Search results for: regression analysis (RA)
28326 Influence of Leadership Roles on Agricultural Employees’ Job Satisfaction
Authors: B. G. Abiona, E. O. Fakoya, D. O. Alabi
Abstract:
Influence of leadership roles on agricultural employees’ job satisfaction was studied. Data were from 68 randomly selected respondents. Major leadership roles include supervision of employees work (x̄=3.67), leaders were goal oriented (x̄=3.39), dissemination of information among the employees (x̄=3.35). Major employees’ satisfaction was: Employees work together with their colleagues (x̄=3.54) and also interact freely with their colleagues (x̄=3.51). Major challenges affecting employees job satisfaction were inadequate funding (x̄=3.30), irregular leave bonus (x̄=3.29), climate and weather condition (x̄=3.08) and inadequate incentive (x̄=3.02). Regression analysis showed a positive significant coefficient (P<0.05) exist between religion (p<0.05), educational status(p<0.05), year of service(p<0.05), leadership roles (p<0.005), challenges faced by respondents(P<0.05), and employees’ job satisfaction. For adequate leadership role, organization should pay attention to disbursement of training funds, availability of adequate incentive and leadership recognition.Keywords: leadership roles, agricultural employees’, job satisfaction, institute, Nigeria
Procedia PDF Downloads 30328325 Effects of Cash Transfers Mitigation Impacts in the Face of Socioeconomic External Shocks: Evidence from Egypt
Authors: Basma Yassa
Abstract:
Evidence on cash transfers’ effectiveness in mitigating macro and idiosyncratic shocks’ impacts has been mixed and is mostly concentrated in Latin America, Sub-Saharan Africa, and South Asia with very limited evidence from the MENA region. Yet conditional cash transfers schemes have been continually used, especially in Egypt, as the main social protection tool in response to the recent socioeconomic crises and macro shocks. We use 2 panel datasets and 1 cross-sectional dataset to estimate the effectiveness of cash transfers as a shock-mitigative mechanism in the Egyptian context. In this paper, the results from the different models (Panel Fixed Effects model and the Regression Discontinuity Design (RDD) model) confirm that micro and macro shocks lead to significant decline in several household-level welfare outcomes and that Takaful cash transfers have a significant positive impact in mitigating the negative shock impacts, especially on households’ debt incidence, debt levels, and asset ownership, but not necessarily on food, and non-food expenditure levels. The results indicate large positive significant effects on decreasing household incidence of debt by up to 12.4 percent and lowered the debt size by approximately 18 percent among Takaful beneficiaries compared to non-beneficiaries’. Similar evidence is found on asset ownership levels, as the RDD model shows significant positive effects on total asset ownership and productive asset ownership, but the model failed to detect positive impacts on per capita food and non-food expenditures. Further extensions are still in progress to compare the models’ results with the DID model results when using a nationally representative ELMPS panel data (2018/2024) rounds. Finally, our initial analysis suggests that conditional cash transfers are effective in buffering the negative shock impacts on certain welfare indicators even after successive macro-economic shocks in 2022 and 2023 in the Egyptian Context.Keywords: cash transfers, fixed effects, household welfare, household debt, micro shocks, regression discontinuity design
Procedia PDF Downloads 5128324 Inbreeding and Its Effect on Growth Performance in a Closed Herd of New Zealand White Rabbits
Authors: M. Sakthivel, A. Devaki, D. Balasubramanyam, P. Kumarasamy, A. Raja, R. Anilkumar, H. Gopi
Abstract:
The influence of inbreeding on growth traits in the New Zealand White rabbits maintained at Sheep Breeding and Research Station, Sandynallah, The Nilgiris, India was studied in a closed herd. Data were collected over a period of 15 years (1998 to 2012). The traits studied were body weights at weaning (W42), post-weaning (W70) and marketing (W135) age and growth efficiency traits viz., average daily gain (ADG), relative growth rate (RGR) and Kleiber ratio (KR) estimated on a daily basis at different age intervals (1=42 to 70 days; 2=70 to 135 days and 3=42 to 135 days) from weaning to marketing. The effects of inbreeding along with other non-genetic factors (sex of the kit, season and period of birth of the kit) were analyzed using least-squares method. The inbreeding (F) and equivalent inbreeding (EF) coefficients were taken as fixed classes as well as covariates in separate analyses. When taken as covariate, the effect was analyzed as partial regression of respective growth trait on individual inbreeding coefficient (F or EF). The mean body weights at weaning, post-weaning and marketing were 0.715, 1.276 and 2.187 kg, respectively. The maximum growth efficiency was noticed between weaning and post-weaning. Season and period had highly significant influence on all the growth parameters studied and sex of the kit had significant influence on certain growth efficiency traits only. The average coefficients of inbreeding and equivalent inbreeding in the population were 13.233 and 17.585 percent, respectively. About 11.17 percent of total matings were highly inbred in which full-sib, half-sib and parent-offspring matings were 1.20, 6.30 and 3.67 percent, respectively. The regression of body weight traits on F and EF showed negative effect whereas most of the growth efficiency traits showed positive effects. Significant inbreeding depression was observed in W42 and W70. The depression in W42 was 0.214 kg and 0.139 kg and in W70 was 0.269 kg and 0.172 kg for every one unit increase in F and EF, respectively. Though the trait W135 showed positive value and ADG1 showed depression, the effects of inbreeding and equivalent inbreeding were non-significant in these traits. Higher values of inbreeding depression could be due to more variance of F or EF in the population. The analysis of the effect of level of inbreeding on growth traits revealed that the inbreeding class was significant on W70, ADG2, RGR2 and KR2 while EF classes had significant influence only on ADG2, RGR2 and KR2. Obviously, inbreeding does not have a positive effect, therefore, these results suggest that inbreeding had no effect on these traits.Keywords: growth parameters, equivalent inbreeding, inbreeding effects, rabbit genetics
Procedia PDF Downloads 36928323 Predictive Factors of Prognosis in Acute Stroke Patients Receiving Traditional Chinese Medicine Therapy: A Retrospective Study
Authors: Shaoyi Lu
Abstract:
Background: Traditional Chinese medicine has been used to treat stroke, which is a major cause of morbidity and mortality. There is, however, no clear agreement about the optimal timing, population, efficacy, and predictive prognosis factors of traditional Chinese medicine supplemental therapy. Method: In this study, we used a retrospective analysis with data collection from stroke patients in Stroke Registry In Chang Gung Healthcare System (SRICHS). Stroke patients who received traditional Chinese medicine consultation in neurology ward of Keelung Chang Gung Memorial Hospital from Jan 2010 to Dec 2014 were enrolled. Clinical profiles including the neurologic deficit, activities of daily living and other basic characteristics were analyzed. Through propensity score matching, we compared the NIHSS and Barthel index before and after the hospitalization, and applied with subgroup analysis, and adjusted by multivariate regression method. Results: Totally 115 stroke patients were enrolled with experiment group in 23 and control group in 92. The most important factor for prognosis prediction were the scores of National Institutes of Health Stroke Scale and Barthel index right before the hospitalization. Traditional Chinese medicine intervention had no statistically significant influence on the neurological deficit of acute stroke patients, and mild negative influence on daily activity performance of acute hemorrhagic stroke patient. Conclusion: Efficacy of traditional Chinese medicine as a supplemental therapy for acute stroke patients was controversial. The reason for this phenomenon might be complex and require more research to comprehend. Key words: traditional Chinese medicine, acupuncture, Stroke, NIH stroke scale, Barthel index, predictive factor. Method: In this study, we used a retrospective analysis with data collection from stroke patients in Stroke Registry In Chang Gung Healthcare System (SRICHS). Stroke patients who received traditional Chinese medicine consultation in neurology ward of Keelung Chang Gung Memorial Hospital from Jan 2010 to Dec 2014 were enrolled. Clinical profiles including the neurologic deficit, activities of daily living and other basic characteristics were analyzed. Through propensity score matching, we compared the NIHSS and Barthel index before and after the hospitalization, and applied with subgroup analysis, and adjusted by multivariate regression method. Results: Totally 115 stroke patients were enrolled with experiment group in 23 and control group in 92. The most important factor for prognosis prediction were the scores of National Institutes of Health Stroke Scale and Barthel index right before the hospitalization. Traditional Chinese medicine intervention had no statistically significant influence on the neurological deficit of acute stroke patients, and mild negative influence on daily activity performance of acute hemorrhagic stroke patient. Conclusion: Efficacy of traditional Chinese medicine as a supplemental therapy for acute stroke patients was controversial. The reason for this phenomenon might be complex and require more research to comprehend.Keywords: traditional Chinese medicine, complementary and alternative medicine, stroke, acupuncture
Procedia PDF Downloads 36628322 Patient Reported Outcome Measures Post Implant Based Reconstruction Basildon Hospital
Authors: Danny Fraser, James Zhang
Abstract:
Aim of the study: Our study aims to identify any statistically significant evidence as it relates to PROMs for mastectomy and implant-based reconstruction to guide future surgical management. Method: The demographic, pre and post-operative treatment and implant characteristics were collected of all patients at Basildon hospital who underwent breast reconstruction from 2017-2023. We used the Breast-Q psychosocial well-being, physical well-being, and satisfaction with breasts scales. An Independent t-test was conducted for each group, and linear regression of age and implant size. Results: 69 patients were contacted, and 39 PROMs returned. The mean age of patients was 57.6. 40% had smoked before, and 40.8% had BMI>30. 29 had pre-pectoral placement, and 40 had subpectoral placement. 17 had smooth implants, and 52 textured. Sub pectoral placement was associated with higher (75.7 vs. 61.9 p=0.046) psychosocial scores than pre pectoral, and textured implants were associated with a lower physical score than the smooth surface (34.7 VS 50.2 P=0.046). On linear regression, age was positively associated (p=0.007) with psychosocial score. Conclusion: We present a large cohort of patients who underwent breast reconstruction. Understanding the PROMs of these procedures can guide clinicians, patients and policy makers to be more informed of the course of rehabilitation of these operations. Significance: We have found that from a patient perspective subpectoral implant placement was associated with a statistically significant improvement in psychosocial scores.Keywords: breast surgery, mastectomy, breast implants, oncology
Procedia PDF Downloads 6328321 Effect of Climate Variability on Honeybee's Production in Ondo State, Nigeria
Authors: Justin Orimisan Ijigbade
Abstract:
The study was conducted to assess the effect of climate variability on honeybee’s production in Ondo State, Nigeria. Multistage sampling technique was employed to collect the data from 60 beekeepers across six Local Government Areas in Ondo State. Data collected were subjected to descriptive statistics and multiple regression model analyses. The results showed that 93.33% of the respondents were male with 80% above 40 years of age. Majority of the respondents (96.67%) had formal education and 90% produced honey for commercial purpose. The result revealed that 90% of the respondents admitted that low temperature as a result of long hours/period of rainfall affected the foraging efficiency of the worker bees, 73.33% claimed that long period of low humidity resulted in low level of nectar flow, while 70% submitted that high temperature resulted in improper composition of workers, dunes and queen in the hive colony. The result of multiple regression showed that beekeepers’ experience, educational level, access to climate information, temperature and rainfall were the main factors affecting honey bees production in the study area. Therefore, beekeepers should be given more education on climate variability and its adaptive strategies towards ensuring better honeybees production in the study area.Keywords: climate variability, honeybees production, humidity, rainfall and temperature
Procedia PDF Downloads 27528320 Analysis of the Role of Population Ageing on Crosstown Roads' Traffic Accidents Using Latent Class Clustering
Authors: N. Casado-Sanz, B. Guirao
Abstract:
The population aged 65 and over is projected to double in the coming decades. Due to this increase, driver population is expected to grow and in the near future, all countries will be faced with population aging of varying intensity and in unique time frames. This is the greatest challenge facing industrialized nations and due to this fact, the study of the relationships of dependency between population aging and road safety is becoming increasingly relevant. Although the deterioration of driving skills in the elderly has been analyzed in depth, to our knowledge few research studies have focused on the road infrastructure and the mobility of this particular group of users. In Spain, crosstown roads have one of the highest fatality rates. These rural routes have a higher percentage of elderly people who are more dependent on driving due to the absence or limitations of urban public transportation. Analysing road safety in these routes is very complex because of the variety of the features, the dispersion of the data and the complete lack of related literature. The objective of this paper is to identify key factors that cause traffic accidents. The individuals under study were the accidents with killed or seriously injured in Spanish crosstown roads during the period 2006-2015. Latent cluster analysis was applied as a preliminary tool for segmentation of accidents, considering population aging as the main input among other socioeconomic indicators. Subsequently, a linear regression analysis was carried out to estimate the degree of dependence between the accident rate and the variables that define each group. The results show that segmenting the data is very interesting and provides further information. Additionally, the results revealed the clear influence of the aging variable in the clusters obtained. Other variables related to infrastructure and mobility levels, such as the crosstown roads layout and the traffic intensity aimed to be one of the key factors in the causality of road accidents.Keywords: cluster analysis, population ageing, rural roads, road safety
Procedia PDF Downloads 11728319 Influence of the Growth Rate on Eutectic Microstructures and Physical Properties of Aluminum–Silicon-Cobalt Alloy
Authors: Aynur Aker, Hasan Kaya
Abstract:
Al-12.6wt.%Si-%2wt.Co alloy was prepared in a graphite crucible under vacuum atmosphere. The samples were directionally solidified upwards with different growth rate at constant temperature gradient using by Bridgman–type growth apparatus. The values of microstructures (λ) was measured from transverse sections of the samples. The microhardness (HV), ultimate tensile strength (σ) and electrical resistivity (ρ) of the directional solidification samples were also measured. Influence of the growth rate and spacings on microhardness, ultimate tensile strength and electrical resistivity were investigated and the relationships between them were experimentally obtained by using regression analysis. The results obtained in present work were compared with the previous similar experimental results obtained for binary and ternary alloys.Keywords: directional solidification, Al-Si-Co alloy, mechanical properties, electrical properties
Procedia PDF Downloads 29228318 Comparison of Various Classification Techniques Using WEKA for Colon Cancer Detection
Authors: Beema Akbar, Varun P. Gopi, V. Suresh Babu
Abstract:
Colon cancer causes the deaths of about half a million people every year. The common method of its detection is histopathological tissue analysis, it leads to tiredness and workload to the pathologist. A novel method is proposed that combines both structural and statistical pattern recognition used for the detection of colon cancer. This paper presents a comparison among the different classifiers such as Multilayer Perception (MLP), Sequential Minimal Optimization (SMO), Bayesian Logistic Regression (BLR) and k-star by using classification accuracy and error rate based on the percentage split method. The result shows that the best algorithm in WEKA is MLP classifier with an accuracy of 83.333% and kappa statistics is 0.625. The MLP classifier which has a lower error rate, will be preferred as more powerful classification capability.Keywords: colon cancer, histopathological image, structural and statistical pattern recognition, multilayer perception
Procedia PDF Downloads 57828317 The Relation between Earnings Management with the Financial Reporting
Authors: Anocha Rojanapanich
Abstract:
The objective of this research is to investigate the effects of earnings management on corporate transparency of the company in Dusit area workplace via financial reporting reliability and stakeholder acceptance as independent variable. And the company in Dusit are are taken as the population and sample. The questionnaire is used to collect data. Exploratory Factor Analysis is implemented to ensure construct validity, and correlation statistic is selected to test the relationship among all variable and the ordinary least squares regression is used to explore the hypothesized. The results show that earnings management has a significant and negative impact on financial reporting reliability, stakeholder acceptance, and corporate transparency. Both financial reporting reliability and stakeholder acceptance have an important and positive effect on corporate transparency, and they are then mediators of the earnings management-corporate transparency relationships.Keywords: dusit area workplace, earnings management, financial report, business and marketing management
Procedia PDF Downloads 41028316 Knowledge Creation Environment in the Iranian Universities: A Case Study
Authors: Mahdi Shaghaghi, Amir Ghaebi, Fariba Ahmadi
Abstract:
Purpose: The main purpose of the present research is to analyze the knowledge creation environment at a Iranian University (Alzahra University) as a typical University in Iran, using a combination of the i-System and Ba models. This study is necessary for understanding the determinants of knowledge creation at Alzahra University as a typical University in Iran. Methodology: To carry out the present research, which is an applied study in terms of purpose, a descriptive survey method was used. In this study, a combination of the i-System and Ba models has been used to analyze the knowledge creation environment at Alzahra University. i-System consists of 5 constructs including intervention (input), intelligence (process), involvement (process), imagination (process), and integration (output). The Ba environment has three pillars, namely the infrastructure, the agent, and the information. The integration of these two models resulted in 11 constructs which were as follows: intervention (input), infrastructure-intelligence, agent-intelligence, information-intelligence (process); infrastructure-involvement, agent-involvement, information-involvement (process); infrastructure-imagination, agent-imagination, information-imagination (process); and integration (output). These 11 constructs were incorporated into a 52-statement questionnaire and the validity and reliability of the questionnaire were examined and confirmed. The statistical population included the faculty members of Alzahra University (344 people). A total of 181 participants were selected through the stratified random sampling technique. The descriptive statistics, binomial test, regression analysis, and structural equation modeling (SEM) methods were also utilized to analyze the data. Findings: The research findings indicated that among the 11 research constructs, the levels of intervention, information-intelligence, infrastructure-involvement, and agent-imagination constructs were average and not acceptable. The levels of infrastructure-intelligence and information-imagination constructs ranged from average to low. The levels of agent-intelligence and information-involvement constructs were also completely average. The level of infrastructure-imagination construct was average to high and thus was considered acceptable. The levels of agent-involvement and integration constructs were above average and were in a highly acceptable condition. Furthermore, the regression analysis results indicated that only two constructs, viz. the information-imagination and agent-involvement constructs, positively and significantly correlate with the integration construct. The results of the structural equation modeling also revealed that the intervention, intelligence, and involvement constructs are related to the integration construct with the complete mediation of imagination. Discussion and conclusion: The present research suggests that knowledge creation at Alzahra University relatively complies with the combination of the i-System and Ba models. Unlike this model, the intervention, intelligence, and involvement constructs are not directly related to the integration construct and this seems to have three implications: 1) the information sources are not frequently used to assess and identify the research biases; 2) problem finding is probably of less concern at the end of studies and at the time of assessment and validation; 3) the involvement of others has a smaller role in the summarization, assessment, and validation of the research.Keywords: i-System, Ba model , knowledge creation , knowledge management, knowledge creation environment, Iranian Universities
Procedia PDF Downloads 10628315 The Moderating Role of Test Anxiety in the Relationships Between Self-Efficacy, Engagement, and Academic Achievement in College Math Courses
Authors: Yuqing Zou, Chunrui Zou, Yichong Cao
Abstract:
Previous research has revealed relationships between self-efficacy (SE), engagement, and academic achievement among students in Western countries, but these relationships remain unknown in college math courses among college students in China. In addition, previous research has shown that test anxiety has a direct effect on engagement and academic achievement. However, how test anxiety affects the relationships between SE, engagement, and academic achievement is still unknown. In this study, the authors aimed to explore the mediating roles of behavioral engagement (BE), emotional engagement (EE), and cognitive engagement (CE) in the association between SE and academic achievement and the moderating role of test anxiety in college math courses. Our hypotheses are that the association between SE and academic achievement was mediated by engagement and that test anxiety played a moderating role in the association. To explore the research questions, the authors collected data through self-reported surveys among 147 students at a northwestern university in China. Self-reported surveys were used to collect data. The motivated strategies for learning questionnaire (MSLQ) (Pintrich, 1991), the metacognitive strategies questionnaire (Wolters, 2004), and the engagement versus disaffection with learning scale (Skinner et al., 2008) were used to assess SE, CE, and BE and EE, respectively. R software was used to analyze the data. The main analyses used were reliability and validity analysis of scales, descriptive statistics analysis of measured variables, correlation analysis, regression analysis, and structural equation modeling (SEM) analysis and moderated mediation analysis to look at the structural relationships between variables at the same time. The SEM analysis indicated that student SE was positively related to BE, EE, and CE and academic achievement. BE, EE, and CE were all positively associated with academic achievement. That is, as the authors expected, higher levels of SE led to higher levels of BE, EE, and CE, and greater academic achievement. Higher levels of BE, EE, and CE led to greater academic achievement. In addition, the moderated mediation analysis found that the path of SE to academic achievement in the model was as significant as expected, as was the moderating effect of test anxiety in the SE-Achievement association. Specifically, test anxiety was found to moderate the association between SE and BE, the association between SE and CE, and the association between EE and Achievement. The authors investigated possible mediating effects of BE, EE, and CE in the associations between SE and academic achievement, and all indirect effects were found to be significant. As for the magnitude of mediations, behavioral engagement was the most important mediator in the SE-Achievement association. This study has implications for college teachers, educators, and students in China regarding ways to promote academic achievement in college math courses, including increasing self-efficacy and engagement and lessening test anxiety toward math.Keywords: academic engagement, self-efficacy, test anxiety, academic achievement, college math courses, behavioral engagement, cognitive engagement, emotional engagement
Procedia PDF Downloads 9628314 Comparison of GIS-Based Soil Erosion Susceptibility Models Using Support Vector Machine, Binary Logistic Regression and Artificial Neural Network in the Southwest Amazon Region
Authors: Elaine Lima Da Fonseca, Eliomar Pereira Da Silva Filho
Abstract:
The modeling of areas susceptible to soil loss by hydro erosive processes consists of a simplified instrument of reality with the purpose of predicting future behaviors from the observation and interaction of a set of geoenvironmental factors. The models of potential areas for soil loss will be obtained through binary logistic regression, artificial neural networks, and support vector machines. The choice of the municipality of Colorado do Oeste in the south of the western Amazon is due to soil degradation due to anthropogenic activities, such as agriculture, road construction, overgrazing, deforestation, and environmental and socioeconomic configurations. Initially, a soil erosion inventory map constructed through various field investigations will be designed, including the use of remotely piloted aircraft, orbital imagery, and the PLANAFLORO/RO database. 100 sampling units with the presence of erosion will be selected based on the assumptions indicated in the literature, and, to complement the dichotomous analysis, 100 units with no erosion will be randomly designated. The next step will be the selection of the predictive parameters that exert, jointly, directly, or indirectly, some influence on the mechanism of occurrence of soil erosion events. The chosen predictors are altitude, declivity, aspect or orientation of the slope, curvature of the slope, composite topographic index, flow power index, lineament density, normalized difference vegetation index, drainage density, lithology, soil type, erosivity, and ground surface temperature. After evaluating the relative contribution of each predictor variable, the erosion susceptibility model will be applied to the municipality of Colorado do Oeste - Rondônia through the SPSS Statistic 26 software. Evaluation of the model will occur through the determination of the values of the R² of Cox & Snell and the R² of Nagelkerke, Hosmer and Lemeshow Test, Log Likelihood Value, and Wald Test, in addition to analysis of the Confounding Matrix, ROC Curve and Accumulated Gain according to the model specification. The validation of the synthesis map resulting from both models of the potential risk of soil erosion will occur by means of Kappa indices, accuracy, and sensitivity, as well as by field verification of the classes of susceptibility to erosion using drone photogrammetry. Thus, it is expected to obtain the mapping of the following classes of susceptibility to erosion very low, low, moderate, very high, and high, which may constitute a screening tool to identify areas where more detailed investigations need to be carried out, applying more efficient social resources.Keywords: modeling, susceptibility to erosion, artificial intelligence, Amazon
Procedia PDF Downloads 7328313 Development of Interaction Diagram for Eccentrically Loaded Reinforced Concrete Sandwich Walls with Different Design Parameters
Authors: May Haggag, Ezzat Fahmy, Mohamed Abdel-Mooty, Sherif Safar
Abstract:
Sandwich sections have a very complex nature due to variability of behavior of different materials within the section. Cracking, crushing and yielding capacity of constituent materials enforces high complexity of the section. Furthermore, slippage between the different layers adds to the section complex behavior. Conventional methods implemented in current industrial guidelines do not account for the above complexities. Thus, a throughout study is needed to understand the true behavior of the sandwich panels thus, increase the ability to use them effectively and efficiently. The purpose of this paper is to conduct numerical investigation using ANSYS software for the structural behavior of sandwich wall section under eccentric loading. Sandwich walls studied herein are composed of two RC faces, a foam core and linking shear connectors. Faces are modeled using solid elements and reinforcement together with connectors are modeled using link elements. The analysis conducted herein is nonlinear static analysis incorporating material nonlinearity, crashing and crushing of concrete and yielding of steel. The model is validated by comparing it to test results in literature. After validation, the model is used to establish extensive parametric analysis to investigate the effect of three key parameters on the axial force bending moment interaction diagram of the walls. These parameters are the concrete compressive strength, face thickness and number of shear connectors. Furthermore, the results of the parametric study are used to predict a coefficient that links the interaction diagram of a solid wall to that of a sandwich wall. The equation is predicted using the parametric study data and regression analysis. The predicted α was used to construct the interaction diagram of the investigated wall and the results were compared with ANSYS results and showed good agreement.Keywords: sandwich walls, interaction diagrams, numerical modeling, eccentricity, reinforced concrete
Procedia PDF Downloads 40628312 Simplified Linear Regression Model to Quantify the Thermal Resilience of Office Buildings in Three Different Power Outage Day Times
Authors: Nagham Ismail, Djamel Ouahrani
Abstract:
Thermal resilience in the built environment reflects the building's capacity to adapt to extreme climate changes. In hot climates, power outages in office buildings pose risks to the health and productivity of workers. Therefore, it is of interest to quantify the thermal resilience of office buildings by developing a user-friendly simplified model. This simplified model begins with creating an assessment metric of thermal resilience that measures the duration between the power outage and the point at which the thermal habitability condition is compromised, considering different power interruption times (morning, noon, and afternoon). In this context, energy simulations of an office building are conducted for Qatar's summer weather by changing different parameters that are related to the (i) wall characteristics, (ii) glazing characteristics, (iii) load, (iv) orientation and (v) air leakage. The simulation results are processed using SPSS to derive linear regression equations, aiding stakeholders in evaluating the performance of commercial buildings during different power interruption times. The findings reveal the significant influence of glazing characteristics on thermal resilience, with the morning power outage scenario posing the most detrimental impact in terms of the shortest duration before compromising thermal resilience.Keywords: thermal resilience, thermal envelope, energy modeling, building simulation, thermal comfort, power disruption, extreme weather
Procedia PDF Downloads 8328311 The Power of Social Media Influencers: A Study of Public Perception of Credibility Among Kuwaitis
Authors: Fatima Alsalem
Abstract:
Objectives: This study aims to explore the perceived credibility of social media influencers and their effect on purchase intention. In addition, the study aims to investigate the relationship between satisfaction with content promoted via social media and its relation to purchasing intention. Methodology: This study uses an exploratory and quantitative methodology. It was implemented through a cross-sectional survey that asked respondents to identify the time they spend using social media, satisfaction with influencers’ content, types of influencers they prefer, motivations to use social media, purchase intention of products promoted by influencers, as well as three credibility dimensions. Sample: the sample included 1184 Kuwaiti nationals, of which 50.4% (N=593) were males and 49.6% (N=584) were females. Results: The analysis of the data indicated that comedy and entertainment influencers are the most preferred type of influencers, while fashion influencers “fashionistas” are the least preferred. Based on the results of the regression analysis, the perceived credibility of influencers and satisfaction with their content is positively related to higher purchase intention. While all dimensions of credibility are positively related to higher purchase intention, attractiveness is the strongest predictor. Conclusion: The significant value of this study is the examination of the perceived credibility of influencers and the type of influencer social media users prefer to follow. The current research proves that the attractiveness of influencers is the highest dimension of their perceived credibility, which was prevalent in the findings.Keywords: influencers, social media, mass media, credibility
Procedia PDF Downloads 26428310 The Role of Formal and Informal Social Support in Predicting the Involvement of Mothers and Fathers of Young Children with Autism Spectrum Disorder
Authors: Adi Sharabi, Dafna Marom-Golan
Abstract:
Parents’ involvement in the care of their children with Autism Spectrum Disorder (ASD) and its beneficial effect on the children’s developmental and educational outcomes is well documented. At the same time, parents of children with ASD tend to experience greater psychological distress than parents of children with other developmental disabilities or with typical development. Positive social support is an important resource used by parents to reduce their psychological distress. The goal of the current research was to examine the contribution of formal and informal social support in explaining mothers’ and fathers’ involvement with their young children with ASD. The sample consisted of 107 parents who live in Israel (61 mothers and 46 fathers) of children aged between 2 and 7, all diagnosed with ASD and attending special kindergartens or special day care for children with ASD. Parental involvement and social support perception were assessed. Initial analysis focused on the relations between involvement, support, and demographic variables. In addition, analysis of variance (ANOVA) was conducted to test differences between mothers and fathers. Two hierarchical multiple regression analyses were performed to examine the predicted factors in the involvement model while controlling for group (mothers/fathers). Results indicate that mothers reported significantly higher levels of parenting involvement than fathers. Mothers reported higher levels of general involvement and all sub-types of involvement. For example, mothers reported that they were more interested in and have higher levels of attendance in their child’s educational program. They were also more collaborative in their child’s educational therapeutic program, and socialized with other parents of children from their child’s kindergarten than fathers. Mothers’ involvement was found to be related to their informal support (non-formal relatives). Findings also reveal significant differences between mothers and fathers on the formal support subscale measure of specializes services. Fathers, more than mothers, reported more specializes services support such as social workers or professional therapists. Separate hierarchical multiple regression analyses revealed a unique gender difference in the factors that explained parental involvement. Specifically, informal support only had a unique positive contribution in explaining mothers’, but not fathers’ involvement. This study highlights the central role of mothers in maintaining constant contact with the educational system and the professionals who help care for their child with ASD. At the same time, this research emphasizes the crucial role of both mothers and fathers in their child's development and well-being at every development stage, particularly in early development. Further, different kinds of social support seem to relate to the different kinds of parental involvement. It is in the best interest of educators and family therapists who work with families with children with ASD to support the cohesiveness of the family and the collaboration of the parents by understanding and respecting the way each member addresses the responsibilities of parenting a child with ASD, and her or his need for different types of social support.Keywords: parental differences, parental involvement, social support, specialized support services
Procedia PDF Downloads 24928309 A Machine Learning Model for Predicting Students’ Academic Performance in Higher Institutions
Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu
Abstract:
There has been a need in recent years to predict student academic achievement prior to graduation. This is to assist them in improving their grades, especially for those who have struggled in the past. The purpose of this research is to use supervised learning techniques to create a model that predicts student academic progress. Many scholars have developed models that predict student academic achievement based on characteristics including smoking, demography, culture, social media, parent educational background, parent finances, and family background, to mention a few. This element, as well as the model used, could have misclassified the kids in terms of their academic achievement. As a prerequisite to predicting if the student will perform well in the future on related courses, this model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester. With a 96.7 percent accuracy, the model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost. This model is offered as a desktop application with user-friendly interfaces for forecasting student academic progress for both teachers and students. As a result, both students and professors are encouraged to use this technique to predict outcomes better.Keywords: artificial intelligence, ML, logistic regression, performance, prediction
Procedia PDF Downloads 11328308 Impact of Climate Variability on Household's Crop Income in Central Highlands and Arssi Grain Plough Areas of Ethiopia
Authors: Arega Shumetie Ademe, Belay Kassa, Degye Goshu, Majaliwa Mwanjalolo
Abstract:
Currently the world economy is suffering from one critical problem, climate change. Some studies done before identified that impact of the problem is region specific means in some part of the world (temperate zone) there is improvement in agricultural performance but in some others like in the tropics there is drastic reduction in crop production and crop income. Climate variability is becoming dominant cause of short-term fluctuation in rain-fed agricultural production and income of developing countries. The purely rain-fed Ethiopian agriculture is the most vulnerable sector to the risks and impacts of climate variability. Thus, this study tried to identify impact of climate variability on crop income of smallholders in Ethiopia. The research used eight rounded unbalanced panel data from 1994- 2014 collected from six villages in the study area. After having all diagnostic tests the research used fixed effect method of regression. Based on the regression result rainfall and temperature deviation from their respective long term averages have negative and significant effect on crop income. Other extreme devastating shocks like flood, storm and frost, which are sourced from climate variability, have significant and negative effect on crop income of households’. Parameters that notify rainfall inconsistency like late start, variation in availability at growing season, and early cessation are critical problems for crop income of smallholder households as to the model result. Given this, impact of climate variability is not consistent in different agro-ecologies of the country. Rainfall variability has similar impact on crop income in different agro-ecology, but variation in temperature affects cold agro-ecology villages negatively and significantly, while it has positive effect in warm villages. Parameters that represent rainfall inconsistency have similar impact in both agro-ecologies and the aggregate model regression. This implies climate variability sourced from rainfall inconsistency is the main problem of Ethiopian agriculture especially the crop production sub-sector of smallholder households.Keywords: climate variability, crop income, household, rainfall, temperature
Procedia PDF Downloads 37828307 Power Circuit Schemes in AC Drive is Made by Condition of the Minimum Electric Losses
Authors: M. A. Grigoryev, A. N. Shishkov, D. A. Sychev
Abstract:
The article defines the necessity of choosing the optimal power circuits scheme of the electric drive with field regulated reluctance machine. The specific weighting factors are calculation, the linear regression dependence of specific losses in semiconductor frequency converters are presented depending on the values of the rated current. It is revealed that with increase of the carrier frequency PWM improves the output current waveform, but increases the loss, so you will need depending on the task in a certain way to choose from the carrier frequency. For task of optimization by criterion of the minimum electrical losses regression dependence of the electrical losses in the frequency converter circuit at a frequency of a PWM signal of 0 Hz. The surface optimization criterion is presented depending on the rated output torque of the motor and number of phases. In electric drives with field regulated reluctance machine with at low output power optimization criterion appears to be the worst for multiphase circuits. With increasing output power this trend hold true, but becomes insignificantly different optimal solutions for three-phase and multiphase circuits. This is explained to the linearity of the dependence of the electrical losses from the current.Keywords: field regulated reluctance machine, the electrical losses, multiphase power circuit, the surface optimization criterion
Procedia PDF Downloads 29928306 Influence of Atmospheric Pollutants on Child Respiratory Disease in Cartagena De Indias, Colombia
Authors: Jose A. Alvarez Aldegunde, Adrian Fernandez Sanchez, Matthew D. Menden, