from waste. The objective of this study is to ensure satisfactory rheology, mechanical strength, durability, and CO2 capture of pavement concrete manufactured from waste and its subsequent application in real road section as well as its monitoring to establish the optimal range of recycled material. The concrete developed during this study are aimed at the reuse of waste, promoting the circular economy. For this purpose, and after having carried out different tests in the laboratory, three mixtures were established to be applied on the experimental road.

Keywords: biomass bottom ash, construction and demolition waste, recycled concrete pavements, full-scale experimental road, monitoring

Procedia PDF Downloads 68
5407 Numerical Study on Pretensioned Bridge Girder Using Thermal Strain Technique

Authors: Prashant Motwani, Arghadeep Laskar

Abstract:

The transfer of prestress force from prestressing strands to the surrounding concrete is dependent on the bond between the two materials. It is essential to understand the actual bond stress distribution along the transfer length to determine the transfer zone in pre-tensioned concrete. A 3-D nonlinear finite element model has been developed to simulate the transfer of prestress force from steel to concrete in pre-tensioned bridge girders through thermal strain technique using commercially available package ABAQUS. Full-scale bridge girder has been analyzed with thermal strain approach where the damage plasticity constitutive model has been used to model concrete. Parameters such as concrete strain, effective prestress, upward camber and longitudinal stress have been compared with analytical results. The discrepancy between numerical and analytical values was within 20%. The paper also presents a convergence study on mesh density and aspect ratio of the elements to perform the finite element study.

Keywords: aspect ratio, bridge girder, centre of gravity of strand, mesh density, finite element model, pretensioned bridge girder

Procedia PDF Downloads 242
5406 Fabrication of Highly-Ordered Interconnected Porous Polymeric Particles and Structures

Authors: Mohammad Alroaithi

Abstract:

Porous polymeric materials have attracted a great attention due to their distinctive porous structure within a polymer matrix. They are characterised by the presence of external pores on the surface as well as inner interconnected windows. Conventional techniques to produce porous polymeric materials encounters major challenge in controlling the properties of the resultant structures including morphology, pores, cavities size, and porosity. Herein, we present a facile and versatile microfluidics technique for the fabrication of uniform porous polymeric structures with highly ordered and well-defined interconnected windows. The shapes of the porous structures can either be a microparticles or foam. Both shapes used microfluidics platform to first produce monodisperse emulsion. The uniform emulsions, were then consolidated into porous structures through UV photopolymerisation. The morphology, pores, cavities size, and porosity of the structures can be precisely manipulated by the flowrate. The proposed strategy might provide a key advantage for fabrication of uniform porous materials over many existing technologies.

Keywords: polymer, porous particles, microfluidics, porous structures

Procedia PDF Downloads 186
5405 Heating and Cooling Scenario of Blended Concrete Subjected to 780 Degrees Celsius

Authors: J. E. Oti, J. M. Kinuthia, R. Robinson, P. Davies

Abstract:

In this study, The Compressive strength of concretes made with Ground Granulated Blast furnace Slag (GGBS), pulverised Fuel Ash (PFA), rice Husk Ash (RHA) and Waste Glass Powder (WGP) after they were exposed 7800C (exposure duration of around 60 minutes) and then allowed to cool down gradually in the furnace for about 280 minutes at water binder ratio of 0.50 was investigated. GGBS, PFA, RHA and WGP were used to replace up to 20% Portland cement in the control concrete. Test for the determination of workability, compressive strength and tensile splitting strength of the concretes were carried out and the results were compared with control concrete. The test results showed that the compressive strength decreased by an average of around 30% after the concretes were exposed to the heating and cooling scenario.

Keywords: concrete, heating, cooling, pulverised fuel ash, rice husk ash, waste glass powder, GGBS, workability

Procedia PDF Downloads 410
5404 Investigation of Dynamic Mechanical Properties of Jute/Carbon Reinforced Composites

Authors: H. Sezgin, O. B. Berkalp, R. Mishra, J. Militky

Abstract:

In the last few decades, due to their advanced properties, there has been an increasing interest in hybrid composite materials. In this study, the effect of different stacking sequences of jute and carbon fabric plies on dynamic mechanical properties of composite laminates were investigated. Vacuum bagging system was used to fabricate the composite samples. Each composite laminate was reinforced with two plies of jute fabric and two plies of carbon fabric by varying the position of layers. Dynamic mechanical analyzer (DMA) was used to examine the dynamic mechanical properties of composite laminates with increasing temperature. Results showed that the composite sample, which has carbon fabric at the outer layers, has the highest storage and loss modulus. Besides, it was observed that glass transition temperature (Tg) of samples are close to each other and at about 75 °C.

