Search results for: clinical simulation
7486 Improving Young Learners' Vocabulary Acquisition: A Pilot Program in a Game-Based Environment
Authors: Vasiliki Stratidou
Abstract:
Modern simulation mobile games have the potential to enhance students’ interest, motivation and creativity. Research conducted on the effectiveness of digital games for educational purposes has shown that such games are also ideal at providing an appropriate environment for language learning. The paper examines the issue of simulation mobile games in regard to the potential positive impacts on L2 vocabulary learning. Sixteen intermediate level students, aged 10-14, participated in the experimental study for four weeks. The participants were divided into experimental (8 participants) and control group (8 participants). The experimental group was planned to learn some new vocabulary words via digital games while the control group used a reading passage to learn the same vocabulary words. The study investigated the effect of mobile games as well as the traditional learning methods on Greek EFL learners’ vocabulary learning in a pre-test, an immediate post-test, and a two-week delayed retention test. A teacher’s diary and learners’ interviews were also used as tools to estimate the effectiveness of the implementation. The findings indicated that the experimental group outperformed the control group in acquiring new words through mobile games. Therefore, digital games proved to be an effective tool in learning English vocabulary.Keywords: control group, digital games, experimental group, second language vocabulary learning, simulation games
Procedia PDF Downloads 2417485 Field Scale Simulation Study of Miscible Water Alternating CO2 Injection Process in Fractured Reservoirs
Authors: Hooman Fallah
Abstract:
Vast amounts of world oil reservoirs are in natural fractured reservoirs. There are different methods for increasing recovery from fractured reservoirs. Miscible injection of water alternating CO2 is a good choice among this methods. In this method, water and CO2 slugs are injected alternatively in reservoir as miscible agent into reservoir. This paper studies water injection scenario and miscible injection of water and CO2 in a two dimensional, inhomogeneous fractured reservoir. The results show that miscible water alternating CO2¬ gas injection leads to 3.95% increase in final oil recovery and total water production decrease of 3.89% comparing to water injection scenario.Keywords: simulation study, CO2, water alternating gas injection, fractured reservoirs
Procedia PDF Downloads 2917484 Parametric Study of 3D Micro-Fin Tubes on Heat Transfer and Friction Factor
Authors: Shima Soleimani, Steven Eckels
Abstract:
One area of special importance for the surface-level study of heat exchangers is tubes with internal micro-fins (< 0.5 mm tall). Micro-finned surfaces are a kind of extended solid surface in which energy is exchanged with water that acts as the source or sink of energy. Significant performance gains are possible for either shell, tube, or double pipe heat exchangers if the best surfaces are identified. The parametric studies of micro-finned tubes that have appeared in the literature left some key parameters unexplored. Specifically, they ignored three-dimensional (3D) micro-fin configurations, conduction heat transfer in the fins, and conduction in the solid surface below the micro-fins. Thus, this study aimed at implementing a parametric study of 3D micro-finned tubes that considered micro-fine height and discontinuity features. A 3D conductive and convective heat-transfer simulation through coupled solid and periodic fluid domains is applied in a commercial package, ANSYS Fluent 19.1. The simulation is steady-state with turbulent water flow cooling the inner wall of a tube with micro-fins. The simulation utilizes a constant and uniform temperature on the tube outer wall. Performance is mapped for 18 different simulation cases, including a smooth tube using a realizable k-ε turbulence model at a Reynolds number of 48,928. Results compared the performance of 3D tubes with results for the similar two-dimensional (2D) one. Results showed that the micro-fine height has a greater impact on performance factors than discontinuity features in 3D micro-fin tubes. A transformed 3D micro-fin tube can enhance heat transfer, and pressure drops up to 21% and 56% compared to a 2D one, respectfully.Keywords: three-dimensional micro-fin tube, heat transfer, friction factor, heat exchanger
Procedia PDF Downloads 1197483 Clinical Validation of an Automated Natural Language Processing Algorithm for Finding COVID-19 Symptoms and Complications in Patient Notes
Authors: Karolina Wieczorek, Sophie Wiliams
Abstract:
Introduction: Patient data is often collected in Electronic Health Record Systems (EHR) for purposes such as providing care as well as reporting data. This information can be re-used to validate data models in clinical trials or in epidemiological studies. Manual validation of automated tools is vital to pick up errors in processing and to provide confidence in the output. Mentioning a disease in a discharge letter does not necessarily mean that a patient suffers from this disease. Many of them discuss a diagnostic process, different tests, or discuss whether a patient has a certain disease. The COVID-19 dataset in this study used natural language processing (NLP), an automated algorithm which extracts information related to COVID-19 symptoms, complications, and medications prescribed within the hospital. Free-text patient clinical patient notes are rich sources of information which contain patient data not captured in a structured form, hence the use of named entity recognition (NER) to capture additional information. Methods: Patient data (discharge summary letters) were exported and screened by an algorithm to pick up relevant terms related to COVID-19. Manual validation of automated tools is vital to pick up errors in processing and to provide confidence in the output. A list of 124 Systematized Nomenclature of Medicine (SNOMED) Clinical Terms has been provided in Excel with corresponding IDs. Two independent medical student researchers were provided with a dictionary of SNOMED list of terms to refer to when screening the notes. They worked on two separate datasets called "A” and "B”, respectively. Notes were screened to check if the correct term had been picked-up by the algorithm to ensure that negated terms were not picked up. Results: Its implementation in the hospital began on March 31, 2020, and the first EHR-derived extract was generated for use in an audit study on June 04, 2020. The dataset has contributed to large, priority clinical trials (including International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC) by bulk upload to REDcap research databases) and local research and audit studies. Successful sharing of EHR-extracted datasets requires communicating the provenance and quality, including completeness and accuracy of this data. The results of the validation of the algorithm were the following: precision (0.907), recall (0.416), and F-score test (0.570). Percentage enhancement with NLP extracted terms compared to regular data extraction alone was low (0.3%) for relatively well-documented data such as previous medical history but higher (16.6%, 29.53%, 30.3%, 45.1%) for complications, presenting illness, chronic procedures, acute procedures respectively. Conclusions: This automated NLP algorithm is shown to be useful in facilitating patient data analysis and has the potential to be used in more large-scale clinical trials to assess potential study exclusion criteria for participants in the development of vaccines.Keywords: automated, algorithm, NLP, COVID-19
