Search results for: water treatment plant
6751 Genetic Trait Analysis of RIL Barley Genotypes to Sort-out the Top Ranked Elites for Advanced Yield Breeding Across Multi Environments of Tigray, Ethiopia
Authors: Hailekiros Tadesse Tekle, Yemane Tsehaye, Fetien Abay
Abstract:
Barley (Hordeum vulgare L.) is one of the most important cereal crops in the world, grown for the poor farmers in Tigray with low yield production. The purpose of this research was to estimate the performance of 166 barley genotypes against the quantitative traits with detailed analysis of the variance component, heritability, genetic advance, and genetic usefulness parameters. The finding of ANOVA was highly significant variation (p ≤ 0:01) for all the genotypes. We found significant differences in coefficient of variance (CV of 15%) for 5 traits out of the 12 quantitative traits. The topmost broad sense heritability (H2) was recorded for seeds per spike (98.8%), followed by thousand seed weight (96.5%) with 79.16% and 56.25%, respectively, of GAM. The traits with H2 ≥ 60% and GA/GAM ≥ 20% suggested the least influenced by the environment, governed by the additive genes and direct selection for improvement of such beneficial traits for the studied genotypes. Hence, the 20 outstanding recombinant inbred lines (RIL) barley genotypes performing early maturity, high yield, and 1000 seed weight traits simultaneously were the top ranked group barley genotypes out of the 166 genotypes. These are; G5, G25, G33, G118, G36, G123, G28, G34, G14, G10, G3, G13, G11, G32, G8, G39, G23, G30, G37, and G26. They were early in maturity, high TSW and GYP (TSW ≥ 55 g, GYP ≥ 15.22 g/plant, and DTM below 106 days). In general, the 166 genotypes were classified as high (group 1), medium (group 2), and low yield production (group 3) genotypes in terms of yield and yield component trait analysis by clustering; and genotype parameter analysis such as the heritability, genetic advance, and genetic usefulness traits in this investigation.Keywords: barley, clustering, genetic advance, heritability, usefulness, variability, yield
Procedia PDF Downloads 926750 Analytics Model in a Telehealth Center Based on Cloud Computing and Local Storage
Authors: L. Ramirez, E. Guillén, J. Sánchez
Abstract:
Some of the main goals about telecare such as monitoring, treatment, telediagnostic are deployed with the integration of applications with specific appliances. In order to achieve a coherent model to integrate software, hardware, and healthcare systems, different telehealth models with Internet of Things (IoT), cloud computing, artificial intelligence, etc. have been implemented, and their advantages are still under analysis. In this paper, we propose an integrated model based on IoT architecture and cloud computing telehealth center. Analytics module is presented as a solution to control an ideal diagnostic about some diseases. Specific features are then compared with the recently deployed conventional models in telemedicine. The main advantage of this model is the availability of controlling the security and privacy about patient information and the optimization on processing and acquiring clinical parameters according to technical characteristics.Keywords: analytics, telemedicine, internet of things, cloud computing
Procedia PDF Downloads 3266749 Corrosion Resistance of Mild Steel Coated with Different Polyimides/h-Boron Nitride Composite Films
Authors: Tariku Nefo Duke
Abstract:
Herein, we synthesized three PIs/h-boron nitride composite films for corrosion resistance of mild steel material. The structures of these three polyimide/h-boron nitride composite films were confirmed using (FTIR, 1H NMR, 13C NMR, and 2D NMR) spectroscopy techniques. The synthesized PIs composite films have high mechanical properties, thermal stability, high glass-transition temperature (Tg), and insulating properties. It has been shown that the presence of electroactive TiO2, SiO2, and h-BN, in polymer coatings effectively inhibits corrosion. The h-BN displays an admirable anti-corrosion barrier for the 6F-OD and BT-OD films. PI/ h-BN composite films of 6F-OD exhibited better resistance to water vapor, high corrosion resistance, and positive corrosion voltage. Only four wt. percentage of h-BN in the composite is adequate.Keywords: polyimide, corrosion resistance, electroactive, Tg
Procedia PDF Downloads 2066748 Fixed Point Iteration of a Damped and Unforced Duffing's Equation
Authors: Paschal A. Ochang, Emmanuel C. Oji
Abstract:
The Duffing’s Equation is a second order system that is very important because they are fundamental to the behaviour of higher order systems and they have applications in almost all fields of science and engineering. In the biological area, it is useful in plant stem dependence and natural frequency and model of the Brain Crash Analysis (BCA). In Engineering, it is useful in the study of Damping indoor construction and Traffic lights and to the meteorologist it is used in the prediction of weather conditions. However, most Problems in real life that occur are non-linear in nature and may not have analytical solutions except approximations or simulations, so trying to find an exact explicit solution may in general be complicated and sometimes impossible. Therefore we aim to find out if it is possible to obtain one analytical fixed point to the non-linear ordinary equation using fixed point analytical method. We started by exposing the scope of the Duffing’s equation and other related works on it. With a major focus on the fixed point and fixed point iterative scheme, we tried different iterative schemes on the Duffing’s Equation. We were able to identify that one can only see the fixed points to a Damped Duffing’s Equation and not to the Undamped Duffing’s Equation. This is because the cubic nonlinearity term is the determining factor to the Duffing’s Equation. We finally came to the results where we identified the stability of an equation that is damped, forced and second order in nature. Generally, in this research, we approximate the solution of Duffing’s Equation by converting it to a system of First and Second Order Ordinary Differential Equation and using Fixed Point Iterative approach. This approach shows that for different versions of Duffing’s Equations (damped), we find fixed points, therefore the order of computations and running time of applied software in all fields using the Duffing’s equation will be reduced.Keywords: damping, Duffing's equation, fixed point analysis, second order differential, stability analysis
Procedia PDF Downloads 2986747 Electrospun TiO2/Nylon-6 Nanofiber Mat: Improved Hydrophilicity Properties
Authors: Roshank Haghighat, Laleh Maleknia
Abstract:
In this study, electrospun TiO2/nylon-6 nanofiber mats were successfully prepared. The nanofiber mats were characterized by SEM, FE-SEM, TEM, XRD, WCA, and EDX analyses. The results revealed that fibers in different distinct sizes (nano and subnano scale) were obtained with the electrospinning parameters. The presence of a small amount of TiO2 in nylon-6 solution was found to improve the hydrophilicity (antifouling effect), mechanical strength, antimicrobial and UV protecting ability of electrospun mats. The resultant nylon-6/TiO2 antimicrobial spider-net like composite mat with antifouling effect may be a potential candidate for future water filter applications, and its improved UV blocking ability will also make it a potential candidate for protective clothing.Keywords: electrospinning, hydrophilicity, antimicrobial, nanocomposite, nylon-6/TiO2
Procedia PDF Downloads 3546746 Conjugate Free Convection in a Square Cavity Filled with Nanofluid and Heated from Below by Spatial Wall Temperature
Authors: Ishak Hashim, Ammar Alsabery
Abstract:
The problem of conjugate free convection in a square cavity filled with nanofluid and heated from below by spatial wall temperature is studied numerically using the finite difference method. Water-based nanofluid with copper nanoparticles are chosen for the investigation. Governing equations are solved over a wide range of nanoparticle volume fraction (0 ≤ φ ≤ 0.2), wave number ((0 ≤ λ ≤ 4) and thermal conductivity ratio (0.44 ≤ Kr ≤ 6). The results presented for values of the governing parameters in terms of streamlines, isotherms and average Nusselt number. It is found that the flow behavior and the heat distribution are clearly enhanced with the increment of the non-uniform heating.Keywords: conjugate free convection, square cavity, nanofluid, spatial temperature
Procedia PDF Downloads 3656745 Investigating the Combined Medicinal Effects of Withania Somnifera (Ashwaghandha) and Murraya Koenigii (Curry Pata) in Vitro
Authors: Sadia Roshan, Kulsoom Sughra, Shazia Shamas, Shamaila Irum, Haleema Sadia
Abstract:
To evaluate synergistic medicinal effects of Withania somnifera (Ashwaghandha) and Murraya koenigii (Curry pata) in vitro. Antimicrobial activity was determined using the disc diffusion method against five bacterial and two fungal strains. The antioxidant activity was evaluated by the DPPH assay. The antidiabetic activity was evaluated by alpha-glucosidase inhibition assay and alpha-amylase inhibition assay. Synergistic antibacterial activity was observed against all the strains of bacteria, either Gram-positive or Gram-negative and fungi under study conditions. The maximum antibacterial activity was displayed by combined extract against E. coli i.e. 26±0.4mm. Maximum antifungal activity was shown by combined extract against Aspergillus niger, i.e., 17.3±0.5mm. The antioxidant activity of the combined extract was also significant. Alpha-glucosidase inhibition and alpha-amylase inhibition assays also showed synergism. Results indicate that Withania somnifera and Murraya koengii have medicinal properties. The combined extract of both plants is more potent than their individual extracts, suggesting that these can work in synergism. The research suggests that different plant extracts could be used in combination to increase their medicinal activities by many folds, thus giving an insight into future use of herbal medication.Keywords: withania somnifera, murraya koenigii, antimicrobial activity, gram-positive bacetria, gram-negative bacteria
Procedia PDF Downloads 866744 A Green Approach towards the Production of CaCO₃ Scaffolds for Bone Tissue Engineering
Authors: Sudhir Kumar Sharma, Abiy D. Woldetsadik, Mazin Magzoub, Ramesh Jagannathan
Abstract:
It is well known that bioactive ceramics exhibit specific biological affinities, especially in the area of tissue re-generation. In this context, we report the development of an eminently scalable, novel, supercritical CO₂ based process for the fabrication of hierarchically porous 'soft' CaCO₃ scaffolds. Porosity at the macro, micro, and nanoscales was obtained through process optimization of the so-called 'coffee-ring effect'. Exposure of these CaCO₃ scaffolds to monocytic THP-1 cells yielded negligible levels of tumor necrosis factor-alpha (TNF-α) thereby confirming the lack of immunogenicity of the scaffolds. ECM protein treatment of the scaffolds showed enhanced adsorption comparable to standard control such as glass. In vitro studies using osteoblast precursor cell line, MC3T3, also demonstrated the cytocompatibility of hierarchical porous CaCO₃ scaffolds.Keywords: supercritical CO2, CaCO3 scaffolds, coffee-ring effect, ECM proteins
Procedia PDF Downloads 3076743 Microwave Production of Geopolymers Using Fluidized Bed Combustion Bottom Ash
Authors: Osholana Tobi Stephen, Rotimi Emmanuel Sadiku, Bilainu Oboirien.o
Abstract:
Fluidized bed combustion (FBC) is a clean coal technology used in the combustion of low-grade coals for power generation. The production of large solid wastes such as bottom ashes from this process is a problem. The bottom ash contains some toxic elements which can leach out soils and contaminate surface and ground water; for this reason, they can neither be disposed in landfills nor lagoons anymore. The production of geopolymers from bottom ash for structural and concrete applications is an option for their disposal. In this study, the waste bottom ash obtained from the combustion of three low grade South African coals in a bubbling fluidized bed reactor was used to produce geopolymers. The geopolymers were cured in a household microwave. The results showed that the microwave curing enhanced the reactivity and strength of the geopolymers.Keywords: bottom ash, coal, fluidized bed combustion (FBC) geopolymer, compressive strength
Procedia PDF Downloads 3196742 Synergistic Effect of Zr-Modified Cu-ZnO-Al₂O₃ and Bio-Templated HZSM-5 Catalysts in CO₂ Hydrogenation to Methanol and DME
Authors: Abrar Hussain, Kuen-Song Lin, Sayed Maeen Badshah, Jamshid Hussain
Abstract:
The conversion of CO₂ into versatile, useful compounds such as fuels and other chemicals remains a challenging frontier in research, demanding the innovation of increasingly effective catalysts. In the present work, a catalyst-incorporating zirconium (Zr) modification within CuO–ZnO–Al₂O₃ (CZA) was synthesized via a co-precipitation method to convert CO₂ into methanol. Furthermore, bio-HZSM-5 was used to promote methanol dehydration to produce dimethyl ether (DME). We prepared the porous hierarchy bio-HZSM-5 with remarkable pore connectivity by utilizing an economical loofah sponge and rice husks as biotemplates. The synthesized catalysts were characterized using Field Emission Scanning Electron Microscopy (FE-SEM), X–ray diffraction (XRD), N₂ adsorption (BET), temperature-programmed desorption (NH₃-TPD) and thermogravimetric analysis (TGA). The Zr addition improved the performance of the CZZA catalyst as a structural promoter, leading to increased DME selectivity and total carbon conversion by enhancing active sites, surface area, and the synergistic interfaces between CuO and ZnO. The presence of silicon in the biomass, notably from the loofah sponge (0.016 wt %) and rice husks (8.3 wt %), also performed a pivotal role in the preparation of bio-HZSM-5. Furthermore, contrasted to the CZZA/com-ZSM-5 catalyst, the integration of CZZA with bio-HZSM-5-L bifunctional catalyst achieved the highest DME yield (12.1 %), DME selectivity (58.6%), CO₂ conversion (22.5%) at 280 °C and 30 bar. The payback time for 5 and 10-tons per day (5 and10-TPD) DME formation using the catalytic process of CO₂ from petrochemical refinery plant waste gas emissions was 2.98 and 2.44 years, respectively.Keywords: Cost assessment, Dimethyl ether, low-cost bio-HZSM-5, CZZA catalyst, CO₂ hydrogenation
Procedia PDF Downloads 206741 Project Time and Quality Management during Construction
Authors: Nahed Al-Hajeri
Abstract:
Time and cost is an integral part of every construction plan and can affect each party’s contractual obligations. The performance of both time and cost are usually important to the client and contractor during the project. Almost all construction projects are experiencing time overrun. These time overruns always contributed as expensive to both client and contractor. Construction of any project inside the gathering centers involves complex management skills related to work force, materials, plant, machineries, new technologies etc. It also involves many agencies interdependent on each other like the vendors, structural and functional designers including various types of specialized engineers and it includes support of contractors and specialized contractors. This paper mainly highlights the types of construction delays due to which project suffer time and cost overrun. This paper also speaks about the delay causes and factors that contribute to the construction sequence delay for the oil and gas projects. Construction delay is supposed to be one of the repeated problems in the construction projects and it has an opposing effect on project success in terms of time, cost and quality. Some effective methods are identified to minimize delays in construction projects such as: 1. Site management and supervision, 2. Effective strategic planning, 3. Clear information and communication channel. Our research paper studies the types of delay with some real examples with statistic results and suggests solutions to overcome this problem.Keywords: non-compensable delay, delays caused by force majeure, compensable delay, delays caused by the owner or the owner’s representative, non-excusable delay, delay caused by the contractor or the contractor’s representative, concurrent delay, delays resulting from two separate causes at the same time
Procedia PDF Downloads 2446740 Nuclear Materials and Nuclear Security in India: A Brief Overview
Authors: Debalina Ghoshal
Abstract:
Nuclear security is the ‘prevention and detection of, and response to unauthorised removal, sabotage, unauthorised access, illegal transfer or other malicious acts involving nuclear or radiological material or their associated facilities.’ Ever since the end of Cold War, nuclear materials security has remained a concern for global security. However, with the increase in terrorist attacks not just in India especially, security of nuclear materials remains a priority. Therefore, India has made continued efforts to tighten its security on nuclear materials to prevent nuclear theft and radiological terrorism. Nuclear security is different from nuclear safety. Physical security is also a serious concern and India had been careful of the physical security of its nuclear materials. This is more so important since India is expanding its nuclear power capability to generate electricity for economic development. As India targets 60,000 MW of electricity production by 2030, it has a range of reactors to help it achieve its goal. These include indigenous Pressurised Heavy Water Reactors, now standardized at 700 MW per reactor Light Water Reactors, and the indigenous Fast Breeder Reactors that can generate more fuel for the future and enable the country to utilise its abundant thorium resource. Nuclear materials security can be enhanced through two important ways. One is through proliferation resistant technologies and diplomatic efforts to take non proliferation initiatives. The other is by developing technical means to prevent any leakage in nuclear materials in the hands of asymmetric organisations. New Delhi has already implemented IAEA Safeguards on their civilian nuclear installations. Moreover, the IAEA Additional Protocol has also been ratified by India in order to enhance its transparency of nuclear material and strengthen nuclear security. India is a party to the IAEA Conventions on Nuclear Safety and Security, and in particular the 1980 Convention on the Physical Protection of Nuclear Material and its amendment in 2005, Code of Conduct in Safety and Security of Radioactive Sources, 2006 which enables the country to provide for the highest international standards on nuclear and radiological safety and security. India's nuclear security approach is driven by five key components: Governance, Nuclear Security Practice and Culture, Institutions, Technology and International Cooperation. However, there is still scope for further improvements to strengthen nuclear materials and nuclear security. The NTI Report, ‘India’s improvement reflects its first contribution to the IAEA Nuclear Security Fund etc. in the future, India’s nuclear materials security conditions could be further improved by strengthening its laws and regulations for security and control of materials, particularly for control and accounting of materials, mitigating the insider threat, and for the physical security of materials during transport. India’s nuclear materials security conditions also remain adversely affected due to its continued increase in its quantities of nuclear material, and high levels of corruption among public officials.’ This paper would study briefly the progress made by India in nuclear and nuclear material security and the step ahead for India to further strengthen this.Keywords: India, nuclear security, nuclear materials, non proliferation
Procedia PDF Downloads 3576739 Mathematical Modeling of Cell Volume Alterations under Different Osmotic Conditions
Authors: Juliana A. Knocikova, Yann Bouret, Médéric Argentina, Laurent Counillon
Abstract:
Cell volume, together with membrane potential and intracellular hydrogen ion concentration, is an essential biophysical parameter for normal cellular activity. Cell volumes can be altered by osmotically active compounds and extracellular tonicity. In this study, a simple mathematical model of osmotically induced cell swelling and shrinking is presented. Emphasis is given to water diffusion across the membrane. The mathematical description of the cellular behavior consists in a system of coupled ordinary differential equations. We compare experimental data of cell volume alterations driven by differences in osmotic pressure with mathematical simulations under hypotonic and hypertonic conditions. Implications for a future model are also discussed.Keywords: eukaryotic cell, mathematical modeling, osmosis, volume alterations