Keywords: differential scanning calorimetry dynamic mechanical analysis, textile reinforced composites, thermogravimetric analysis

Procedia PDF Downloads 303
5403 Mechanical Properties of Kenaf Fibre Reinforced Epoxy Composites

Authors: C. Tezara, H. Y. Lim, M. H. Yazdi, J. W. Lim, J. P. Siregar

Abstract:

Natural fibre has become an element in human lives. A lot of researchers have conducted research about natural fibre reinforced polymer. Malaysian government has spent a lot of money on the research funding for researchers and academician especially research on kenaf fibre due to exclusion of tobacco from AFTA (Asean Free Trade Area) list. This work is to investigate the mechanical properties of kenaf fiber reinforced epoxy composite where short kenaf fibre was applied and the mechanical properties of 5%, 10% and 15% wt. of kenaf fibre were added into the mixture of epoxy resin. Hand lay-up process was selected in the fabrication of the specimen for testing. The tensile, flexural and impact test were conducted following ASTM D3039, ASTM D790 and ASTM D256 accordingly. From the experiment result, the effect of different fiber loading of the specimen on its mechanical properties would be analyzed and compared in the result and discussion.

Keywords: Kenaf fibre, epoxy, composite, fibre

Procedia PDF Downloads 285
5402 A Practice Model for Quality Improvement in Concrete Block Mini Plants Based on Merapi Volcanic Sand

Authors: Setya Winarno

Abstract:

Due to abundant Merapi volcanic sand in Yogyakarta City, many local people have utilized it for mass production of concrete blocks through mini plants although their products are low in quality. This paper presents a practice model for quality improvement in this situation in order to supply the current customer interest in good quality of construction material. The method of this research was to investigate a techno economic evaluation through laboratory test and interview. Samples of twenty existing concrete blocks made by local people had only 19.4 kg/cm2 in average compression strength which was lower than the minimum Indonesian standard of 25 kg/cm2. Through repeat testing in laboratory for fulfilling the standard, the concrete mix design of water cement ratio should not be more than 0.64 by weight basis. The proportion of sand as aggregate content should not be more than 9 parts to 1 part by volume of Portland cement. Considering the production cost, the basic price was Rp 1,820 for each concrete block, comparing to Rp 2,000 as a normal competitive market price. At last, the model describes (a) maximum water cement ratio is 0.64, (b) maximum proportion of sand and cement is 1:9, (c) the basic price is about Rp. 1,820.00 and (d) strategies to win the competitive market on mass production of concrete blocks are focus in quality, building relationships with consumer, rapid respond to customer need, continuous innovation by product diversification, promotion in social media, and strict financial management.

Keywords: concrete block, good quality, improvement model, diversification

Procedia PDF Downloads 515
5401 Vibro-Acoustic Modulation for Crack Detection in Windmill Blades

Authors: Abdullah Alnutayfat, Alexander Sutin

Abstract:

One of the most important types of renewable energy resources is wind energy which can be produced by wind turbines. The blades of the wind turbine are exposed to the pressure of the harsh environment, which causes a significant issue for the wind power industry in terms of the maintenance cost and failure of blades. One of the reliable methods for blade inspection is the vibroacoustic structural health monitoring (SHM) method which examines information obtained from the structural vibrations of the blade. However, all vibroacoustic SHM techniques are based on comparing the structural vibration of intact and damaged structures, which places a practical limit on their use. Methods for nonlinear vibroacoustic SHM are more sensitive to damage and cracking and do not need to be compared to data from the intact structure. This paper presents the Vibro-Acoustic Modulation (VAM) method based on the modulation of high-frequency (probe wave) by low-frequency loads (pump wave) produced by the blade rotation. The blade rotation alternates bending stress due to gravity, leading to crack size variations and variations in the blade resonance frequency. This method can be used with the classical SHM vibration method in which the blade is excited by piezoceramic actuator patches bonded to the blade and receives the vibration response from another piezoceramic sensor. The VAM modification of this method analyzes the spectra of the detected signal and their sideband components. We suggest the VAM model as the simple mechanical oscillator, where the parameters of the oscillator (resonance frequency and damping) are varied due to low-frequency blade rotation. This model uses the blade vibration parameters and crack influence on the blade resonance properties from previous research papers to predict the modulation index (MI).

