Search results for: spectroscopical characterization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2546

Search results for: spectroscopical characterization

1496 Investigation on an Innovative Way to Connect RC Beam and Steel Column

Authors: Ahmed H. El-Masry, Mohamed A. Dabaon, Tarek F. El-Shafiey, Abd El-Hakim A. Khalil

Abstract:

An experimental study was performed to investigate the behavior and strength of proposed technique to connect reinforced concrete (RC) beam to steel or composite columns. This approach can practically be used in several types of building construction. In this technique, the main beam of the frame consists of a transfer part (part of beam; Tr.P) and a common reinforcement concrete beam. The transfer part of the beam is connected to the column, whereas the rest of the beam is connected to the transfer part from each side. Four full-scale beam-column connections were tested under static loading. The test parameters were the length of the transfer part and the column properties. The test results show that using of the transfer part technique leads to modify the deformation capabilities for the RC beam and hence it increases its resistance against failure. Increase in length of the transfer part did not necessarily indicate an enhanced behavior. The test results contribute to the characterization of the connection behavior between RC beam - steel column and can be used to calibrate numerical models for the simulation of this type of connection.

Keywords: composite column, reinforced concrete beam, steel column, transfer part

Procedia PDF Downloads 428
1495 Synthesis and Characterization of CaZrTi2O7 from Tartrate Precursor Employing Microwave Heating Technique

Authors: B. M. Patil, S. R. Dharwadkar

Abstract:

Zirconolite (CaZrTi2O7) is one of the three major phases in the synthetic ceramic 'SYNROC' which is used for immobilization of high-level nuclear waste and also acts as photocatalytic and photophysical properties. In the present work the nanocrystalline CaZrTi2O7 was synthesized from Calcium Zirconyl Titanate tartrate precursor (CZTT) employing two different heating techniques such as Conventional heating (Muffle furnace) and Microwave heating (Microwave Oven). Thermal decomposition of the CZTT precursors in air yielded nanocrystalline CaZrTi2O7 powder as the end product. The products obtained by annealing the CZTT precursor using both heating method were characterized using simultaneous TG-DTA, FTIR, XRD, SEM, TEM, NTA and thermodilatometric study. The physical characteristics such as crystallinity, morphology and particle size of the product obtained by heating the CZTT precursor at the different temperatures in a Muffle furnace and Microwave oven were found to be significantly different. The microwave heating technique considerably lowered the synthesis temperature of CaZrTi2O7. The influence of microwave heating was more pronounced as compared to Muffle furnace heating. The details of the synthesis of CaZrTi2O7 from CZTT precursor are discussed.

Keywords: CZTT, CaZrTi2O7, microwave, SYNROC, zirconolite

Procedia PDF Downloads 163
1494 Thermo-Mechanical Characterization of MWCNTs-Modified Epoxy Resin

Authors: M. Dehghan, R. Al-Mahaidi, I. Sbarski

Abstract:

An industrial epoxy adhesive used in Carbon Fiber Reinforced Polymer (CFRP)-strengthening systems was modified by dispersing multi-walled carbon nanotubes (MWCNTs). Nanocomposites were fabricated using solvent-assisted dispersion method and ultrasonic mixing. Thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and tensile tests were conducted to study the effect of nanotubes dispersion on the thermal and mechanical properties of the epoxy composite. Experimental results showed a substantial enhancement in the decomposition temperature and tensile properties of epoxy composite, while, the glass transition temperature (Tg) was slightly reduced due to the solvent effect. The morphology of the epoxy nanocomposites was investigated by SEM. It was proved that using solvent improves the nanotubes dispersion. However, at contents higher than 2 wt. %, nanotubes started to re-bundle in the epoxy matrix which negatively affected the final properties of epoxy composite.

Keywords: carbon fiber reinforced polymer, epoxy, multi-walled carbon nanotube, DMA, glass transition temperature

Procedia PDF Downloads 341
1493 Characterization of Nanoemulsion Incorporating Crude Cocoa Polyphenol

Authors: Suzannah Sharif, Aznie Aida Ahmad, Maznah Ismail

Abstract:

Cocoa bean is the raw material for products such as cocoa powder and chocolate. Cocoa bean contains polyphenol which has been shown in several clinical studies to confer beneficial health effects. However studies showed that cocoa polyphenol absorption in the human intestinal tracts are very low. Therefore nanoemulsion may be one way to increase the bioavailability of cocoa polyphenol. This study aim to characterize nanoemulsion incorporating crude cocoa polyphenol produced using high energy technique. Cocoa polyphenol was extracted from fresh freeze-dried cocoa beans from Malaysia. The particle distribution, particle size, and zeta potential were determined. The emulsion was also analysed using transmission electron microscope to visualize the particles. Solubilization study was conducted by titrating the nanoemulsion into distilled water or 1% surfactant solution. Result showed that the nanoemulsion contains particle which have narrow size distribution. The particles size average at 112nm with zeta potential of -45mV. The nanoemulsions behave differently in distilled water and surfactant solution.

Keywords: cocoa, nanoemulsion, cocoa polyphenol, solubilisation study

Procedia PDF Downloads 465
1492 Synthesis and Characterization of Ferromagnetic Ni-Cu Alloys for Thermal Rectification Applications

Authors: Josue Javier Martinez Flores, Jaime Alvarez Quintana

Abstract:

A thermal rectifier consists of a device which can load a different heat flow which depends on the direction of that flow. That device is a thermal diode. It is well known that heat transfer in solids basically depends on the electrical, magnetic and crystalline nature of materials via electrons, magnons and phonons as thermal energy carriers respectively. In the present research, we have synthesized polycrystalline Ni-Cu alloys and identified the Curie temperatures; and we have observed that by way of secondary phase transitions, it is possible manipulate the heat conduction in solid state thermal diodes via transition temperature. In this sense, we have succeeded in developing solid state thermal diodes with a control gate through the Curie temperature via the activation and deactivation of magnons in Ni-Cu ferromagnetic alloys at room temperature. Results show thermal diodes with thermal rectification factors up to 1.5. Besides, the performance of the electrical rectifiers can be controlled by way of alloy Cu content; hence, lower Cu content alloys present enhanced thermal rectifications factors than higher ones.

Keywords: thermal rectification, Curie temperature, ferromagnetic alloys, magnons

Procedia PDF Downloads 244
1491 Synthesis and Characterization of SiO2/PVA/ SPEEK Composite Membrane for Proton Exchange Membrane Fuel Cell

Authors: M. Yusuf Ansari, Asad Abbas

Abstract:

Proton exchange membrane (PEM) fuel cell is a very efficient and promising energy conversion device. Although Nafion® is considered as benchmark materials for membrane used in PEM fuel cell, it has limitations that restrict its uses. Alternative materials for the membrane is always a challenging field for researchers. Sulfonated poly(ether ether ketone) (SPEEK) is one of the promising material for membrane due to its chemical and mechanical stability and lower cost. In this work, SPEEK is synthesized, and property booster such as silica nanoparticles and polyvinyl alcohol (PVA) are also added to analyse changes in properties such as water uptake, IEC, and conductivity. It has been found that adding PVA support high water uptake and proton conductivity but at large amount of PVA reduces the proton conductivity due to very high water uptake. Adding silica enhances water uptake and proton conductivity.

Keywords: PEM Membrane, sulfonated poly (ether ether ketone) (SPEEK), silica fumes (SiO2), polyvinyl alcohol (PVA)

Procedia PDF Downloads 281
1490 Texture Identification Using Vision System: A Method to Predict Functionality of a Component

Authors: Varsha Singh, Shraddha Prajapati, M. B. Kiran

Abstract:

Texture identification is useful in predicting the functionality of a component. Many of the existing texture identification methods are of contact in nature, which limits its measuring speed. These contact measurement techniques use a diamond stylus and the diamond stylus being sharp going to damage the surface under inspection and hence these techniques can be used in statistical sampling. Though these contact methods are very accurate, they do not give complete information for full characterization of surface. In this context, the presented method assumes special significance. The method uses a relatively low cost vision system for image acquisition. Software is developed based on wavelet transform, for analyzing texture images. Specimens are made using different manufacturing process (shaping, grinding, milling etc.) During experimentation, the specimens are illuminated using proper lighting and texture images a capture using CCD camera connected to the vision system. The software installed in the vision system processes these images and subsequently identify the texture of manufacturing processes.

Keywords: diamond stylus, manufacturing process, texture identification, vision system

Procedia PDF Downloads 288
1489 A Framework for Automated Nuclear Waste Classification

Authors: Seonaid Hume, Gordon Dobie, Graeme West

Abstract:

Detecting and localizing radioactive sources is a necessity for safe and secure decommissioning of nuclear facilities. An important aspect for the management of the sort-and-segregation process is establishing the spatial distributions and quantities of the waste radionuclides, their type, corresponding activity, and ultimately classification for disposal. The data received from surveys directly informs decommissioning plans, on-site incident management strategies, the approach needed for a new cell, as well as protecting the workforce and the public. Manual classification of nuclear waste from a nuclear cell is time-consuming, expensive, and requires significant expertise to make the classification judgment call. Also, in-cell decommissioning is still in its relative infancy, and few techniques are well-developed. As with any repetitive and routine tasks, there is the opportunity to improve the task of classifying nuclear waste using autonomous systems. Hence, this paper proposes a new framework for the automatic classification of nuclear waste. This framework consists of five main stages; 3D spatial mapping and object detection, object classification, radiological mapping, source localisation based on gathered evidence and finally, waste classification. The first stage of the framework, 3D visual mapping, involves object detection from point cloud data. A review of related applications in other industries is provided, and recommendations for approaches for waste classification are made. Object detection focusses initially on cylindrical objects since pipework is significant in nuclear cells and indeed any industrial site. The approach can be extended to other commonly occurring primitives such as spheres and cubes. This is in preparation of stage two, characterizing the point cloud data and estimating the dimensions, material, degradation, and mass of the objects detected in order to feature match them to an inventory of possible items found in that nuclear cell. Many items in nuclear cells are one-offs, have limited or poor drawings available, or have been modified since installation, and have complex interiors, which often and inadvertently pose difficulties when accessing certain zones and identifying waste remotely. Hence, this may require expert input to feature match objects. The third stage, radiological mapping, is similar in order to facilitate the characterization of the nuclear cell in terms of radiation fields, including the type of radiation, activity, and location within the nuclear cell. The fourth stage of the framework takes the visual map for stage 1, the object characterization from stage 2, and radiation map from stage 3 and fuses them together, providing a more detailed scene of the nuclear cell by identifying the location of radioactive materials in three dimensions. The last stage involves combining the evidence from the fused data sets to reveal the classification of the waste in Bq/kg, thus enabling better decision making and monitoring for in-cell decommissioning. The presentation of the framework is supported by representative case study data drawn from an application in decommissioning from a UK nuclear facility. This framework utilises recent advancements of the detection and mapping capabilities of complex radiation fields in three dimensions to make the process of classifying nuclear waste faster, more reliable, cost-effective and safer.

Keywords: nuclear decommissioning, radiation detection, object detection, waste classification

Procedia PDF Downloads 200
1488 Ceiba Speciosa Nanocellulose Obtained from a Sustainable Method as a Potential Reinforcement for Polymeric Composites

Authors: Heloise Sasso Teixeira, Talita Szlapak Franco, Thais Helena Sydenstricker Flores-Sahagun, Milton Vazquez Lepe, Graciela Bolzon Muñiz

Abstract:

Due to the need to reduce the consumption of materials produced from non-renewable sources, the search for new raw materials of natural origin is growing. In this regard, lignocellulosic fibers have great potential. Ceiba sp fibers are found in the fruit of the tree of the same name and have characteristics that differ from other natural fibers. Ceiba fibers are very light, have a high cellulose content, and are hydrophobic due to the presence of waxes on their surface. In this study, Ceiba fiber was used as raw material to obtain cellulose nanofibers (CNF), with the potential to be used in polymeric matrices. Due to the characteristics of this fiber, no chemical pretreatment was necessary before the mechanical defibrilation process in a colloidal mill, obtaining sustainable nanocellulose. The CNFs were characterized by Fourier infrared (FTIR), differential scanning calorimetry (DSC), analysis of the rmogravimetic (TGA), scanning electron microscopy (SEM), transmission electron microscopy, and X-ray photoelectron spectroscopy (XPS).

Keywords: cellulose nanofibers, nanocellulose, fibers, Brazilian fIbers, lignocellulosic, characterization

Procedia PDF Downloads 175
1487 Finite Element Modeling of the Mechanical Behavior of Municipal Solid Waste Incineration Bottom Ash with the Mohr-Coulomb Model

Authors: Le Ngoc Hung, Abriak Nor Edine, Binetruy Christophe, Benzerzour Mahfoud, Shahrour Isam, Patrice Rivard

Abstract:

Bottom ash from Municipal Solid Waste Incineration (MSWI) can be viewed as a typical granular material because these industrial by-products result from the incineration of various domestic wastes. MSWI bottom ashes are mainly used in road engineering in substitution of the traditional natural aggregates. As the characterization of their mechanical behavior is essential in order to use them, specific studies have been led over the past few years. In the first part of this paper, the mechanical behavior of MSWI bottom ash is studied with triaxial tests. After analysis of the experiment results, the simulation of triaxial tests is carried out by using the software package CESAR-LCPC. As the first approach in modeling of this new class material, the Mohr-Coulomb model was chosen to describe the evolution of material under the influence of external mechanical actions.

Keywords: bottom ash, granular material, triaxial test, mechanical behavior, simulation, Mohr-Coulomb model, CESAR-LCPC

Procedia PDF Downloads 309
1486 Synthesis and Characterization of Green Coke-Derived Activated Carbon by KOH Activation

Authors: Richard, Iyan Subiyanto, Chairul Hudaya

Abstract:

Activated carbon has been playing a significant role for many applications, especially in energy storage devices. However, commercially activated carbons generally require complicated processes and high production costs. Therefore, in this study, an activated carbon originating from green coke waste, that is economically affordable will be used as a carbon source. To synthesize activated carbon, KOH as an activator was employed with variation of C:KOH in ratio of 1:2, 1:3, 1:4, and 1:5, respectively, with an activation temperature of 700°C. The characterizations of activated carbon are obtained from Scanning Electron Microscopy, Energy Dispersive X-Ray, Raman Spectroscopy, and Brunauer-Emmett-Teller. The optimal activated carbon sample with specific surface area of 2,024 m²/g with high carbon content ( > 80%) supported by the high porosity carbon image obtained by SEM was prepared at C:KOH ratio of 1:4. The result shows that the synthesized activated carbon would be an ideal choice for energy storage device applications. Therefore, this study is expected to reduce the costs of activated carbon production by expanding the utilization of petroleum waste.

Keywords: activated carbon, energy storage material, green coke, specific surface area

Procedia PDF Downloads 166
1485 Influence of Measurement System on Negative Bias Temperature Instability Characterization: Fast BTI vs Conventional BTI vs Fast Wafer Level Reliability

Authors: Vincent King Soon Wong, Hong Seng Ng, Florinna Sim

Abstract:

Negative Bias Temperature Instability (NBTI) is one of the critical degradation mechanisms in semiconductor device reliability that causes shift in the threshold voltage (Vth). However, thorough understanding of this reliability failure mechanism is still unachievable due to a recovery characteristic known as NBTI recovery. This paper will demonstrate the severity of NBTI recovery as well as one of the effective methods used to mitigate, which is the minimization of measurement system delays. Comparison was done in between two measurement systems that have significant differences in measurement delays to show how NBTI recovery causes result deviations and how fast measurement systems can mitigate NBTI recovery. Another method to minimize NBTI recovery without the influence of measurement system known as Fast Wafer Level Reliability (FWLR) NBTI was also done to be used as reference.

Keywords: fast vs slow BTI, fast wafer level reliability (FWLR), negative bias temperature instability (NBTI), NBTI measurement system, metal-oxide-semiconductor field-effect transistor (MOSFET), NBTI recovery, reliability

Procedia PDF Downloads 423
1484 Preliminary Investigations on the Development and Production of Topical Skin Ointments

Authors: C. C. Igwe, C. E. Ogbuadike

Abstract:

Bryophyllum pinnatum is a tropical plant used by the indigenous people of South-East Nigeria as a medicinal plant for the treatment of skin ulcer and is being explored for the production of topical herbal skin ointments. This preliminary study involves the extraction and characterization of bioactive compounds from this plant for anti-skin ulcer, antimicrobial, and antioxidant activity, as well as formulating topical herbal medications for skin ulcer. Thus extraction, percentage yield, moisture content analysis, solvent-solvent fractionation and GC-MS has been carried out on processed leaves sample of B. pinnatum. GC-MS analysis revealed the presence of seven compounds, namely: 1-Octene, 3, 7-dimethyl, 1-Tridecene, E-14-Hexadecenal, 3-Eicosene (E)-, 11-Tricosene, 1-Tridecyn-4-ol and Butanamide. Standardized herbal products have been produced from B. pinnatum extracts. The products are being evaluated for safety and efficacy tests to ascertain their toxicity (if any), anti-ulcer, antibiotic and antioxidant properties. Further work is on-going to characterize the bioactive principles present in the plant extracts.

Keywords: anti-microbial, bioactive compounds, bryophyllum pinnatum, skin ulcer

Procedia PDF Downloads 74
1483 Development and Characterization of a Polymer Composite Electrolyte to Be Used in Proton Exchange Membranes Fuel Cells

Authors: B. A. Berns, V. Romanovicz, M. M. de Camargo Forte, D. E. O. S. Carpenter

Abstract:

The Proton Exchange Membranes (PEM) are largely studied because they operate at low temperatures and they are suitable for mobile applications. However, There are some deficiencies in their operation, Mainly those that use ethanol as a hydrogen source that require a certain attention. Therefore, This research aimed to develop Nafion® composite membranes, Mixing clay minerals, Kaolin and halloysite to the polymer matrix in order to improve the ethanol molecule retentions and at the same time to keep the system’s protonic conductivity. The modified Nafion/Kaolin, Nafion/Halloysite composite membranes were prepared in weight proportion of 0.5, 1.0 and 1.5. The membranes obtained were characterized as to their ethanol permeability, Protonic conductivity and water absorption. The composite morphology and structure are characterized by SEM and EDX and also the thermal behavior is determined by TGA and DSC. The analysis of the results shows ethanol permeability reduction from 48% to 63%. However, The protonic conductivity results are lower in relation to pure Nafion®. As to the thermal behavior, The Nafion® composite membranes were stable up to a temperature of 325ºC.

Keywords: Polymer-matrix composites (PMCs), thermal properties, nanoclay, differential scanning calorimetry

Procedia PDF Downloads 398
1482 Gold Nanoparticle: Synthesis, Characterization, Clinico-Pathological, Pathological and Bio-Distribution Studies in Rabbits

Authors: M. M. Bashandy, A. R. Ahmed, M. El-Gaffary, Sahar S. Abd El-Rahman

Abstract:

This study evaluated the acute toxicity and tissue distribution of intravenously administered gold nanoparticles (AuNPs) in male rabbits. Rabbits were exposed to single dose of AuNPs (300 µg/ kg). Toxic effects were assessed via general behavior, hematological parameters, serum biochemical parameters and histopathological examination of various rabbits’ organs. Tissue distribution of AuNPs was evaluated at a dose of 300 µg/ kg in male rabbit. Inductively coupled plasma–mass spectrometry (ICP-MS) was used to determine gold concentrations in tissue samples collected at predetermined time intervals. After one week, AuNPs exerted no obvious acute toxicity in rabbits. However, inflammatory reactions in lung and liver cells were induced in rabbits treated at the300 µg/ kg dose level. The highest gold levels were found in the spleen, followed by liver, lungs and kidneys. These results indicated that AuNPs could be distributed extensively to various tissues in the body, but primarily in the spleen and liver.

Keywords: gold nanoparticles, toxicity, pathology, hematology, liver function, kidney function

Procedia PDF Downloads 333
1481 Extraction, Characterization and Application of Natural Dyes from the Fresh Rind of Index Colour 5 Mangosteen (Garcinia mangostana L.)

Authors: Basitah Taif

Abstract:

This study was to explore and utilize the fresh rind of mangosteen Index Colour 5 as an upcoming raw material for the production of natural dyes. Rind from the fresh mangosteen Index Colour 5 was utilized to extract the dyes. The established extracts were experimented on silk fabrics via three types of mordanting and dyeing procedures; pre-mordanting, simultaneous mordanting and post-mordanting. As a result, the applications of the freeze-drying methodology and mechanizable equipment have helped to produce excellent range of natural colours. Silk fabric treated simultaneously with mordanting and dyeing with extract dye Index Colour 5 produced a brilliant shade of the red colour and the colour from this index is also discovered sensitive to light and washing during the fastness tests. The preliminary evaluation and instrumentation analysis allowed us to examine whether the application of different mordanting and dyeing procedures with the same extract samples and concentrations affected the colours and shades of the fabric samples.

Keywords: natural dye, freeze-drying, Garcinia mangostana Linn, mordanting

Procedia PDF Downloads 458
1480 Development of Polymeric Fluorescence Sensor for the Determination of Bisphenol-A

Authors: Neşe Taşci, Soner Çubuk, Ece Kök Yetimoğlu, M. Vezir Kahraman

Abstract:

Bisphenol-A (BPA), 2,2-bis(4-hydroxyphenly)propane, is one of the highest usage volume chemicals in the world. Studies showed that BPA maybe has negative effects on the central nervous system, immune and endocrine systems. Several of analytical methods for the analysis of BPA have been reported including electrochemical processes, chemical oxidation, ozonization, spectrophotometric, chromatographic techniques. Compared with other conventional analytical techniques, optic sensors are reliable, providing quick results, low cost, easy to use, stands out as a much more advantageous method because of the high precision and sensitivity. In this work, a new photocured polymeric fluorescence sensor was prepared and characterized for Bisphenol-A (BPA) analysis. Characterization of the membrane was carried out by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Scanning Electron Microscope (SEM) techniques. The response characteristics of the sensor including dynamic range, pH effect and response time were systematically investigated. Acknowledgment: This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant 115Y469.

Keywords: bisphenol-a, fluorescence, photopolymerization, polymeric sensor

Procedia PDF Downloads 233
1479 Characterization of Molecular Targets to Mediate Skin Itch and Inflammation

Authors: Anita Jäger, Andrew Salazar, Jörg von Hagen, Harald Kolmar

Abstract:

In the treatment of individuals with sensitive and psoriatic skin, several inflammation and itch-related molecular and cellular targets have been identified, but many of these have yet to be characterized. In this study, we present two potential targets in the skin that can be linked to the inflammation and itch cycle. 11ßHSD1 is the enzyme responsible for converting inactive cortisone to active cortisol used to transmit signals downstream. The activation of the receptor NK1R correlates with promoting inflammation and the perception of itch and pain in the skin. In this study, both targets have been investigated based on their involvement in inflammation. The role of both identified targets was characterized based on the secretion of inflammation cytokine- IL6, IL-8, and CCL2, as well as phosphorylation and signaling pathways. It was found that treating skin cells with molecules able to inhibit inflammatory pathways results in the reduction of inflammatory signaling molecules secreted by skin cells and increases their proliferative capacity. Therefore, these molecular targets and their associated pathways show therapeutic potential and can be mitigated via small molecules. This research can be used for further studies in inflammation and itch pathways and can help to treat pathological symptoms.

Keywords: inflammation, itch, signaling pathway, skin

Procedia PDF Downloads 121
1478 Characterization of Nickel Based Metallic Superconducting Materials

Authors: Y. Benmalem , A. Abbad, W. Benstaali, T. Lantri

Abstract:

Density functional theory is used to investigate the.the structural, electronic, and magnetic properties of the cubic anti-perovskites InNNi3 and ZnNNi3. The structure of antiperovskite also called (perovskite-inverse) identical to the perovskite structure of the general formula ABX3, where A is a main group (III–V) element or a metallic element, B is carbon or nitrogen, and X is a transition metal, displays a wide range of interesting physical properties, such as giant magnetoresistance. Elastic and electronic properties were determined using generalized gradient approximation (GGA), and local spin density approximation (LSDA) approaches, ), as implemented in the Wien2k computer package. The results show that the two compounds are strong ductile and satisfy the Born-Huang criteria, so they are mechanically stable at normal conditions. Electronic properties show that the two compounds studied are metallic and non-magnetic. The studies of these compounds have confirmed the effectiveness of the two approximations and the ground-state properties are in good agreement with experimental data and theoretical results available.

Keywords: anti-perovskites, elastic anisotropy, electronic band structure, first-principles calculations

Procedia PDF Downloads 283
1477 Micromechanics of Stress Transfer across the Interface Fiber-Matrix Bonding

Authors: Fatiha Teklal, Bachir Kacimi, Arezki Djebbar

Abstract:

The study and application of composite materials are a truly interdisciplinary endeavor that has been enriched by contributions from chemistry, physics, materials science, mechanics and manufacturing engineering. The understanding of the interface (or interphase) in composites is the central point of this interdisciplinary effort. From the early development of composite materials of various nature, the optimization of the interface has been of major importance. Even more important, the ideas linking the properties of composites to the interface structure are still emerging. In our study, we need a direct characterization of the interface; the micromechanical tests we are addressing seem to meet this objective and we chose to use two complementary tests simultaneously. The microindentation test that can be applied to real composites and the drop test, preferred to the pull-out because of the theoretical possibility of studying systems with high adhesion (which is a priori the case with our systems). These two tests are complementary because of the principle of the model specimen used for both the first "compression indentation" and the second whose fiber is subjected to tensile stress called the drop test. Comparing the results obtained by the two methods can therefore be rewarding.

Keywords: Fiber, Interface, Matrix, Micromechanics, Pull-out

Procedia PDF Downloads 116
1476 Extraction of Colorant and Dyeing of Gamma Irradiated Viscose Using Cordyline terminalis Leaves Extract

Authors: Urvah-Til-Vusqa, Unsa Noreen, Ayesha Hussain, Abdul Hafeez, Rafia Asghar, Sidrat Nasir

Abstract:

Natural dyes offer an alternative better application in textiles than synthetic ones. The present study will be aimed to employ natural dye extracted from Cordyline terminalis plant and its application into viscose under the influence of gamma radiations. The colorant extraction will be done by boiling dracaena leaves powder in aqueous, alkaline and ethyl acetate mediums. Both dye powder and fabric will be treated with different doses (5-20 kGy) of gamma radiations. The antioxidant, antimicrobial and hemolytic activities of the extracts will also be determined. Different tests of fabric characterization (before and after radiations treatment) will be employed. Dyeing variables just as time, temperature and M: L will be applied for optimization. Standard methods for ISO to evaluate color fastness to light, washing and rubbing will be employed for improvement of color strength 1.5-15.5% of Al, Fe, Cr, and Cu as mordants will be employed through pre, post and meta mordanting. Color depth % & L*, a*, b* and L*, C*, h values will be recorded using spectra flash SF650.

Keywords: natural dyes, gamma radiations, Cordyline terminalis, ecofriendly dyes

Procedia PDF Downloads 595
1475 Microwave Assisted Sol-gel Synthesis And Characterization Of Nanocrystalline Zirconia

Authors: Farzana Majid, Mahwish Bashir, Ammara, Attia Falak

Abstract:

Zirconia nanoparticles have gained significant attention due to their excellent mechanical strength, thermal properties, biocompatibility, and catalytic activity. Tetragonal zirconia holds the greatest efficacy for surgical implants and coatings when it comes to the three zirconia phases (monoclinic, tetragonal, and cubic). However, its stability at higher temperatures and transformation to the monoclinic phase upon cooling are challenging. In this research, zirconia nanoparticles were prepared using microwave-assisted sol-gel method with varying microwave powers (100 W, 300 W, 500 W, 700 W, & 900 W). Organic stabilizing agent, i.e., eggshell powder, was used to stabilize the tetragonal phase. Fourier transform infrared spectroscopy (FTIR) confirmed the phase-pure tetragonal zirconia, corroborating the XRD data. Optical properties, including the optical bandgap, were studied using UV/Visible and PL spectroscopies. The synthesized ZrO2 nanoparticles exhibited excellent photocatalytic degradation efficiency in the degradation of methylene blue (MB) dye under UV irradiation. The findings demonstrate the potential of these ZrO2 nanoparticles as a viable alternative photocatalyst for the efficient degradation of various dyes in contaminated water.

Keywords: zirconia nanoparticles, sol-gel, photocataylsis, wter purification

Procedia PDF Downloads 77
1474 Development of Closed System for Bacterial CO2 Mitigation

Authors: Somesh Misha, Smita Raghuvanshi, Suresh Gupta

Abstract:

Increasing concentration of green house gases (GHG's), such as CO2 is of major concern and start showing its impact nowadays. The recent studies are focused on developing the continuous system using photoautotrophs for CO2 mitigation and simultaneous production of primary and secondary metabolites as a value addition. The advent of carbon concentrating mechanism had blurred the distinction between autotrophs and heterotrophs and now the paradigm has shifted towards the carbon capture and utilization (CCU) rather than carbon capture and sequestration (CCS). In the present work, a bioreactor was developed utilizing the chemolithotrophic bacterial species using CO2 mitigation and simultaneous value addition. The kinetic modeling was done and the biokinetic parameters are obtained for developing the bioreactor. The bioreactor was developed and studied for its operation and performance in terms of volumetric loading rate, mass loading rate, elimination capacity and removal efficiency. The characterization of effluent from the bioreactor was carried out for the products obtained using the analyzing techniques such as FTIR, GC-MS, and NMR. The developed bioreactor promised an economic, efficient and effective solution for CO2 mitigation and simultaneous value addition.

Keywords: CO2 mitigation, bio-reactor, chemolithotrophic bacterial species, FTIR, GC-MS, NMR

Procedia PDF Downloads 468
1473 Actinomycetes from Protected Forest Ecosystems of Assam, India: Diversity and Antagonistic Activity

Authors: Priyanka Sharma, Ranjita Das, Mohan C. Kalita, Debajit Thakur

Abstract:

Background: Actinomycetes are the richest source of novel bioactive secondary metabolites such as antibiotics, enzymes and other therapeutically useful metabolites with diverse biological activities. The present study aims at the antimicrobial potential and genetic diversity of culturable Actinomycetes isolated from protected forest ecosystems of Assam which includes Kaziranga National Park (26°30˝-26°45˝N and 93°08˝-93°36˝E), Pobitora Wildlife Sanctuary (26º12˝-26º16˝N and 91º58˝-92º05˝E) and Gibbon Wildlife Sanctuary (26˚40˝-26˚45˝N and 94˚20˝-94˚25˝E) which are located in the North-eastern part of India. Northeast India is a part of the Indo-Burma mega biodiversity hotspot and most of the protected forests of this region are still unexplored for the isolation of effective antibiotic-producing Actinomycetes. Thus, there is tremendous possibility that these virgin forests could be a potential storehouse of novel microorganisms, particularly Actinomycetes, exhibiting diverse biological properties. Methodology: Soil samples were collected from different ecological niches of the protected forest ecosystems of Assam and Actinomycetes were isolated by serial dilution spread plate technique using five selective isolation media. Preliminary screening of Actinomycetes for an antimicrobial activity was done by spot inoculation method and the secondary screening by disc diffusion method against several test pathogens, including multidrug resistant Staphylococcus aureus (MRSA). The strains were further screened for the presence of antibiotic synthetic genes such as type I polyketide synthases (PKS-I), type II polyketide synthases (PKS-II) and non-ribosomal peptide synthetases (NRPS) genes. Genetic diversity of the Actinomycetes producing antimicrobial metabolites was analyzed through 16S rDNA-RFLP using Hinf1 restriction endonuclease. Results: Based on the phenotypic characterization, a total of 172 morphologically distinct Actinomycetes were isolated and screened for antimicrobial activity by spot inoculation method on agar medium. Among the strains tested, 102 (59.3%) strains showed activity against Gram-positive bacteria, 98 (56.97%) against Gram-negative bacteria, 92 (53.48%) against Candida albicans MTCC 227 and 130 (75.58%) strains showed activity against at least one of the test pathogens. Twelve Actinomycetes exhibited broad spectrum antimicrobial activity in the secondary screening. The taxonomic identification of these twelve strains by 16S rDNA sequencing revealed that Streptomyces was found to be the predominant genus. The PKS-I, PKS-II and NRPS genes detection indicated diverse bioactive products of these twelve Actinomycetes. Genetic diversity by 16S rDNA-RFLP indicated that Streptomyces was the dominant genus amongst the antimicrobial metabolite producing Actinomycetes. Conclusion: These findings imply that Actinomycetes from the protected forest ecosystems of Assam, India, are a potential source of bioactive secondary metabolites. These areas are as yet poorly studied and represent diverse and largely unscreened ecosystem for the isolation of potent Actinomycetes producing antimicrobial secondary metabolites. Detailed characterization of the bioactive Actinomycetes as well as purification and structure elucidation of the bioactive compounds from the potent Actinomycetes is the subject of ongoing investigation. Thus, to exploit Actinomycetes from such unexplored forest ecosystems is a way to develop bioactive products.

Keywords: Actinomycetes, antimicrobial activity, forest ecosystems, RFLP

Procedia PDF Downloads 390
1472 Thin Films of Copper Oxide Deposited by Sol-Gel Spin Coating Method: Effect of Annealing Temperature on Structural and Optical Properties

Authors: Touka Nassim, Tabli Dalila

Abstract:

In this study, CuO thin films synthesized via simple sol-gel method, have been deposited on glass substrates by the spin coating technique and annealed at various temperatures. Samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier-transform infrared (FT-IR) and Raman spectroscopy, and UV-visible spectroscopy. The structural characterization by XRD reveals that the as prepared films were tenorite phase and have a high level of purity and crystallinity. The crystallite size of the CuO films was affected by the annealing temperature and was estimated in the range 20-31.5 nm. SEM images show a homogeneous distribution of spherical nanoparticles over the surface of the annealed films at 350 and 450 °C. Vibrational Spectroscopy revealed vibration modes specific to CuO with monolithic structure on the Raman spectra at 289 cm−1 and on FT-IR spectra around 430-580 cm−1. Electronic investigation performed by UV–Visible spectroscopy showed that the films have high absorbance in the visible region and their optical band gap increases from 2.40 to 2.66 eV (blue shift) with increasing annealing temperature from 350 to 550 °C.

Keywords: Sol-gel, Spin coating method, Copper oxide, Thin films

Procedia PDF Downloads 158
1471 Processing and Characterization of Cereal Bar Containing Cassava Flour

Authors: E. L. Queiroz, S. M. A. Souza, R. T. S. Santos

Abstract:

The cereal bars have emerged as a healthy alternative in the food sector, by presenting a remarkable functional appeal, being a product of high nutritional value. Cereals have an important function in feeding because they have features that particularize them as their variety, smooth flavour and aroma and easy digestion and absorption in the body. Brazil is the largest producer of cassava in the world, and the flour produced from this raw material is a source of nutrients for much of the low-income population, however it is little explored industrially. The northeast region of Brazil has great potential for honey production, which is a source of vitamins, proteins, minerals and organic acids but it is much used as a medicine. Aiming to combine the production of healthy food with the sustainable utilization and enhancement of family farming products, was created a cereal bar using regional raw materials of desirable nutritional characteristics: honey, umbu pulp and cassava flour. The cereal bar was characterized by physicochemical analyzes quantifying the content of lipids, proteins, moisture and ashes, microbiological and sensory evaluation showed that the cereal bar is a safe, and nutritious food with good sensory properties.

Keywords: cassava flour, cereal bar, honey, insoluble fibre

Procedia PDF Downloads 469
1470 Exploring the Biocompatibility and Performance of Metals and Ceramics as Biomaterials, A Comprehensive Study for Advanced Medical Applications

Authors: Ala Abobakr Abdulhafidh Al-Dubai

Abstract:

Biomaterials, specifically metals and ceramics, are indispensable components in the realm of medical science, shaping the landscape of implantology and prosthetics. This study delves into the intricate interplay between these materials and biological systems, aiming to scrutinize their suitability, performance, and biocompatibility. Employing a multi-faceted approach, a range of methodologies were meticulously employed to comprehensively characterize these biomaterials. Advanced material characterization techniques were paramount in this research, with scanning electron microscopy providing intricate insights into surface morphology, and X-ray diffraction unraveling the crystalline structures. These analyses were complemented by in vitro assessments, which gauged the biological response of cells to metals and ceramics, shedding light on their potential applications within the human body. A key facet of our investigation involved a comparative study, evaluating the corrosion resistance and osseointegration potential of both metals and ceramics. Through a series of experiments, we sought to understand how these biomaterials interacted with physiological environments, paving the way for informed decisions in medical applications

Keywords: metals, ceramics, biomaterials, biocompatibility, osseointegration

Procedia PDF Downloads 67
1469 Characterization of Genus Candida Yeasts Isolated from Oral Microbiota of Brazilian Schoolchildren with Different Caries Experience

Authors: D. S. V. Barbieri, R. R. Gomes, G. D. Santos, P. F. Herkert, M. Moreira, E. S. Trindade, V. A. Vicente

Abstract:

The importance of yeast infections has increased in recent decades. The monitoring of Candida yeasts has been relevant in the study of groups and populations. This research evaluated 31 Candida spp. isolates from oral microbiota of 12 Brazilian schoolchildren coinfected with Streptococcus mutans. The isolates were evaluated for their ability to form biofilm in vitro and molecularly characterized based on the sequencing of intergenic spacer regions ITS1-5,8S-ITS2 and variable domains of the large subunit (D1/D2) regions of the rDNA, as well as ABC system genotyping. The sequencing confirmed 26 lineages of Candida albicans, three Candida tropicalis, one Candida guillhermondii and one Candida glabrata. Genetic variability and differences on in biofilm formation were observed among Candida yeasts lineages. At least one Candida strain from each caries activity child was C.albicans genotype A or Candida non-albicans. C. tropicalis was associated with highest cavities rates. These results indicate that the presence of C. albicans genotype A or multi-colonization by non albicans species seem to be associates to the potentialization of caries risk.

Keywords: biofilm, Candida albicans, oral microbiota, caries

Procedia PDF Downloads 509
1468 Deep Learning for SAR Images Restoration

Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo Ferraioli

Abstract:

In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring. SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.

Keywords: SAR image, polarimetric SAR image, convolutional neural network, deep learnig, deep neural network

Procedia PDF Downloads 66
1467 Numerical Evaluation of the Degradation of Shear Modulus and Damping Evolution of Soils in the Eastern Region of Algiers Using Geophysical and Geotechnical Tests

Authors: Mohamed Khiatine, Ramdane Bahar

Abstract:

The research performed during the last years has revealed that the seismic response of the soilis significantly non linear and hysteresis to the deformationsitundergoes during earthquakes and notably during violent shaking. This nonlinear behavior of soils can be characterized by curves showing the evolution of shearmodulus and damping versus distortion. Also, in this context, geotechnical seismic engineering problems often require the characterization of dynamic soil properties over a wide range of deformation. This determination of dynamic soil properties is key to predict the seismic response of soils for important civil engineering structures. This communication discusses a numerical analysis method for evaluating the nonlinear dynamic properties of soils in Algeriausing the FLAC2D software and the database resulting from geophysical and geotechnical studies when laboratory dynamic tests are not available. The nonlinear model proposed by Ramberg-Osgood and limited by the Mohr-coulomb criterion is used.

Keywords: degradation, shear modulus, damping, ramberg-osgood, numerical analysis.

Procedia PDF Downloads 104