Procedia PDF Downloads 4676738 Magnetic Single-Walled Carbon Nanotubes (SWCNTs) as Novel Theranostic Nanocarriers: Enhanced Targeting and Noninvasive MRI Tracking
Authors: Achraf Al Faraj, Asma Sultana Shaik, Baraa Al Sayed
Abstract:
Specific and effective targeting of drug delivery systems (DDS) to cancerous sites remains a major challenge for a better diagnostic and therapy. Recently, SWCNTs with their unique physicochemical properties and the ability to cross the cell membrane show promising in the biomedical field. The purpose of this study was first to develop a biocompatible iron oxide tagged SWCNTs as diagnostic nanoprobes to allow their noninvasive detection using MRI and their preferential targeting in a breast cancer murine model by placing an optimized flexible magnet over the tumor site. Magnetic targeting was associated to specific antibody-conjugated SWCNTs active targeting. The therapeutic efficacy of doxorubicin-conjugated SWCNTs was assessed, and the superiority of diffusion-weighted (DW-) MRI as sensitive imaging biomarker was investigated. Short Polyvinylpyrrolidone (PVP) stabilized water soluble SWCNTs were first developed, tagged with iron oxide nanoparticles and conjugated with Endoglin/CD105 monoclonal antibodies. They were then conjugated with doxorubicin drugs. SWCNTs conjugates were extensively characterized using TEM, UV-Vis spectrophotometer, dynamic light scattering (DLS) zeta potential analysis and electron spin resonance (ESR) spectroscopy. Their MR relaxivities (i.e. r1 and r2*) were measured at 4.7T and their iron content and metal impurities quantified using ICP-MS. SWCNTs biocompatibility and drug efficacy were then evaluated both in vitro and in vivo using a set of immunological assays. Luciferase enhanced bioluminescence 4T1 mouse mammary tumor cells (4T1-Luc2) were injected into the right inguinal mammary fat pad of Balb/c mice. Tumor bearing mice received either free doxorubicin (DOX) drug or SWCNTs with or without either DOX or iron oxide nanoparticles. A multi-pole 10x10mm high-energy flexible magnet was maintained over the tumor site during 2 hours post-injections and their properties and polarity were optimized to allow enhanced magnetic targeting of SWCNTs toward the primary tumor site. Tumor volume was quantified during the follow-up investigation study using a fast spin echo MRI sequence. In order to detect the homing of SWCNTs to the main tumor site, susceptibility-weighted multi-gradient echo (MGE) sequence was used to generate T2* maps. Apparent diffusion coefficient (ADC) measurements were also performed as a sensitive imaging biomarker providing early and better assessment of disease treatment. At several times post-SWCNT injection, histological analysis were performed on tumor extracts and iron-loaded SWCNT were quantified using ICP-MS in tumor sites, liver, spleen, kidneys, and lung. The optimized multi-poles magnet revealed an enhanced targeting of magnetic SWCNTs to the primary tumor site, which was found to be much higher than the active targeting achieved using antibody-conjugated SWCNTs. Iron-loading allowed their sensitive noninvasive tracking after intravenous administration using MRI. The active targeting of doxorubicin through magnetic antibody-conjugated SWCNTs nanoprobes was found to considerably decrease the primary tumor site and may have inhibited the development of metastasis in the tumor-bearing mice lung. ADC measurements in DW-MRI were found to significantly increase in a time-dependent manner after the injection of DOX-conjugated SWCNTs complexes.Keywords: single-walled carbon nanotubes, nanomedicine, magnetic resonance imaging, cancer diagnosis and therapy
Procedia PDF Downloads 3336737 Recycling of Sintered NdFeB Magnet Waste Via Oxidative Roasting and Selective Leaching
Authors: W. Kritsarikan, T. Patcharawit, T. Yingnakorn, S. Khumkoa
Abstract:
Neodymium-iron-boron (NdFeB) magnets classified as high-power magnets are widely used in various applications such as electrical and medical devices and account for 13.5 % of the permanent magnet’s market. Since its typical composition of 29 - 32 % Nd, 64.2 – 68.5 % Fe and 1 – 1.2 % B contains a significant amount of rare earth metals and will be subjected to shortages in the future. Domestic NdFeB magnet waste recycling should therefore be developed in order to reduce social, environmental impacts toward a circular economy. Most research works focus on recycling the magnet wastes, both from the manufacturing process and end of life. Each type of wastes has different characteristics and compositions. As a result, these directly affect recycling efficiency as well as the types and purity of the recyclable products. This research, therefore, focused on the recycling of manufacturing NdFeB magnet waste obtained from the sintering stage of magnet production and the waste contained 23.6% Nd, 60.3% Fe and 0.261% B in order to recover high purity neodymium oxide (Nd₂O₃) using hybrid metallurgical process via oxidative roasting and selective leaching techniques. The sintered NdFeB waste was first ground to under 70 mesh prior to oxidative roasting at 550 - 800 °C to enable selective leaching of neodymium in the subsequent leaching step using H₂SO₄ at 2.5 M over 24 h. The leachate was then subjected to drying and roasting at 700 – 800 °C prior to precipitation by oxalic acid and calcination to obtain neodymium oxide as the recycling product. According to XRD analyses, it was found that increasing oxidative roasting temperature led to an increasing amount of hematite (Fe₂O₃) as the main composition with a smaller amount of magnetite (Fe₃O₄) found. Peaks of neodymium oxide (Nd₂O₃) were also observed in a lesser amount. Furthermore, neodymium iron oxide (NdFeO₃) was present and its XRD peaks were pronounced at higher oxidative roasting temperatures. When proceeded to acid leaching and drying, iron sulfate and neodymium sulfate were mainly obtained. After the roasting step prior to water leaching, iron sulfate was converted to form hematite as the main compound, while neodymium sulfate remained in the ingredient. However, a small amount of magnetite was still detected by XRD. The higher roasting temperature at 800 °C resulted in a greater Fe₂O₃ to Nd₂(SO₄)₃ ratio, indicating a more effective roasting temperature. Iron oxides were subsequently water leached and filtered out while the solution contained mainly neodymium sulfate. Therefore, low oxidative roasting temperature not exceeding 600 °C followed by acid leaching and roasting at 800 °C gave the optimum condition for further steps of precipitation and calcination to finally achieve neodymium oxide.Keywords: NdFeB magnet waste, oxidative roasting, recycling, selective leaching
Procedia PDF Downloads 1856736 Magnetic Nanoparticles for Cancer Therapy
Authors: Sachinkumar Patil, Sonali Patil, Shitalkumar Patil
Abstract:
Nanoparticles played important role in the biomedicine. New advanced methods having great potential apllication in the diagnosis and therapy of cancer. Now a day’s magnetic nanoparticles used in cancer therapy. Cancer is the major disease causes death. Magnetic nanoparticles show response to the magnetic field on the basis of this property they are used in cancer therapy. Cancer treated with hyperthermia by using magnetic nanoparticles it is unconventional but more safe and effective method. Magnetic nanoparticles prepared by using different innovative techniques that makes particles in uniform size and desired effect. Magnetic nanoparticles already used as contrast media in magnetic resonance imaging. A magnetic nanoparticle has been great potential application in cancer diagnosis and treatment as well as in gene therapy. In this review we will discuss the progress in cancer therapy based on magnetic nanoparticles, mainly including magnetic hyperthermia, synthesis and characterization of magnetic nanoparticles, mechanism of magnetic nanoparticles and application of magnetic nanoparticles.Keywords: magnetic nanoparticles, synthesis, characterization, cancer therapy, hyperthermia, application
Procedia PDF Downloads 6466735 Method of Estimating Absolute Entropy of Municipal Solid Waste
Authors: Francis Chinweuba Eboh, Peter Ahlström, Tobias Richards
Abstract:
Entropy, as an outcome of the second law of thermodynamics, measures the level of irreversibility associated with any process. The identification and reduction of irreversibility in the energy conversion process helps to improve the efficiency of the system. The entropy of pure substances known as absolute entropy is determined at an absolute reference point and is useful in the thermodynamic analysis of chemical reactions; however, municipal solid waste (MSW) is a structurally complicated material with unknown absolute entropy. In this work, an empirical model to calculate the absolute entropy of MSW based on the content of carbon, hydrogen, oxygen, nitrogen, sulphur, and chlorine on a dry ash free basis (daf) is presented. The proposed model was derived from 117 relevant organic substances which represent the main constituents in MSW with known standard entropies using statistical analysis. The substances were divided into different waste fractions; namely, food, wood/paper, textiles/rubber and plastics waste and the standard entropies of each waste fraction and for the complete mixture were calculated. The correlation of the standard entropy of the complete waste mixture derived was found to be somsw= 0.0101C + 0.0630H + 0.0106O + 0.0108N + 0.0155S + 0.0084Cl (kJ.K-1.kg) and the present correlation can be used for estimating the absolute entropy of MSW by using the elemental compositions of the fuel within the range of 10.3% ≤ C ≤ 95.1%, 0.0% ≤ H ≤ 14.3%, 0.0% ≤ O ≤ 71.1%, 0.0 ≤ N ≤ 66.7%, 0.0% ≤ S ≤ 42.1%, 0.0% ≤ Cl ≤ 89.7%. The model is also applicable for the efficient modelling of a combustion system in a waste-to-energy plant.Keywords: absolute entropy, irreversibility, municipal solid waste, waste-to-energy
Procedia PDF Downloads 3126734 Effects of Tomato-Crispy Salad Intercropping on Diameter of Tomato Fruits under Greenhouse Conditions
Authors: Halil Demir, Ersin Polat
Abstract:
This study, in which crispy salad plants was cultivated between the two rows of tomato, was conducted in Spring 2007 in a research glasshouse at Akdeniz University. Crispy salad (Lactuca sativa var. crispa cv. Bohemia) plants were intercropped with tomato (Solanum lycopersicon cv. Selin F1) plants as the main crop. Tomato seedlings were planted according to double line plantation system with 100 cm large spacing, 50 cm narrow spacing and 50 cm within row plant spacing. In both control and intercropping applications, each plot was 9.75 m2 according to plantation distances and there were 26 plants per each plot for tomato. Crispy salad seedlings were planted with 30 cm spacing as one row in the middle of tomato plants and with 30x30 spacing as two rows between plants rows. Moreover, salad seedlings were transplanted between tomato plants above the tomato rows that were planted in two rows with intervals of 50 cm and also with 25x25 cm spacing as the third row in the middle of tomato rows. While tomato plants were growing during the research, fruit width and height were measured periodically with 15 days in the tomato fruits of the third cluster from the formation of fruit to fruit ripening. According to results, while there were no differences between cropping systems in terms of fruit width, the highest fruit height was found in Control trial in the first measurement. In the second measurement while the highest fruit width was determined with 64.39 mm in Control, there were no differences between cropping systems. In the third measurement, the highest fruit width and height were obtained from Control with 68.47 mm and 55.52 mm, respectively. As a conclusion the trial, which crispy salad seedlings were planted with 30x30 cm spacing as two rows between tomato plants rows, was determined as a best intercropping application.Keywords: crispy salad, glasshouse, intercropping, tomato
Procedia PDF Downloads 3256733 Effect of Two Entomopathogenic Fungi Beauveria bassiana and Metarhizium anisopliae var. acridum on the Haemolymph of the Desert Locust Schistocerca gregaria
Authors: Fatima Zohra Bissaad, Farid Bounaceur, Nassima Behidj, Nadjiba Chebouti, Fatma Halouane, Bahia Doumandji-Mitiche
Abstract:
Effect of Beauveria bassiana and Metarhizium anisopliae var. acridum on the 5th instar nymphs of Schistocerca gregaria was studied in the laboratory. Infection by these both entomopathogenic fungi caused reduction in the hemolymph total protein. The average amounts of total proteins were 2.3, 2.07, 2.09 µg/100 ml of haemolymph in the control and M. anisopliae var. acridum, and B. bassiana based-treatments, respectively. Three types of haemocytes were recognized and identified as prohaemocytes, plasmatocytes and granulocytes. The treatment caused significant reduction in the total haemocyte count and in each haemocyte type on the 9th day after its application.Keywords: Beauveria bassiana, haemolymph picture, haemolymph protein, Metarhizium anisopliae var. acridum, Schistocerca gregaria
Procedia PDF Downloads 4836732 The Effect of TiO₂ Nanoparticles on Zebrafish Embryos
Authors: Elena Maria Scalisi
Abstract:
Currently, photodegradation by nanoparticles (NPs) is a common solution for wastewater treatment. Nanoparticles are efficient for removing organic and inorganic pollutants, heavy metals from wastewater and killing microorganisms through environmentally friendly. In this context, the major representative of photocatalytic technology for industrial wastewater treatment are TiO₂ nanoparticles (TiO₂-NPs). TiO₂-NPs have a strong catalytic activity that depends to their physicochemical properties. Thanks to their small size (between 1-100 nm), nanoparticles occupy less volume, then their surface area increases. The increase in the surface-to-volume ratio results in the increase of the particle surface energy, which improve their reactivity potential. However, these unique properties represent risks to the ecosystems and organisms when unintentionally TiO₂-NPs are release into the environment and absorbed by living organisms. Several studies confirm that there is a high level of interest concerning the safety of TiO₂-NPs in the aquatic environment, furthermore, ecotoxicological tools are useful to correctly evaluate their toxicity. In the current study, we aimed to characterize potential toxic effects of TiO₂-NP suspension to zebrafish during embryo-larval stages to evaluate parameters such as survival rates, malformation, hatching, the overall length of the larvae heartbeat, and biochemical biomarkers that reflect the acute toxicity and sublethal effects of TiO₂-NPs. Zebrafish embryos were exposed to titanium dioxide nanoparticles (TiO₂-NPs at 1mg/L, 2mg/L, and 4mg/L) from fertilization to the free swimming stage (144hpf). Every day, we recorded the toxicological endpoints, moreover, immunohistochemical analysis has been performed at the end of the exposure. In particular, we have evaluate the expression of the following biomarkers: Heat Shock Protein 70 (HSP70), Poly ADP-Ribose Polymerase-1 (PARP-1), Metallothioneins (MTs). Our results have shown that hatch ability, survival, and malformation rate were not affected by TiO₂ NPs at these exposure levels. However, TiO₂-NPs caused an increase of heartbeat and reduction of body length; at the same time, TiO₂-NPs have inducted the production of ROS and the expression of oxidative stress biomarkers HSP70 and PARP-1. Hight positivity for PARP-1 at all concentration tested was observed. As regards MT, positivity was found in the expression of this biomarker in the whole body of the embryo, with the exception of the end of the tail. Metallothioneins (MT) are biomarkers widely used in environmental monitoring programs for aquatic creatures. At the light of our results i.e. no death until the end of the experiment (144hpf), no malformation and expression of the biomarkers mentioned, it is evident that zebrafish larvae with their natural detoxification pathways are able to resist the presence of toxic substances and then they can tolerate the presence of metal concentrations. However, an excessive oxidative state can compromise cell function, therefore the uncontrolled release of nanoparticles into the environment is severe and must be constantly monitored.Keywords: nanoparticles, embryo zebrafish, HSP70, PARP-1
Procedia PDF Downloads 1436731 Tailorability of Poly(Aspartic Acid)/BSA Complex by Self-Assembling in Aqueous Solutions
Authors: Loredana E. Nita, Aurica P. Chiriac, Elena Stoleru, Alina Diaconu, Tudorachi Nita
Abstract:
Self-assembly processes are an attractive method to form new and complex structures between macromolecular compounds to be used for specific applications. In this context, intramolecular and intermolecular bonds play a key role during self-assembling processes in preparation of carrier systems of bioactive substances. Polyelectrolyte complexes (PECs) are formed through electrostatic interactions, and though they are significantly below of the covalent linkages in their strength, these complexes are sufficiently stable owing to the association processes. The relative ease way of PECs formation makes from them a versatile tool for preparation of various materials, with properties that can be tuned by adjusting several parameters, such as the chemical composition and structure of polyelectrolytes, pH and ionic strength of solutions, temperature and post-treatment procedures. For example, protein-polyelectrolyte complexes (PPCs) are playing an important role in various chemical and biological processes, such as protein separation, enzyme stabilization and polymer drug delivery systems. The present investigation is focused on evaluation of the PPC formation between a synthetic polypeptide (poly(aspartic acid) – PAS) and a natural protein (bovine serum albumin - BSA). The PPC obtained from PAS and BSA in different ratio was investigated by corroboration of various techniques of characterization as: spectroscopy, microscopy, thermo-gravimetric analysis, DLS and zeta potential determination, measurements which were performed in static and/or dynamic conditions. The static contact angle of the sample films was also determined in order to evaluate the changes brought upon surface free energy of the prepared PPCs in interdependence with the complexes composition. The evolution of hydrodynamic diameter and zeta potential of the PPC, recorded in situ, confirm changes of both co-partners conformation, a 1/1 ratio between protein and polyelectrolyte being benefit for the preparation of a stable PPC. Also, the study evidenced the dependence of PPC formation on the temperature of preparation. Thus, at low temperatures the PPC is formed with compact structure, small dimension and hydrodynamic diameter, close to those of BSA. The behavior at thermal treatment of the prepared PPCs is in agreement with the composition of the complexes. From the contact angle determination results the increase of the PPC films cohesion, which is higher than that of BSA films. Also, a higher hydrophobicity corresponds to the new PPC films denoting a good adhesion of the red blood cells onto the surface of PSA/BSA interpenetrated systems. The SEM investigation evidenced as well the specific internal structure of PPC concretized in phases with different size and shape in interdependence with the interpolymer mixture composition.Keywords: polyelectrolyte – protein complex, bovine serum albumin, poly(aspartic acid), self-assembly
Procedia PDF Downloads 2476730 Detailed Ichnofacies and Sedimentological Analysis of the Cambrian Succession (Tal Group) of the Nigalidhar Syncline, Lesser Himalaya, India and the Interpretation of Its Palaeoenvironment
Authors: C. A. Sharma, Birendra P. Singh
Abstract:
Ichnofacies analysis is considered the best paleontological tool for interpreting ancient depositional environments. Nineteen (19) ichnogenera (namely: Bergaueria, Catenichnus, Cochlichnus, Cruziana, Diplichnites, Dimorphichnus, Diplocraterion, Gordia, Guanshanichnus, Lockeia, Merostomichnites, Monomorphichnus, Palaeophycus, Phycodes, Planolites, Psammichnites, Rusophycus, Skolithos and Treptichnus) are recocered from the Tal Group (Cambrian) of the Nigalidhar Syncline. The stratigraphic occurrences of these ichnogenera represent alternating proximal Cruziana and Skolithos ichnofacies along the contact of Sankholi and Koti-Dhaman formations of the Tal Group. Five ichnogenera namely Catenichnus, Guanshanichnus, Lockeia, Merostomichnites and Psammichnites are recorded for the first time from the Nigalidhar Syncline. Cruziana ichnofacies is found in the upper part of the Sankholi Formation to the lower part of the Koti Dhaman Formation in the NigaliDhar Syncline. The preservational characters here indicate a subtidal environmental condition with poorly sorted, unconsolidated substrate. Depositional condition ranging from moderate to high energy levels below the fair weather base but above the storm wave base under nearshore to foreshore setting in a wave dominated shallow water environment is also indicated. The proximal Cruziana-ichnofacies is interrupted by the Skolithos ichnofacies in the Tal Group of the Nigalidhar Syncline which indicate fluctuating high energy condition which was unfavorable for the opportunistic organism which were dominant during the proximal Cruziana ichnofacies. The excursion of Skolithos ichnofacies (as a pipe rock in the upper part of Sankholi Formation) into the proximal Cruziana ichnofacies in the Tal Group indicate that increased energy and allied parameters attributed to the high rate of sedimentation near the proximal part of the basin. The level bearing the Skolithos ichnofacies in the Nigalidhar Syncline at the juncture of Sankholi and Koti-Dhaman formations can be correlated to the level marked as unconformity in between the Deo-Ka-Tibba and the Dhaulagiri formations by the conglomeratic horizon in the Mussoorie Syncline, Lesser Himalaya, India. Thus, the Tal Group of the Nigalidhar syncline at this stratigraphic level represent slightly deeper water condition than the Mussoorie Syncline, where in the later the aerial exposure dominated which leads to the deposition of conglomeratic horizon and subsequent formation of unconformity. The overall ichnological and sedimentological dataset allow us to infer that the Cambrian successions of Nigalidhar Syncline were deposited in a wave-dominated proximal part of the basin under the foreshore to close to upper shoreface regimes of the shallow marine setting.Keywords: Cambrian, Ichnofacies, Lesser Himalaya, Nigalidhar, Tal Group
Procedia PDF Downloads 2606729 Effect of Satureja khuzestanica Jamzad Supplementation on Inflammatory and Antioxidant Indicators in Type 2 Diabetes Patients: A Randomized Controlled Clinical Trial Study
Authors: Maryam Bordbar, Yaser Mokhayeri, Sajjad Roosta, Fatemeh Ghasemi, Saeed Choobkar, Hamidreza Nikbakht, Ebrahim Falahi
Abstract:
Objective: Diabetes mellitus type 2 is the most common metabolic disorder that is growing exponentially worldwide. Satureja Khuzestanica Jamzad is a native plant of Iran that grows widely in the south of Iran. Its antimicrobial, antioxidant, anti-inflammatory and pain-relieving effects have been documented in animal studies. The purpose of this study is to investigate the effect of consumption daily S. khuzestanica on inflammatory and antioxidant indicators in type 2 diabetic patients. Methods and Materials: In a double-blind, placebo-controlled clinical trial, 67 patients with type 2 diabetes were included and divided into two groups. One group received S. khuzestanica (capsule containing 500 mg) and the other group received placebo (500 mg talcum powder) once a day for 12 weeks. After the intervention, the inflammatory and antioxidant indicators of the two groups were compared. Results: In comparison to placebo groups, there was a significant difference in levels of total antioxidant capacity, superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase; these antioxidant indicators were higher in the intervention group (P<0.05). Moreover, a considerable decrease in weight, CRP and IL-6 levels were observed in patients in the S.Khuzestanica group. Conclusion: Our findings may provide novel complementary treatments without adverse effects for diabetes complications.Keywords: Satureja khuzestanica Jamzad, diabetes mellitus, antioxidant indicators, IL-6, C-reactive protein
Procedia PDF Downloads 746728 Chemical Composition and Biological Investigation of Halpophyllum tuberculatum A. Juss (Rutaceae) Essential Oils Growing in Libya
Authors: O. M. M. Sabry, Abeer M. El Sayed
Abstract:
The essential oils from the aerial parts and flowers of Haplophyllum tuberculatum (Forsskal) Adr. Juss (Rutaceae) growing in Libya were obtained separately by hydro-distillation using a Clevenger-type apparatus. The essential oils yield were (0.4, 1.5w/w%) respectively based on the dry weight of the plant. The oils were analyzed by GC-MS. Twenty four constituents, amounting to 96.6%, were identified in the oil of the aerial parts. The predominant compounds were among the non oxygenated terpenoids (82.4%) as monoterpene hydrocarbons, represented by sabinen (26.4 %), δ-terpinen (26 %), β-phellandrene (10.4%) and 3-carene (3.86%). Zingiberine (0.4%) and β-sesquiphellandrene (0.12%) were the major sesquiterpene hydrocarbons identified. Oxygenated monoterpenes were represented by eucalyptol (5.5%) and piperitone (5.55%). Twenty six constituents, equivalent to 99.5%, were identified in the oil of the flowers. The dominance of monoterpene hydrocarbons in the flowers oil can be attributed to the high percentage of γ-terpinen (38.44%), β-phellandrene (10.0%), α- phellandrene (2.33%), 3,4-dimethyl-1,5-cyclooctadiene (6.67%), β-myrecene (6.04%), 3-carene (5.43%) and α-pinene (1.3%).While the oxygenated monoterpenes can be contributed to the trans-piperitol (4.67%) and piperitone (2.07%). Sesquiterpene hydrocarbons were not identified in the oil of the flower of H. tuberculatum. Variation in constitution between oils of Libyan H. tuberculatum and that obtained from other countries can be due to both environmental and genetic factors. The essential oils have demonstrated variable antimicrobial activities against certain micro-organisms. Also have revealed marked in vitro cytotoxicity against lung (H1299), liver (HEPG2) carcinoma cell line and variably effective as anti-inflammatory and antioxidant.Keywords: Halpophyllum tuberculatum, rutaceae, essential oil, antimicrobial, anti-inflammatory, antitumor, antioxidant, Libya
Procedia PDF Downloads 4836727 Protective Effect of Thymoquinone against Nephrotoxicity Induced by Cadmium in Rats
Authors: Amr A. Fouad, Hamed A. Alwadaani, Iyad Jresat
Abstract:
The present study investigated the protective effect of thymoquinone (TQ), against cadmium-induced kidney injury in rats. Cadmium chloride (1.2 mg Cd/kg/day, s.c.), was given for nine weeks. TQ treatment (40 mg/kg/day, p.o.) started on the same day of cadmium administration and continued for nine weeks. TQ significantly decreased serum creatinine, renal malondialdehyde and nitric oxide, and significantly increased renal reduced glutathione in rats received cadmium. Histopathological examination showed that TQ markedly minimized renal tissue damage induced by cadmium. Immunohistochemical analysis revealed that TQ markedly decreased the cadmium-induced expression of inducible nitric oxide synthase, tumor necrosis factor-α, cyclooxygenase-2, and caspase-3 in renal tissue. It was concluded that TQ significantly protected against cadmium nephrotoxicity in rats, through its antioxidant, antiinflammatory, and antiapoptotic actions.Keywords: thymoquinone, cadmium, kidney, rats
Procedia PDF Downloads 4216726 Recycling of Sintered Neodymium-Iron-Boron (NdFeB) Magnet Waste via Oxidative Roasting and Selective Leaching
Authors: Woranittha Kritsarikan
Abstract:
Neodymium-iron-boron (NdFeB) magnets classified as high-power magnets are widely used in various applications such as electrical and medical devices and account for 13.5 % of the permanent magnet’s market. Since its typical composition of 29 - 32 % Nd, 64.2 – 68.5 % Fe and 1 – 1.2 % B contains a significant amount of rare earth metals and will be subjected to shortages in the future. Domestic NdFeB magnet waste recycling should therefore be developed in order to reduce social, environmental impacts toward the circular economy. Most research works focus on recycling the magnet wastes, both from the manufacturing process and end of life. Each type of wastes has different characteristics and compositions. As a result, these directly affect recycling efficiency as well as the types and purity of the recyclable products. This research, therefore, focused on the recycling of manufacturing NdFeB magnet waste obtained from the sintering stage of magnet production and the waste contained 23.6% Nd, 60.3% Fe and 0.261% B in order to recover high purity neodymium oxide (Nd₂O₃) using hybrid metallurgical process via oxidative roasting and selective leaching techniques. The sintered NdFeB waste was first ground to under 70 mesh prior to oxidative roasting at 550 - 800 ᵒC to enable selective leaching of neodymium in the subsequent leaching step using H₂SO₄ at 2.5 M over 24 hours. The leachate was then subjected to drying and roasting at 700 – 800 ᵒC prior to precipitation by oxalic acid and calcination to obtain neodymium oxide as the recycling product. According to XRD analyses, it was found that increasing oxidative roasting temperature led to the increasing amount of hematite (Fe₂O₃) as the main composition with a smaller amount of magnetite (Fe3O4) found. Peaks of neodymium oxide (Nd₂O₃) were also observed in a lesser amount. Furthermore, neodymium iron oxide (NdFeO₃) was present and its XRD peaks were pronounced at higher oxidative roasting temperature. When proceeded to acid leaching and drying, iron sulfate and neodymium sulfate were mainly obtained. After the roasting step prior to water leaching, iron sulfate was converted to form hematite as the main compound, while neodymium sulfate remained in the ingredient. However, a small amount of magnetite was still detected by XRD. The higher roasting temperature at 800 ᵒC resulted in a greater Fe2O3 to Nd2(SO4)3 ratio, indicating a more effective roasting temperature. Iron oxides were subsequently water leached and filtered out while the solution contained mainly neodymium sulfate. Therefore, low oxidative roasting temperature not exceeding 600 ᵒC followed by acid leaching and roasting at 800 ᵒC gave the optimum condition for further steps of precipitation and calcination to finally achieve neodymium oxide.Keywords: NdFeB magnet waste, oxidative roasting, recycling, selective leaching
Procedia PDF Downloads 1826725 Mutational Analysis of JAK2V617F in Tunisian CML Patients with TKI-Resistance
Abstract:
Background:Chronicmyeloidleukemia (CML), a hematologicaldisease, ischaracterized by t (9; 22) and relatedoncogene BCR-ABL formation. Although Tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of CML, resistanceoccurs and possibly médiates by mutation in severalgenesindependently of the bcr-abl1 kinase mechanism. it has been reportedthat JAK2V617F/BCR-ABL double positivitymaybe a potential marker of resistance in CML. Aims: This studywasinvestigated the JAK2V617F mutation in TKI-resistant CML patients. Methods: A retrospectivestudywasconducted in the Hospital University of Sfax, south of Tunisia, including all CML TKI-resistant patients. A Sanger sequencingwasperformedusing a high-fidelity DNA polymerase. Results:Nineresistant CP-CML patients wereenrolled in thisstudy. The JAK2V617F mutation wasdetectedin 3 patients with TKI resistance. Conclusion:Despite the limit of ourstudy, ourfinding highlights the high frequency of JAK2V617F/BCR-ABL double positivity as an important marker of resistance. So; the combination of JAK and TKI inhibitorsmightbe effective and potentiallybeguided by molecular monitoring of minimal residual disease1.Keywords: chronic myeloid leukemia, tyrosine kinase inhibitors, resistance, JAK2V617F, BCR-ABL
Procedia PDF Downloads 726724 Biodegradation of Cellulosic Materials by Marine Fungi Isolated from South Corniche of Jeddah, Saudi Arabia
Authors: Fuad Ameen, Mohamed Moslem, Sarfaraz Hadi
Abstract:
Twenty-eight fungal isolates belonging to 12 genera were derived from debris, sediment and water samples collected from Avicennia marina stands 25km south of Jeddah city on the Red Sea coast of Saudi Arabia. Eight of these isolates were found to be able to grow in association cellulosic waste materials under in vitro conditions in the absence of any carbon source. Isolates were further tested for their potential to degrade paper and clothes wastes by co-cultivation under aeration on a rotary shaker. These fungi accumulated significantly higher biomass, produced ligninolytic and cellulase enzymes, and liberated larger volumes of CO2. These observations indicated that the selected isolates were able to break down and consume the waste materials.Keywords: biodegradation, enzyme activity, waste materials, mangrove
Procedia PDF Downloads 5756723 Heat and Mass Transfer Study of Supercooled Large Droplet Icing
Authors: Du Yanxia, Stephan E. Bansmer, Gui Yewei, Xiao Guangming, Yang Xiaofeng
Abstract:
The heat and mass transfer characteristics of icing coupled with film flow is studied and the coupled model of the thermal behavior with the flow simulation by single-step method is developed. The behavior of ice and water was analyzed. The results show that under supercooled large droplet (SLD) icing conditions, the film flow is an important phonomena in icing accretion process. The pressure gradient, gravity and shear stress are the main factors affecting the film flow on icing surface, which has important influence on the shape and rate of icing. To predict SLD ice accretion accurately, the heat and mass transfer of ice and film flow should be taken into account.Keywords: SLD, aircraft, icing, heat and mass transfer
Procedia PDF Downloads 6406722 Estimation of Sediment Transport into a Reservoir Dam
Authors: Kiyoumars Roushangar, Saeid Sadaghian
Abstract:
Although accurate sediment load prediction is very important in planning, designing, operating and maintenance of water resources structures, the transport mechanism is complex, and the deterministic transport models are based on simplifying assumptions often lead to large prediction errors. In this research, firstly, two intelligent ANN methods, Radial Basis and General Regression Neural Networks, are adopted to model of total sediment load transport into Madani Dam reservoir (north of Iran) using the measured data and then applicability of the sediment transport methods developed by Engelund and Hansen, Ackers and White, Yang, and Toffaleti for predicting of sediment load discharge are evaluated. Based on comparison of the results, it is found that the GRNN model gives better estimates than the sediment rating curve and mentioned classic methods.Keywords: sediment transport, dam reservoir, RBF, GRNN, prediction
Procedia PDF Downloads 504