Keywords: wind turbine blades, damaged detection, vibro-acoustic structural health monitoring, vibro-acoustic modulation

Procedia PDF Downloads 85
5400 Experimental Investigation on the Effect of Bond Thickness on the Interface Behaviour of Fibre Reinforced Polymer Sheet Bonded to Timber

Authors: Abbas Vahedian, Rijun Shrestha, Keith Crews

Abstract:

The bond mechanism between timber and fibre reinforced polymer (FRP) is relatively complex and is influenced by a number of variables including bond thickness, bond width, bond length, material properties, and geometries. This study investigates the influence of bond thickness on the behaviour of interface, failure mode, and bond strength of externally bonded FRP-to-timber interface. In the present study, 106 single shear joint specimens have been investigated. Experiment results showed that higher layers of FRP increase the ultimate load carrying capacity of interface; conversely, such increase led to decrease the slip of interface. Moreover, samples with more layers of FRPs may fail in a brittle manner without noticeable warning that collapse is imminent.

Keywords: fibre reinforced polymer, FRP, single shear test, bond thickness, bond strength

Procedia PDF Downloads 229
5399 Effectiveness of the Use of Polycarboxylic Ether Superplasticizers in High Performance Concrete Containing Silica Fume

Authors: Alya Harichane, Badreddine Harichane

Abstract:

The incorporation of polycarboxylate ether superplasticizer (PCE) and silica fume (SF) in high-performance concretes (HPC) leads to the achievement of remarkable rheological and mechanical improvements. In the fresh state, PCEs are adsorbed on cement particles and dispersants, in turn promoting the workability of the concrete. Silica fume enables a very well compacted concrete to be obtained, which is characterized by high mechanical parameters in its hardened state. Some PCEs are incompatible with silica fume, which can result in the loss of slump and in poor rheological behavior. The main objective of the research is the study of the influence of three types of PCEs, which all have a different molecular architecture, on the rheological and mechanical behavior of high-performance concretes containing 10% of SF as a partial replacement of cement. The results show that the carboxylic density of PCE has an influence on its compatibility with SF.

Keywords: polycarboxylate-ether superplasticizer, rheology, compressive strength, high-performance concrete, silica fume

Procedia PDF Downloads 76
5398 Effect of Pozzolanic Additives on the Strength Development of High Performance Concrete

Authors: Laura Dembovska, Diana Bajare, Ina Pundiene, Daira Erdmane

Abstract:

The aim of this research is to estimate effect of pozzolanic substitutes and their combination on the hydration heat and final strength of high performance concrete. Ternary cementitious systems with different ratios of ordinary Portland cement, silica fume and calcined clay were investigated. Local illite clay was calcined at temperature 700oC in rotary furnace for 20 min. It has been well recognized that the use of pozzolanic materials such as silica fume or calcined clay are recommended for high performance concrete for reduction of porosity, increasing density and as a consequence raising the chemical durability of the concrete. It has been found, that silica fume has a superior influence on the strength development of concrete, but calcined clay increase density and decrease size of dominating pores. Additionally it was found that the rates of pozzolanic reaction and calcium hydroxide consumption in the silica fume-blended cement pastes are higher than in the illite clay-blended cement pastes, it strongly depends from the amount of pozzolanic substitutes which are used. If the pozzolanic reaction is dominating then amount of Ca(OH)2 is decreasing. The identity and the amount of the phases present were determined from the thermal analysis (DTA) data. The hydration temperature of blended cement pastes was measured during the first 24 hours. Fresh and hardened concrete properties were tested. Compressive strength was determined and differential thermal analysis (DTA) was conducted of specimens at the age of 3, 14, 28 and 56 days.

Keywords: high performance concrete, pozzolanic additives, silica fume, ternary systems

Procedia PDF Downloads 375
5397 Artificial Intelligence in the Design of High-Strength Recycled Concrete

Authors: Hadi Rouhi Belvirdi, Davoud Beheshtizadeh

Abstract:

The increasing demand for sustainable construction materials has led to a growing interest in high-strength recycled concrete (HSRC). Utilizing recycled materials not only reduces waste but also minimizes the depletion of natural resources. This study explores the application of artificial intelligence (AI) techniques to model and predict the properties of HSRC. In the past two decades, the production levels in various industries and, consequently, the amount of waste have increased significantly. Continuing this trend will undoubtedly cause irreparable damage to the environment. For this reason, engineers have been constantly seeking practical solutions for recycling industrial waste in recent years. This research utilized the results of the compressive strength of 90-day high-strength recycled concrete. The method for creating recycled concrete involved replacing sand with crushed glass and using glass powder instead of cement. Subsequently, a feedforward artificial neural network was employed to model the compressive strength results for 90 days. The regression and error values obtained indicate that this network is suitable for modeling the compressive strength data.

Keywords: high-strength recycled concrete, feedforward artificial neural network, regression, construction materials

Procedia PDF Downloads 13
5396 Design and Production of Thin-Walled UHPFRC Footbridge

Authors: P. Tej, P. Kněž, M. Blank

Abstract:

The paper presents design and production of thin-walled U-profile footbridge made of UHPFRC. The main structure of the bridge is one prefabricated shell structure made of UHPFRC with dispersed steel fibers without any conventional reinforcement. The span of the bridge structure is 10 m and the clear width of 1.5 m. The thickness of the UHPFRC shell structure oscillated in an interval of 30-45 mm. Several calculations were made during the bridge design and compared with the experiments. For the purpose of verifying the calculations, a segment of 1.5 m was first produced, followed by the whole footbridge for testing. After the load tests were done, the design was optimized to cast the final footbridge.

Keywords: footbridge, non-linear analysis, shell structure, UHPFRC, Ultra-High Performance Fibre Reinforced Concrete

Procedia PDF Downloads 232
5395 Experimental Investigation of Low Strength Concrete (LSC) Beams Using Carbon Fiber Reinforce Polymer (CFRP) Wrap

Authors: Furqan Farooq, Arslan Akbar, Sana Gul

Abstract:

Inadequate design of seismic structures and use of Low Strength Concrete (LSC) remains the major aspect of structure failure. Parametric investigation (LSC) beams based on experimental work using externally applied Carbon Fiber Reinforce Polymer (CFRP) warp in flexural behavior is studied. The ambition is to know the behavior of beams under loading condition, and its strengthening enhancement after inducing crack is studied, Moreover comparison of results using abacus software is studied. Results show significant enhancement in load carrying capacity, experimental work is compared with abacus software. The research is based on the conclusion that various existing structure but inadequacy in seismic design could increase the load carrying capacity by applying CFRP techniques, which not only strengthened but also provide them to resist even larger potential earthquake by improving its strength as well as ductility.

Keywords: seismic design, carbon fiber, strengthening, ductility

Procedia PDF Downloads 202
5394 Study of Methods to Reduce Carbon Emissions in Structural Engineering

Authors: Richard Krijnen, Alan Wang

Abstract:

As the world is aiming to reach net zero around 2050, structural engineers must begin finding solutions to contribute to this global initiative. Approximately 40% of global energy-related emissions are due to buildings and construction, and a building’s structure accounts for 50% of its embodied carbon, which indicates that structural engineers are key contributors to finding solutions to reach carbon neutrality. However, this task presents a multifaceted challenge as structural engineers must navigate technical, safety and economic considerations while striving to reduce emissions. This study reviews several options and considerations to reduce carbon emissions that structural engineers can use in their future designs without compromising the structural integrity of their proposed design. Low-carbon structures should adhere to several guiding principles. Firstly, prioritize the selection of materials with low carbon footprints, such as recyclable or alternative materials. Optimization of design and engineering methods is crucial to minimize material usage. Encouraging the use of recyclable and renewable materials reduces dependency on natural resources. Energy efficiency is another key consideration involving the design of structures to minimize energy consumption across various systems. Choosing local materials and minimizing transportation distances help in reducing carbon emissions during transport. Innovation, such as pre-fabrication and modular design or low-carbon concrete, can further cut down carbon emissions during manufacturing and construction. Collaboration among stakeholders and sharing experiences and resources are essential for advancing the development and application of low-carbon structures. This paper identifies current available tools and solutions to reduce embodied carbon in structures, which can be used as part of daily structural engineering practice.

Keywords: efficient structural design, embodied carbon, low-carbon material, sustainable structural design

Procedia PDF Downloads 41
5393 Influence of Metakaolin and Cements Types on Compressive Strength and Transport Properties of Self-Consolidating Concrete

Authors: Kianoosh Samimi, Farhad Estakhr, Mahdi Mahdikhani, Faramaz Moodi

Abstract:

The self-consolidating concrete (SCC) performance over ordinary concrete is generally related to the ingredients used. The metakaolin can modify various properties of concrete, due to high pozzolanic reactions and also makes a denser microstructure. The objective of this paper is to examine the influence of three types of Portland cement and metakaolin on compressive strength and transport properties of SCC at early ages and up to 90 days. Six concrete mixtures were prepared with three types of different cements and substitution of 15% metakaolin. The results show that the highest value of compressive strength was achieved for Portland Slag Cement (PSC) and without any metakaolin at age of 90 days. Conversely, the lowest level of compressive strength at all ages of conservation was obtained for Pozzolanic Portland Cement (PPC) and containing 15% metakaolin. As can be seen in the results, compressive strength in SCC containing Portland cement type II with metakaolin is higher compared to that relative to SCC without metakaolin from 28 days of age. On the other hand, the samples containing PSC and PPC with metakaolin had a lower compressive strength than the plain samples. Therefore, it can be concluded that metakaolin has a negative effect on the compressive strength of SCC containing PSC and PPC. In addition, results show that metakaolin has enhanced chloride durability of SCCs and reduced capillary water absorption at 28, 90 days.

Keywords: SCC, metakaolin, cement type, compressive strength, chloride diffusion

Procedia PDF Downloads 220
5392 The Effects of Damping Devices on Displacements, Velocities and Accelerations of Structures

Authors: Radhwane Boudjelthia

Abstract:

The most recent earthquakes occurred in the world have killed thousands of people and severe damage. For all the actors involved in the building process, the earthquake is the litmus test for construction. The goal we set ourselves is to contribute to the implementation of a thoughtful approach to the seismic protection of structures. For many engineers, the most conventional approach to protection works (buildings and bridges) the effects of earthquakes is to increase rigidity. This approach is not always effective, especially when there is a context that favors the phenomenon of resonance and amplification of seismic forces. Therefore, the field of earthquake engineering has made significant inroads, among others catalyzed by the development of computational techniques in computer form and the use of powerful test facilities. This has led to the emergence of several innovative technologies, such as the introduction of special devices insulation between infrastructure and superstructure. This approach, commonly known as "seismic isolation," to absorb the significant efforts without the structure is damaged and thus ensuring the protection of lives and property. In addition, the restraints to the construction by the ground shaking are located mainly at the supports. With these moves, the natural period of construction is increasing, and seismic loads are reduced. Thus, there is an attenuation of the seismic movement. Likewise, the insulation of the base mechanism may be used in combination with earthquake dampers in order to control the deformation of the insulation system and the absolute displacement of the superstructure located above the isolation interface. On the other hand, only can use these earthquake dampers to reduce the oscillation amplitudes and thus reduce seismic loads. The use of damping devices represents an effective solution for the rehabilitation of existing structures. Given all these acceleration reducing means considered passive, much research has been conducted for several years to develop an active control system of the response of buildings to earthquakes.

Keywords: earthquake, building, seismic forces, displacement, resonance, response.

Procedia PDF Downloads 69
5391 Scouring Rate Pattern/Monitoring at Coastal and Offshore Structures

Authors: Ahmad Saifullah Mazlan, Hossein Basser, Shatirah Akib

Abstract:

Scouring pattern evaluation and measuring its depth around coastal and offshore structures is very essential issue to assure the safety of the structures as well as providing needed design parameters. Scouring is known as one of the important phenomena which threatens the safety of infrastructures. Several countermeasures have been developed to control scouring by protecting the structures against water flow attack directly or indirectly by changing the water flow pattern. Recently, monitoring methods for estimating water flow pattern and scour depth are studied to track the safety of structures. Since most of studies regarding scouring is related to monitoring scouring around piers in rivers therefore it is necessary to develop researches investigating scouring around piers in coastal and offshore areas. This paper describes a review of monitoring methods may be used for detecting scour depth around piers in coastal and offshore structures.

Keywords: scour, monitoring, pier, coastal, offshore

Procedia PDF Downloads 644
5390 Seismic Vulnerability Analysis of Arch Dam Based on Response Surface Method

Authors: Serges Mendomo Meye, Li Guowei, Shen Zhenzhong

Abstract:

Earthquake is one of the main loads threatening dam safety. Once the dam is damaged, it will bring huge losses of life and property to the country and people. Therefore, it is very important to research the seismic safety of the dam. Due to the complex foundation conditions, high fortification intensity, and high scientific and technological content, it is necessary to adopt reasonable methods to evaluate the seismic safety performance of concrete arch dams built and under construction in strong earthquake areas. Structural seismic vulnerability analysis can predict the probability of structural failure at all levels under different intensity earthquakes, which can provide a scientific basis for reasonable seismic safety evaluation and decision-making. In this paper, the response surface method (RSM) is applied to the seismic vulnerability analysis of arch dams, which improves the efficiency of vulnerability analysis. Based on the central composite test design method, the material-seismic intensity samples are established. The response surface model (RSM) with arch crown displacement as performance index is obtained by finite element (FE) calculation of the samples, and then the accuracy of the response surface model (RSM) is verified. To obtain the seismic vulnerability curves, the seismic intensity measure ??(?1) is chosen to be 0.1~1.2g, with an interval of 0.1g and a total of 12 intensity levels. For each seismic intensity level, the arch crown displacement corresponding to 100 sets of different material samples can be calculated by algebraic operation of the response surface model (RSM), which avoids 1200 times of nonlinear dynamic calculation of arch dam; thus, the efficiency of vulnerability analysis is improved greatly.

Keywords: high concrete arch dam, performance index, response surface method, seismic vulnerability analysis, vector-valued intensity measure

Procedia PDF Downloads 240
5389 Comparison between Ultra-High-Performance Concrete and Ultra-High-Performance-Glass Concrete

Authors: N. A. Soliman, A. F. Omran, A. Tagnit-Hamou

Abstract:

The finely ground waste glass has successfully used by the authors to develop and patent an ecological ultra-high-performance concrete (UHPC), which was named as ultra-high-performance-glass concrete (UHPGC). After the successful development in laboratory, the current research presents a comparison between traditional UHPC and UHPGC produced using large-scale pilot plant mixer, in terms of rheology, mechanical, and durability properties. The rheology of the UHPGCs was improved due to the non-absorptive nature of the glass particles. The mechanical performance of UHPGC was comparable and very close to the traditional UHPC due to the pozzolan reactivity of the amorphous waste glass. The UHPGC has also shown excellent durability: negligible permeability (chloride-ion ≈ 20 Coulombs from the RCPT test), high abrasion resistance (volume loss index less than 1.3), and almost no freeze-thaw deterioration even after 1000 freeze-thaw cycles. The enhancement in the strength and rigidity of the UHPGC mixture can be referred to the inclusions of the glass particles that have very high strength and elastic modulus.

Keywords: ground glass pozzolan, large-scale production, sustainability, ultra-high performance glass concrete

Procedia PDF Downloads 157
5388 Experimental Study on Strength Development of Low Cement Concrete Using Mix Design for Both Binary and Ternary Mixes

Authors: Mulubrhan Berihu, Supratic Gupta, Zena Gebriel

Abstract:

Due to the design versatility, availability, and cost efficiency, concrete is continuing to be the most used construction material on earth. However, the production of Portland cement, the primary component of concrete mix is causing to have a serious effect on environmental and economic impacts. This shows there is a need to study using of supplementary cementitious materials (SCMs). The most commonly used supplementary cementitious materials are wastes and the use of these industrial waste products has technical, economical and environmental benefits besides the reduction of CO2 emission from cement production. The study aims to document the effect on strength property of concrete due to use of low cement by maximizing supplementary cementitious materials like fly ash or marble powder. Based on the different mix proportion of pozzolana and marble powder a range of mix design was formulated. The first part of the project is to study the strength of low cement concrete using fly ash replacement experimentally. The test results showed that using up to 85 kg/m3 of cement is possible for plain concrete works like hollow block concrete to achieve 9.8 Mpa and the experimental results indicates that strength is a function of w/b. In the second part a new set of mix design has been carried out with fly ash and marble powder to study the strength of both binary and ternary mixes. In this experimental study, three groups of mix design (c+FA, c+FA+m and c+m), four sets of mixes for each group were taken up. Experimental results show that c+FA has maintained the best strength and impermeability whereas c+m obtained less compressive strength, poorer permeability and split tensile strength. c+FA shows a big difference in gaining of compressive strength from 7 days to 28 days compression strength compared to others and this obviously shows the slow rate of hydration of fly ash concrete. As the w/b ratio increases the strength decreases significantly. At the same time higher permeability has been seen in the specimens which were tested for three hours than one hour.

Keywords: efficiency factor, cement content, compressive strength, mix proportion, w/c ratio, water permeability, SCMs

Procedia PDF Downloads 209
5387 A Study of Rapid Replication of Square-Microlens Structures

Authors: Ting-Ting Wen, Jung-Ruey Tsai

Abstract:

This paper reports a method for the replication of micro-scale structures. By using electromagnetic force-assisted imprinting system with magnetic soft stamp written square-microlens cavity, a photopolymer square-microlens structures can be rapidly fabricated. Under the proper processing conditions, the polymeric square-microlens structures with feature size of width 100.3um and height 15.2um across a large area can be successfully fabricated. Scanning electron microscopy (SEM) and surface profiler observations confirm that the micro-scale polymer structures are produced without defects or distortion and with good pattern fidelity over a 60x60mm2 area. This technique shows great potential for the efficient replication of the micro-scale structure array at room temperature and with high productivity and low cost.

Keywords: square-microlens structures, electromagnetic force-assisted imprinting, magnetic soft stamp

Procedia PDF Downloads 334
5386 Fabrication and Analysis of Simplified Dragonfly Wing Structures Created Using Balsa Wood and Red Prepreg Fibre Glass for Use in Biomimetic Micro Air Vehicles

Authors: Praveena Nair Sivasankaran, Thomas Arthur Ward, Rubentheren Viyapuri

Abstract:

Paper describes a methodology to fabricate a simplified dragonfly wing structure using balsa wood and red prepreg fibre glass. These simplified wing structures were created for use in Biomimetic Micro Air Vehicles (BMAV). Dragonfly wings are highly corrugated and possess complex vein structures. In order to mimic the wings function and retain its properties, a simplified version of the wing was designed. The simplified dragonfly wing structure was created using a method called spatial network analysis which utilizes Canny edge detection method. The vein structure of the wings were carved out in balsa wood and red prepreg fibre glass. Balsa wood and red prepreg fibre glass was chosen due to its ultra- lightweight property and hence, highly suitable to be used in our application. The fabricated structure was then immersed in a nanocomposite solution containing chitosan as a film matrix, reinforced with chitin nanowhiskers and tannic acid as a crosslinking agent. These materials closely mimic the membrane of a dragonfly wing. Finally, the wings were subjected to a bending test and comparisons were made with previous research for verification. The results had a margin of difference of about 3% and thus the structure was validated.

Keywords: dragonfly wings, simplified, Canny edge detection, balsa wood, red prepreg, chitin, chitosan, tannic acid

Procedia PDF Downloads 331
5385 Bending Behaviour of Fiber Reinforced Polymer Composite Stiffened Panel Subjected to Transverse Loading

Authors: S. Kumar, Rajesh Kumar, S. Mandal

Abstract:

Fiber Reinforced Polymer (FRP) is gaining popularity in many branch of engineering and various applications due to their light weight, specific strength per unit weight and high stiffness in particular direction. As the strength of material is high it can be used in thin walled structure as industrial roof sheds satisfying the strength constraint with comparatively lesser thickness. Analysis of bending behavior of FRP panel has been done here with variation in oriented angle of stiffener panels, fiber orientation, aspect ratio and boundary conditions subjected to transverse loading by using Finite Element Method. The effect of fiber orientation and thickness of ply has also been studied to determine the minimum thickness of ply for optimized section of stiffened FRP panel.

Keywords: bending behavior, fiber reinforced polymer, finite element method, orientation of stiffeners

Procedia PDF Downloads 392
5384 Technological Ensuring of the Space Reflector Antennas Manufacturing Process from Carbon Fiber Reinforced Plastics

Authors: Pyi Phyo Maung

Abstract:

In the study, the calculations of the permeability coefficient, values of the volume and porosity of a unit cell of a woven fabric before and after deformation based on the geometrical parameters are presented. Two types of carbon woven fabric structures were investigated: standard type, which integrated the filament, has a cross sectional shape of a cylinder and spread tow type, which has a rectangular cross sectional shape. The space antennas reflector, which distinctive feature is the presence of the surface of double curvature, is considered as the object of the research. Modeling of the kinetics of the process of impregnation of the reflector for the two types of carbon fabric’s unit cell structures was performed using software RAM-RTM. This work also investigated the influence of the grid angle between warp and welt of the unit cell on the duration of impregnation process. The results showed that decreasing the angle between warp and welt of the unit cell, the decreasing of the permeability values were occurred. Based on the results of calculation samples of the reflectors, their quality was determined. The comparisons of the theoretical and experimental results have been carried out. Comparison of the two textile structures (standard and spread tow) showed that the standard textiles with circular cross section were impregnated faster than spread tows, which have a rectangular cross section.

Keywords: vacuum assistant resin infusion, impregnation time, shear angle, reflector and modeling

Procedia PDF Downloads 273
5383 Fly Ash Based Geopolymer Concrete as Curbs, Pavement Bricks, and Wall Bricks

Authors: Marthin Dody Josias Sumajouw, Bryan Wijaya, Servie O. Dapas, Ronny E. Pandaleke, Banu Handono, Fabian J. Manoppo

Abstract:

Ordinary Portland Cement (OPC) takes a big role as a concrete binder in infrastructure construction purposes, nevertheless, it produces CO2 emissions abundantly. To reduce the CO2 emissions produced by OPC concrete, nowadays, geopolymer material become one of the solutions due to it being a binder made from waste with pozzolan material. In concrete industries, geopolymer concrete has evolved as a more environmentally friendly material than OPC concrete. The geopolymer concrete was created without the usage of OPC known as cementless concrete materials. Geopolymer concrete obtains silicon and aluminum from industrial by-products such as fly ash, ground granulated blast furnace slag, and kaolinite. A highly alkaline solution chemically activates Si and Al, forming a matrix that holds together the loose aggregates as well as additional unreacted components in the mixture. They are then dissolved in alkaline activating solutions, where they polymerize into molecular chains, resulting in rigid binders. This research aims to get an eco-friendly material that can reduce the use of OPC as a binder and be used for infrastructure development end-products such as Curbs, Pavement Bricks, and Wall Bricks. This research was conducted as applied research to develop new products of environmentally friendly materials by utilizing fly ash and employed for infrastructure development, particularly for the production of end products such as Curbs, Pavement Bricks, and Wall Bricks. Three types of end products with various dimensions and mix designs have been made and tested in the laboratory, resulting in quantitative datasets to be used for identifying patterns and relationships among density, compressive strength, flexural strength, and water absorption. The result found that geopolymer binders can be used for the production of curbs, pavement bricks, and wall bricks. Geopolymer curbs have an average compressive strength of 19,36 MPa, which can be determined as K-233 concrete. Geopolymer pavement bricks have an average compressive strength of 20,79 MPa. It can be used in parking areas and determined as the grade B of pavement bricks according to SNI 03-0691-1996. Geopolymer wall bricks have an average compressive strength of 11,24 MPa, which can be determined as the grade I of Wall Bricks according to SNI 03-0349-1989.

Keywords: absorption, compressive strength, curbs, end products, geopolymer, pavement bricks, wall bricks

Procedia PDF Downloads 31