Procedia PDF Downloads 1027482 The Effect of Vitamin D Supplementation on Prostate Cancer: A Systematic Review and Meta-Analysis of Clinical Trials
Authors: Simin Shahvazi, Sepideh Soltani, Seyed Mehdi Ahmadi, Russell J. De Souza, Amin Salehi-Abargouei
Abstract:
Background and Objectives: Vitamin D has received attention for its potential to disrupt cancer processes such as attenuating cell proliferation and exacerbating differentiation and apoptosis. However, whether there exists a role for vitamin D in the treatment of prostate cancer specifically remains controversial. We systematically review the literature to assess whether supplementation with vitamin D influences PSA response and overall survival in patients with prostate cancer. Methods: We searched PubMed, Scopus, ISI Web of Science and Google scholar from inception through up to 10 September 2017 for both before-and-after and randomized trials that evaluated the effect of vitamin D supplementation on the prostate specific antigen (PSA) response rate in participants with prostate cancer. The DerSimonian and Laird, inverse-weighted random-effects model was used to pool effect estimates from the studies. Heterogeneity and potential publication bias were evaluated. Subgroup analyses were also performed. Results: Twenty-two studies (16 before-after and 6 randomized controlled trials) were found and included in meta-analysis. The analysis on controlled clinical trials revealed that PSA change from baseline [weighted mean difference (WMD) = -1.66 ng/ml, 95%CI: -0.69, 0.36, P= 0.543)], PSA response (RR=1.18, 95%CI: 0.97, 1.45, P=0.104) and mortality rate (risk ratio (RR) = 1.05, 95% CI: 0.81-1.36; P=0.713) was not significantly different between vitamin D supplementation and placebo groups. Single arm trials revealed that vitamin D supplementation had had a modest effect on PSA response rate: 19% of those enrolled had at least a 50% reduction in PSA by the end of treatment (95% CI: 7% to 31%; p=0.002). Conclusion: We found that vitamin D modestly increases the PSA response rate in single arm studies. No effect on serum PSA levels, PSA response and mortality was seen in randomized controlled clinical trials. It does not seem patients with prostate cancer benefit from vitamin D supplementation.Keywords: mortality, prostatic neoplasms, PSA response, vitamin D
Procedia PDF Downloads 1967481 Case Scenario Simulation concerning Eventual Ship Sourced Oil Spill, Expansion and Response Process in Istanbul Strait
Authors: Cihat Aşan
Abstract:
Istanbul Strait is a crucial and narrow waterway, not only having a role in linking two continents but also has a crossover mission for the petroleum, which is the biggest energy resource, between its supply and demand sources. Besides its substantial features, sensitivities like around 18 million populations in surroundings, military facilities, ports, oil lay down areas etc. also brings the high risk to use of Istanbul Strait. Based on the statistics of Turkish Ministry of Transportation, Maritime and Communication, although the number of vessel passage in Istanbul Strait is declining, tonnage of hazardous and flammable cargo like oil and chemical transportation is increasing and subsequently the risk of oil pollution, loss of life and property is also rising. Based on the mentioned above; it is crucial to be prepared for the initial and subsequent response to eventual ship sourced oil spill which may cause to block the Strait for an unbearable duration. In this study; preconditioned Istanbul Strait sensitive areas studies has been taken into account and possible oil spill scenario is loaded to PISCES 2 (Potential Incident Simulation Control and Evaluation System) decision support system for the determined specific sea area. Consequences of the simulation like oil expanding process, required number and types of assets to response, had in hand and evaluated.Keywords: Istanbul strait, oil spill, PISCES simulator, initial response
Procedia PDF Downloads 3447480 Dynamic Two-Way FSI Simulation for a Blade of a Small Wind Turbine
Authors: Alberto Jiménez-Vargas, Manuel de Jesús Palacios-Gallegos, Miguel Ángel Hernández-López, Rafael Campos-Amezcua, Julio Cesar Solís-Sanchez
Abstract:
An optimal wind turbine blade design must be able of capturing as much energy as possible from the wind source available at the area of interest. Many times, an optimal design means the use of large quantities of material and complicated processes that make the wind turbine more expensive, and therefore, less cost-effective. For the construction and installation of a wind turbine, the blades may cost up to 20% of the outline pricing, and become more important due to they are part of the rotor system that is in charge of transmitting the energy from the wind to the power train, and where the static and dynamic design loads for the whole wind turbine are produced. The aim of this work is the develop of a blade fluid-structure interaction (FSI) simulation that allows the identification of the major damage zones during the normal production situation, and thus better decisions for design and optimization can be taken. The simulation is a dynamic case, since we have a time-history wind velocity as inlet condition instead of a constant wind velocity. The process begins with the free-use software NuMAD (NREL), to model the blade and assign material properties to the blade, then the 3D model is exported to ANSYS Workbench platform where before setting the FSI system, a modal analysis is made for identification of natural frequencies and modal shapes. FSI analysis is carried out with the two-way technic which begins with a CFD simulation to obtain the pressure distribution on the blade surface, then these results are used as boundary condition for the FEA simulation to obtain the deformation levels for the first time-step. For the second time-step, CFD simulation is reconfigured automatically with the next time-step inlet wind velocity and the deformation results from the previous time-step. The analysis continues the iterative cycle solving time-step by time-step until the entire load case is completed. This work is part of a set of projects that are managed by a national consortium called “CEMIE-Eólico” (Mexican Center in Wind Energy Research), created for strengthen technological and scientific capacities, the promotion of creation of specialized human resources, and to link the academic with private sector in national territory. The analysis belongs to the design of a rotor system for a 5 kW wind turbine design thought to be installed at the Isthmus of Tehuantepec, Oaxaca, Mexico.Keywords: blade, dynamic, fsi, wind turbine
Procedia PDF Downloads 4827479 Internet of Things Edge Device Power Modelling and Optimization Simulator
Authors: Cian O'Shea, Ross O'Halloran, Peter Haigh
Abstract:
Wireless Sensor Networks (WSN) are Internet of Things (IoT) edge devices. They are becoming widely adopted in many industries, including health care, building energy management, and conditional monitoring. As the scale of WSN deployments increases, the cost and complexity of battery replacement and disposal become more significant and in time may become a barrier to adoption. Harvesting ambient energies provide a pathway to reducing dependence on batteries and in the future may lead to autonomously powered sensors. This work describes a simulation tool that enables the user to predict the battery life of a wireless sensor that utilizes energy harvesting to supplement the battery power. To create this simulator, all aspects of a typical WSN edge device were modelled including, sensors, transceiver, and microcontroller as well as the energy source components (batteries, solar cells, thermoelectric generators (TEG), supercapacitors and DC/DC converters). The tool allows the user to plug and play different pre characterized devices as well as add user-defined devices. The goal of this simulation tool is to predict the lifetime of a device and scope for extension using ambient energy sources.Keywords: Wireless Sensor Network, IoT, edge device, simulation, solar cells, TEG, supercapacitor, energy harvesting
Procedia PDF Downloads 1337478 Simulation of Polymeric Precursors Production from Wine Industrial Organic Wastes
Authors: Tanapoom Phuncharoen, Tawiwat Sriwongsa, Kanita Boonruang, Apichit Svang-Ariyaskul
Abstract:
The production of dimethyl acetal, isovaleradehyde, and pyridine were simulated using Aspen Plus simulation. Upgrading cleaning water from wine industrial production is the main objective of the project. The winery waste composes of acetaldehyde, methanol, ethyl acetate, 1-propanol, water, isoamyl alcohol, and isobutanol. The project is separated into three parts; separation, reaction, and purification. Various processes were considered to maximize the profit along with obtaining high purity and recovery of each component with optimum heat duty. The results show a significant value of the product with purity more than 75% and recovery over 98%.Keywords: dimethyl acetal, pyridine, wine, aspen plus, isovaleradehyde, polymeric precursors
Procedia PDF Downloads 3277477 A Comparison of Clinical and Pathological TNM Staging in a COVID-19 Era
Authors: Sophie Mills, Leila L. Touil, Richard Sisson
Abstract:
Introduction: The TNM classification is the global standard for the staging of head and neck cancers. Accurate clinical-radiological staging of tumours (cTNM) is essential to predict prognosis, facilitate surgical planning and determine the need for other therapeutic modalities. This study aims to determine the accuracy of pre-operative cTNM staging using pathological TNM (pTNM) and consider possible causes of TNM stage migration, noting any variation throughout the COVID-19 pandemic. Materials and Methods: A retrospective cohort study examined records of patients with surgical management of head and neck cancer at a tertiary head and neck centre from November 2019 to November 2020. Data was extracted from Somerset Cancer Registry and histopathology reports. cTNM and pTNM were compared before and during the first wave of COVID-19, as well as with other potential prognostic factors such as tumour site and tumour stage. Results: 119 cases were identified, of which 52.1% (n=62) were male, and 47.9% (n=57) were female with a mean age of 67 years. Clinical and pathological staging differed in 54.6% (n=65) of cases. Of the patients with stage migration, 40.4% (n=23) were up-staged and 59.6% (n=34) were down-staged compared with pTNM. There was no significant difference in the accuracy of cTNM staging compared with age, sex, or tumour site. There was a statistically highly significant (p < 0.001) correlation between cTNM accuracy and tumour stage, with the accuracy of cTNM staging decreasing with the advancement of pTNM staging. No statistically significant variation was noted between patients staged prior to and during COVID-19. Conclusions: Discrepancies in staging can impact management and outcomes for patients. This study found that the higher the pTNM, the more likely stage migration will occur. These findings are concordant with the oncology literature, which highlights the need to improve the accuracy of cTNM staging for more advanced tumours.Keywords: COVID-19, head and neck cancer, stage migration, TNM staging
Procedia PDF Downloads 1097476 Treatment of Feline Infectious Peritonitis in Cats with Molnupiravir: Clinical Observations and Outcomes For 54 Cases
Authors: T. M. Clark, S. J. Coggins, R. Malik, J. King, R. Korman
Abstract:
Objectives: This observational study investigated the use of molnupiravir for treatment of cats with naturally occurring feline infectious peritonitis. Methods: From September 2022 to February 2024, 66 cats diagnosed with FIP across 32 veterinary practices, mainly in Australia, were enrolled. Of these, 54 cats met the inclusion criteria. Complete remission was defined by the resolution of clinical signs and normalisation of A:G ratio (to ≥0.6). Presumptive remission was defined as sustained resolution of FIP-related clinical signs for at least 100 days post cessation of antiviral therapy. Results: In Cohort 1, 18 cats were treated with molnupiravir monotherapy. Thirteen achieved complete remission and three attained presumptive remission, resulting in an overall remission rate of 89% and a provisional cure rate of 72%, with three relapses. Cohort 2 included 29 cats treated with a short induction course of GS-441524 and/or remdesivir before switching to molnupiravir; 23 attained complete remission, and two achieved presumptive remission. The overall cure rate was 86% with no relapses. Seven cats in cohort 3 were initially treated with extended courses of GS-441524, remdesivir, and/or mefloquine and experienced treatment failure or relapse. Molnupiravir was introduced as a rescue therapy; 6 achieved complete remission and 1 achieved presumed remission, resulting in a 100% cure rate with no relapses. Few adverse effects were reported, with the most notable including neutropenia, transient elevations in hepatic enzymes, and polydipsia/polyuria. Conclusion and Relevance: Molnupiravir as a monotherapy, or in combination with other antivirals, represents an accessible, effective treatment for FIP when given at a dosage of 10-15 mg/kg BID. Success occurred across various presentations of FIP, including cases with ocular and neurological involvement.Keywords: feline infectious peritonitis, FIP, molnupiravir, nucleoside analogue, antiviral
Procedia PDF Downloads 227475 Modeling of Electrokinetic Mixing in Lab on Chip Microfluidic Devices
Authors: Virendra J. Majarikar, Harikrishnan N. Unni
Abstract:
This paper sets to demonstrate a modeling of electrokinetic mixing employing electroosmotic stationary and time-dependent microchannel using alternate zeta patches on the lower surface of the micromixer in a lab on chip microfluidic device. Electroosmotic flow is amplified using different 2D and 3D model designs with alternate and geometric zeta potential values such as 25, 50, and 100 mV, respectively, to achieve high concentration mixing in the electrokinetically-driven microfluidic system. The enhancement of electrokinetic mixing is studied using Finite Element Modeling, and simulation workflow is accomplished with defined integral steps. It can be observed that the presence of alternate zeta patches can help inducing microvortex flows inside the channel, which in turn can improve mixing efficiency. Fluid flow and concentration fields are simulated by solving Navier-Stokes equation (implying Helmholtz-Smoluchowski slip velocity boundary condition) and Convection-Diffusion equation. The effect of the magnitude of zeta potential, the number of alternate zeta patches, etc. are analysed thoroughly. 2D simulation reveals that there is a cumulative increase in concentration mixing, whereas 3D simulation differs slightly with low zeta potential as that of the 2D model within the T-shaped micromixer for concentration 1 mol/m3 and 0 mol/m3, respectively. Moreover, 2D model results were compared with those of 3D to indicate the importance of the 3D model in a microfluidic design process.Keywords: COMSOL Multiphysics®, electrokinetic, electroosmotic, microfluidics, zeta potential
Procedia PDF Downloads 2427474 Computational Fluid Dynamics Simulation Study of Flow near Moving Wall of Various Surface Types Using Moving Mesh Method
Authors: Khizir Mohd Ismail, Yu Jun Lim, Tshun Howe Yong
Abstract:
The study of flow behavior in an enclosed volume using Computational Fluid Dynamics (CFD) has been around for decades. However, due to the knowledge limitation of adaptive grid methods, the flow in an enclosed volume near the moving wall using CFD is less explored. A CFD simulation of flow in an enclosed volume near a moving wall was demonstrated and studied by introducing a moving mesh method and was modeled with Unsteady Reynolds-Averaged Navier-Stokes (URANS) approach. A static enclosed volume with controlled opening size in the bottom was positioned against a moving, translational wall with sliding mesh features. Controlled variables such as smoothed, crevices and corrugated wall characteristics, the distance between the enclosed volume to the wall and the moving wall speed against the enclosed chamber were varied to understand how the flow behaves and reacts in between these two geometries. These model simulations were validated against experimental results and provided result confidence when the simulation had shown good agreement with the experimental data. This study had provided better insight into the flow behaving in an enclosed volume when various wall types in motion were introduced within the various distance between each other and create a potential opportunity of application which involves adaptive grid methods in CFD.Keywords: moving wall, adaptive grid methods, CFD, moving mesh method
Procedia PDF Downloads 1477473 Groundwater Flow Assessment Based on Numerical Simulation at Omdurman Area, Khartoum State, Sudan
Authors: Adil Balla Elkrail
Abstract:
Visual MODFLOW computer codes were selected to simulate head distribution, calculate the groundwater budgets of the area, and evaluate the effect of external stresses on the groundwater head and to demonstrate how the groundwater model can be used as a comparative technique in order to optimize utilization of the groundwater resource. A conceptual model of the study area, aquifer parameters, boundary, and initial conditions were used to simulate the flow model. The trial-and-error technique was used to calibrate the model. The most important criteria used to check the calibrated model were Root Mean Square error (RMS), Mean Absolute error (AM), Normalized Root Mean Square error (NRMS) and mass balance. The maps of the simulated heads elaborated acceptable model calibration compared to observed heads map. A time length of eight years and the observed heads of the year 2004 were used for model prediction. The predictive simulation showed that the continuation of pumping will cause relatively high changes in head distribution and components of groundwater budget whereas, the low deficit computed (7122 m3/d) between inflows and outflows cannot create a significant drawdown of the potentiometric level. Hence, the area under consideration may represent a high permeability and productive zone and strongly recommended for further groundwater development.Keywords: aquifers, model simulation, groundwater, calibrations, trail-and- error, prediction
Procedia PDF Downloads 2447472 The Effect of Technology on Skin Development and Progress
Authors: Haidy Weliam Megaly Gouda
Abstract:
Dermatology is often a neglected specialty in low-resource settings despite the high morbidity associated with skin disease. This becomes even more significant when associated with HIV infection, as dermatological conditions are more common and aggressive in HIV-positive patients. African countries have the highest HIV infection rates, and skin conditions are frequently misdiagnosed and mismanaged because of a lack of dermatological training and educational material. The frequent lack of diagnostic tests in the African setting renders basic clinical skills all the more vital. This project aimed to improve the diagnosis and treatment of skin disease in the HIV population in a district hospital in Malawi. A basic dermatological clinical tool was developed and produced in collaboration with local staff and based on available literature and data collected from clinics. The aim was to improve diagnostic accuracy and provide guidance for the treatment of skin disease in HIV-positive patients. A literature search within Embassy, Medline and Google Scholar was performed and supplemented through data obtained from attending 5 Antiretroviral clinics. From the literature, conditions were selected for inclusion in the resource if they were described as specific, more prevalent, or extensive in the HIV population or have more adverse outcomes if they develop in HIV patients. Resource-appropriate treatment options were decided using Malawian Ministry of Health guidelines and textbooks specific to African dermatology. After the collection of data and discussion with local clinical and pharmacy staff, a list of 15 skin conditions was included, and a booklet was created using the simple layout of a picture, a diagnostic description of the disease and treatment options. Clinical photographs were collected from local clinics (with full consent of the patient) or from the book ‘Common Skin Diseases in Africa’ (permission granted if fully acknowledged and used in a not-for-profit capacity). This tool was evaluated by the local staff alongside an educational teaching session on skin disease. This project aimed to reduce uncertainty in diagnosis and provide guidance for appropriate treatment in HIV patients by gathering information into one practical and manageable resource. To further this project, we hope to review the effectiveness of the tool in practice.Keywords: prevalence and pattern of skin diseases, impact on quality of life, rural Nepal, interventions, quality switched ruby laser, skin color river blindness, clinical signs, circularity index, grey level run length matrix, grey level co-occurrence matrix, local binary pattern, object detection, ring detection, shape identification
Procedia PDF Downloads 647471 The Influence of E-Health Education on Professional Practice: A Qualitative Study
Authors: Sisira Edirippulige, Anthony C. Smith, Sumudu Wickramasinghe, Nigel R. Armfield
Abstract:
Background: E-Health is steadily integrating into modern health services, making significant changes in the way health services are traditionally delivered. To work in this new environment, healthcare workers are required to have new knowledge, skills, and competencies specific to e-Health. The aim of this study was to understand the self-reported perceptions of graduates regarding the influence of an e-Health postgraduate program on their professional careers. Methods: All graduates from 2005 to 2015 were surveyed using an online questionnaire that consisted of a mixture of closed and open-ended questions. Results: The number of participants in the study was 32. Response rate was 62%. Graduates thought that the postgraduate e-Health program had an influence on their professional practice. The majority of the participants mentioned that they had worked in the e-Health field since their graduation. Their professional roles mainly involved implementation of e-Health in health service settings and the use of e-Health in clinical practice. Conclusions: While e-Health may be steadily integrating into modern health services, e-Health specific job opportunities are still relatively limited. E-Health workforce development must be given priority.Keywords: e-health, postgraduate education, clinical practice, curriculum
Procedia PDF Downloads 1647470 Recognising and Managing Haematoma Following Thyroid Surgery: Simulation Teaching is Effective
Authors: Emily Moore, Dora Amos, Tracy Ellimah, Natasha Parrott
Abstract:
Postoperative haematoma is a well-recognised complication of thyroid surgery with an incidence of 1-5%. Haematoma formation causes progressive airway obstruction, necessitating emergency bedside haematoma evacuation in up to ¼ of patients. ENT UK, BAETS and DAS have developed consensus guidelines to improve perioperative care, recommending that all healthcare staff interacting with patients undergoing thyroid surgery should be trained in managing post-thyroidectomy haematoma. The aim was to assess the effectiveness of a hybrid simulation model in improving clinician’s confidence in dealing with this surgical emergency. A hybrid simulation was designed, consisting of a standardised patient wearing a part-task trainer to mimic a post-thyroidectomy haematoma in a real patient. The part-task trainer was an adapted C-spine collar with layers of silicone representing the skin and strap muscles and thickened jelly representing the haematoma. Both the skin and strap muscle layers had to be opened in order to evacuate the haematoma. Boxes have been implemented into the appropriate post operative areas (recovery and surgical wards), which contain a printed algorithm designed to assist in remembering a sequence of steps for haematoma evacuation using the ‘SCOOP’ method (skin exposure, cut sutures, open skin, open muscles, pack wound) along with all the necessary equipment to open the front of the neck. Small-group teaching sessions were delivered by ENT and anaesthetic trainees to members of the multidisciplinary team normally involved in perioperative patient care, which included ENT surgeons, anaesthetists, recovery nurses, HCAs and ODPs. The DESATS acronym of signs and symptoms to recognise (difficulty swallowing, EWS score, swelling, anxiety, tachycardia, stridor) was highlighted. Then participants took part in the hybrid simulation in order to practice this ‘SCOOP’ method of haematoma evacuation. Participants were surveyed using a Likert scale to assess their level of confidence pre- and post teaching session. 30 clinicians took part. Confidence (agreed/strongly agreed) in recognition of post thyroidectomy haematoma improved from 58.6% to 96.5%. Confidence in management improved from 27.5% to 89.7%. All participants successfully decompressed the haematoma. All participants agreed/strongly agreed, that the sessions were useful for their learning. Multidisciplinary team simulation teaching is effective at significantly improving confidence in both the recognition and management of postoperative haematoma. Hybrid simulation sessions are useful and should be incorporated into training for clinicians.Keywords: thyroid surgery, haematoma, teaching, hybrid simulation
Procedia PDF Downloads 977469 Numerical Investigation of Entropy Signatures in Fluid Turbulence: Poisson Equation for Pressure Transformation from Navier-Stokes Equation
Authors: Samuel Ahamefula Mba
Abstract:
Fluid turbulence is a complex and nonlinear phenomenon that occurs in various natural and industrial processes. Understanding turbulence remains a challenging task due to its intricate nature. One approach to gain insights into turbulence is through the study of entropy, which quantifies the disorder or randomness of a system. This research presents a numerical investigation of entropy signatures in fluid turbulence. The work is to develop a numerical framework to describe and analyse fluid turbulence in terms of entropy. This decomposes the turbulent flow field into different scales, ranging from large energy-containing eddies to small dissipative structures, thus establishing a correlation between entropy and other turbulence statistics. This entropy-based framework provides a powerful tool for understanding the underlying mechanisms driving turbulence and its impact on various phenomena. This work necessitates the derivation of the Poisson equation for pressure transformation of Navier-Stokes equation and using Chebyshev-Finite Difference techniques to effectively resolve it. To carry out the mathematical analysis, consider bounded domains with smooth solutions and non-periodic boundary conditions. To address this, a hybrid computational approach combining direct numerical simulation (DNS) and Large Eddy Simulation with Wall Models (LES-WM) is utilized to perform extensive simulations of turbulent flows. The potential impact ranges from industrial process optimization and improved prediction of weather patterns.Keywords: turbulence, Navier-Stokes equation, Poisson pressure equation, numerical investigation, Chebyshev-finite difference, hybrid computational approach, large Eddy simulation with wall models, direct numerical simulation
Procedia PDF Downloads 947468 Virtual Assessment of Measurement Error in the Fractional Flow Reserve
Authors: Keltoum Chahour, Mickael Binois
Abstract:
Due to a lack of standardization during the invasive fractional flow reserve (FFR) procedure, the index is subject to many sources of uncertainties. In this paper, we investigate -through simulation- the effect of the (FFR) device position and configuration on the obtained value of the (FFR) fraction. For this purpose, we use computational fluid dynamics (CFD) in a 3D domain corresponding to a diseased arterial portion. The (FFR) pressure captor is introduced inside it with a given length and coefficient of bending to capture the (FFR) value. To get over the computational limitations, basically, the time of the simulation is about 2h 15min for one (FFR) value; we generate a Gaussian Process (GP) model for (FFR) prediction. The (GP) model indicates good accuracy and demonstrates the effective error in the measurement created by the random configuration of the pressure captor.Keywords: fractional flow reserve, Gaussian processes, computational fluid dynamics, drift
Procedia PDF Downloads 1387467 Study of a Developed Model Describing a Vacuum Membrane Distillation Unit Coupled to Solar Energy
Authors: Fatma Khaled, Khaoula Hidouri, Bechir Chaouachi
Abstract:
Desalination using solar energy coupled with membrane techniques such as vacuum membrane distillation (VMD) is considered as an interesting alternative for the production of pure water. During this work, a developed model of a polytetrafluoroethylene (PTFE) hollow fiber membrane module of a VMD unit of seawater was carried out. This simulation leads to establishing a comparison between the effects of two different equations of the vaporization latent heat on the membrane surface temperature and on the unit productivity. Besides, in order to study the effect of putting membrane modules in series on the outlet fluid temperature and on the productivity of the process, a simulation was executed.Keywords: vacuum membrane distillation, membrane module, membrane temperature, productivity
Procedia PDF Downloads 1927466 Histopathological and Microbiological Studies on Subclinical Endometritis in Repeat Breeder Cow
Authors: Mehmet Akoz
Abstract:
In this study the clinical, mikrobiological and histopathological diagnoses of subclinic and nonspecific endometritis resulting in repeat breeder. Total of 36 cows, aging between 3-9 years having normal oestrous cycles with no pregnancy following at least 3 unsuccesful inseminations, were used. Biopsy specimens for histopathological and swab for bacteri microbiological cultures were obtanied from endometrium of repeat breeders showing no macroskopic evidence of any defectiveness of genital organs and based on anamneses. Eleven out of 36 cows have positive bacteriological results. While 19 cows have varying degrees of and endometritis, the other 17 cows did not have any pathologic lesions. A total of 19 biopsies in 4 of the I. degree in endometritis, 9 of them II. degree endometritis and 6 were also III. degree endometritis was evaluated. In the majority of cows by the histopathological evaluation results (78.9%) monitored by the second and third-degree endometritis shape, in 83.3% of the isolated microorganisms were identified similar results. Histopathological and microbiological evaluation, along with clinical examination are important for the diagnoses and treatment of repeat breeders, having no resistance with well dissipation to endometrium rifaximina foam formulation was found to be more effective than PGF2α.Keywords: repeat breeder, dairy cattle, histopathology, PGF2α, rifaximina
Procedia PDF Downloads 2897465 Thermomechanical Damage Modeling of F114 Carbon Steel
Authors: A. El Amri, M. El Yakhloufi Haddou, A. Khamlichi
Abstract:
The numerical simulation based on the Finite Element Method (FEM) is widely used in academic institutes and in the industry. It is a useful tool to predict many phenomena present in the classical manufacturing forming processes such as fracture. But, the results of such numerical model depend strongly on the parameters of the constitutive behavior model. The influences of thermal and mechanical loads cause damage. The temperature and strain rate dependent materials’ properties and their modelling are discussed. A Johnson-Cook Model of damage has been selected for the numerical simulations. Virtual software called the ABAQUS 6.11 is used for finite element analysis. This model was introduced in order to give information concerning crack initiation during thermal and mechanical loads.Keywords: thermo-mechanical fatigue, failure, numerical simulation, fracture, damage
Procedia PDF Downloads 3937464 Numerical Solution of 1-D Shallow Water Equations at Junction for Sub-Critical and Super-Critical Flow
Authors: Mohamed Elshobaki, Alessandro Valiani, Valerio Caleffi
Abstract:
In this paper, we solve 1-D shallow water equation for sub-critical and super-critical water flow at junction. The water flow at junction has been studied for the last 50 years from the physical-hydraulic point of views and for numerical computations need more attention. For numerical simulation, we need to establish an inner boundary condition at the junction to avoid an oscillation which rise from the waves interactions at the junction. Indeed, we introduce a new boundary condition at the junction based on the mass conservation, total head, and the admissible wave relations between the flow parameters in the three branches to predict the water depths and discharges at the junction. These boundary conditions are valid for sub-critical flow and super-critical flow.Keywords: numerical simulation, junction flow, sub-critical flow, super-critical flow
Procedia PDF Downloads 5117463 Different Sampling Schemes for Semi-Parametric Frailty Model
Authors: Nursel Koyuncu, Nihal Ata Tutkun
Abstract:
Frailty model is a survival model that takes into account the unobserved heterogeneity for exploring the relationship between the survival of an individual and several covariates. In the recent years, proposed survival models become more complex and this feature causes convergence problems especially in large data sets. Therefore selection of sample from these big data sets is very important for estimation of parameters. In sampling literature, some authors have defined new sampling schemes to predict the parameters correctly. For this aim, we try to see the effect of sampling design in semi-parametric frailty model. We conducted a simulation study in R programme to estimate the parameters of semi-parametric frailty model for different sample sizes, censoring rates under classical simple random sampling and ranked set sampling schemes. In the simulation study, we used data set recording 17260 male Civil Servants aged 40–64 years with complete 10-year follow-up as population. Time to death from coronary heart disease is treated as a survival-time and age, systolic blood pressure are used as covariates. We select the 1000 samples from population using different sampling schemes and estimate the parameters. From the simulation study, we concluded that ranked set sampling design performs better than simple random sampling for each scenario.Keywords: frailty model, ranked set sampling, efficiency, simple random sampling
Procedia PDF Downloads 2127462 Design of Neural Predictor for Vibration Analysis of Drilling Machine
Authors: İkbal Eski
Abstract:
This investigation is researched on design of robust neural network predictors for analyzing vibration effects on moving parts of a drilling machine. Moreover, the research is divided two parts; first part is experimental investigation, second part is simulation analysis with neural networks. Therefore, a real time the drilling machine is used to vibrations during working conditions. The measured real vibration parameters are analyzed with proposed neural network. As results: Simulation approaches show that Radial Basis Neural Network has good performance to adapt real time parameters of the drilling machine.Keywords: artificial neural network, vibration analyses, drilling machine, robust
Procedia PDF Downloads 3967461 Advancements in AI Training and Education for a Future-Ready Healthcare System
Authors: Shamie Kumar
Abstract:
Background: Radiologists and radiographers (RR) need to educate themselves and their colleagues to ensure that AI is integrated safely, useful, and in a meaningful way with the direction it always benefits the patients. AI education and training are fundamental to the way RR work and interact with it, such that they feel confident using it as part of their clinical practice in a way they understand it. Methodology: This exploratory research will outline the current educational and training gaps for radiographers and radiologists in AI radiology diagnostics. It will review the status, skills, challenges of educating and teaching. Understanding the use of artificial intelligence within daily clinical practice, why it is fundamental, and justification on why learning about AI is essential for wider adoption. Results: The current knowledge among RR is very sparse, country dependent, and with radiologists being the majority of the end-users for AI, their targeted training and learning AI opportunities surpass the ones available to radiographers. There are many papers that suggest there is a lack of knowledge, understanding, and training of AI in radiology amongst RR, and because of this, they are unable to comprehend exactly how AI works, integrates, benefits of using it, and its limitations. There is an indication they wish to receive specific training; however, both professions need to actively engage in learning about it and develop the skills that enable them to effectively use it. There is expected variability amongst the profession on their degree of commitment to AI as most don’t understand its value; this only adds to the need to train and educate RR. Currently, there is little AI teaching in either undergraduate or postgraduate study programs, and it is not readily available. In addition to this, there are other training programs, courses, workshops, and seminars available; most of these are short and one session rather than a continuation of learning which cover a basic understanding of AI and peripheral topics such as ethics, legal, and potential of AI. There appears to be an obvious gap between the content of what the training program offers and what the RR needs and wants to learn. Due to this, there is a risk of ineffective learning outcomes and attendees feeling a lack of clarity and depth of understanding of the practicality of using AI in a clinical environment. Conclusion: Education, training, and courses need to have defined learning outcomes with relevant concepts, ensuring theory and practice are taught as a continuation of the learning process based on use cases specific to a clinical working environment. Undergraduate and postgraduate courses should be developed robustly, ensuring the delivery of it is with expertise within that field; in addition, training and other programs should be delivered as a way of continued professional development and aligned with accredited institutions for a degree of quality assurance.Keywords: artificial intelligence, training, radiology, education, learning
Procedia PDF Downloads 877460 Effects of Renin Angiotensin Pathway Inhibition on Efficacy of Anti-PD-1/PD-L1 Treatment in Metastatic Cancer
Authors: Philip Friedlander, John Rutledge, Jason Suh
Abstract:
Inhibition of programmed death-1 (PD-1) or its ligand PD-L1 confers therapeutic efficacy in a wide range of solid tumor malignancies. Primary or acquired resistance can develop through activation of immunosuppressive immune cells such as tumor-associated macrophages. The renin angiotensin system (RAS) systemically regulates fluid and sodium hemodynamics, but components are expressed on and regulate the activity of immune cells, particularly of myeloid lineage. We hypothesized that inhibition of RAS would improve the efficacy of PD-1/PD-L-1 treatment. A retrospective analysis was performed through a chart review of patients with solid metastatic malignancies treated with a PD-1/PD-L1 inhibitor between 1/2013 and 6/2019 at Valley Hospital, a community hospital in New Jersey, USA. Efficacy was determined by medical oncologist documentation of clinical benefit in visit notes and by the duration of time on immunotherapy treatment. The primary endpoint was the determination of efficacy differences in patients treated with an inhibitor of RAS ( ace inhibitor, ACEi, or angiotensin blocker, ARB) compared to patients not treated with these inhibitors. To control for broader antihypertensive effects, efficacy as a function of treatment with beta blockers was assessed. 173 patients treated with PD-1/PD-L-1 inhibitors were identified of whom 52 were also treated with an ACEi or ARB. Chi-square testing revealed a statistically significant relationship between being on an ACEi or ARB and efficacy to PD-1/PD-L-1 therapy (p=0.001). No statistically significant relationship was seen between patients taking or not taking beta blocker antihypertensives (p= 0.33). Kaplan-Meier analysis showed statistically significant improvement in the duration of therapy favoring patients concomitantly treated with ACEi or ARB compared to patients not exposed to antihypertensives and to those treated with beta blockers. Logistic regression analysis revealed that age, gender, and cancer type did not have significant effects on the odds of experiencing clinical benefit (p=0.74, p=0.75, and p=0.81, respectively). We conclude that retrospective analysis of the treatment of patients with solid metastatic tumors with anti-PD-1/PD-L1 in a community setting demonstrates greater clinical benefit in the context of concomitant ACEi or ARB inhibition, irrespective of gender or age. This data supports the development of prospective assessment through randomized clinical trials.Keywords: angiotensin, cancer, immunotherapy, PD-1, efficacy
Procedia PDF Downloads 767459 Robust Heart Sounds Segmentation Based on the Variation of the Phonocardiogram Curve Length
Authors: Mecheri Zeid Belmecheri, Maamar Ahfir, Izzet Kale
Abstract:
Automatic cardiac auscultation is still a subject of research in order to establish an objective diagnosis. Recorded heart sounds as Phonocardiogram signals (PCG) can be used for automatic segmentation into components that have clinical meanings. These are the first sound, S1, the second sound, S2, and the systolic and diastolic components, respectively. In this paper, an automatic method is proposed for the robust segmentation of heart sounds. This method is based on calculating an intermediate sawtooth-shaped signal from the length variation of the recorded Phonocardiogram (PCG) signal in the time domain and, using its positive derivative function that is a binary signal in training a Recurrent Neural Network (RNN). Results obtained in the context of a large database of recorded PCGs with their simultaneously recorded ElectroCardioGrams (ECGs) from different patients in clinical settings, including normal and abnormal subjects, show a segmentation testing performance average of 76 % sensitivity and 94 % specificity.Keywords: heart sounds, PCG segmentation, event detection, recurrent neural networks, PCG curve length
Procedia PDF Downloads 1807458 Retrofitting Cement Plants with Oxyfuel Technology for Carbon Capture
Authors: Peloriadi Konstantina, Fakis Dimitris, Grammelis Panagiotis
Abstract:
Methods for carbon capture and storage (CCS) can play a key role in the reduction of industrial CO₂ emissions, especially in the cement industry, which accounts for 7% of global emissions. Cement industries around the world have committed to address this problem by reaching carbon neutrality by the year 2050. The aim of the work to be presented was to contribute to the decarbonization strategy by integrating the 1st generation oxyfuel technology in cement production plants. This technology has been shown to improve fuel efficiency while providing one of the most cost-effective solutions when compared to other capture methods. A validated simulation of the cement plant was thus used as a basis to develop an oxyfuel retrofitted cement process. The process model for the oxyfuel technology is developed on the ASPEN (Advanced System for Process Engineering) PLUSTM simulation software. This process consists of an Air Separation Unit (ASU), an oxyfuel cement plant with coal and alternative solid fuel (ASF) as feedstock, and a carbon dioxide processing unit (CPU). A detailed description and analysis of the CPU will be presented, including the findings of a literature review and simulation results, regarding the effects of flue gas impurities during operation. Acknowledgment: This research has been conducted in the framework of the EU funded AC2OCEM project, which investigates first and the second generation oxyfuel concepts.Keywords: oxyfuel technology, carbon capture and storage, CO₂ processing unit, cement, aspen plus
Procedia PDF Downloads 1957457 Tribologycal Design by Molecular Dynamics Simulation- The Influence of Porous Surfaces on Wall Slip and Bulk Shear
Authors: Seyedmajid Mehrnia, Maximilan Kuhr, Peter F. Pelz
Abstract:
Molecular Dynamics (MD) simulation is a proven method to inspect behaviours of lubricant oils in nano-scale gaps. However, most MD simulations on tribology have been performed with atomically smooth walls to determine wall slip and friction properties. This study will investigate the effect of porosity, specifically nano-porous walls, on wall slip properties of hydrocarbon oils confined between two walls in a Couette flow. Different pore geometries will be modelled to investigate the effect on wall slip and bulk shear. In this paper, the Polyalphaolefin (PAO) molecules are confined to a stationary and a moving wall. A hybrid force field consisting of different potential energy functions was employed in this MD simulation. Newton’s law defines how those forces will influence the atoms' movements. The interactions among surface atoms were simulated with an Embedded Atom Method (EAM) potential function which can represent the characteristics of metallic arrangements very strongly. We implemented NERD forcefield for intramolecular potential energy function. Also, Lennard-Jones potential was employed for nonbonded intermolecular interaction.Keywords: slip length, molecular dynamics, critical shear rate, Couette flow
Procedia PDF Downloads 132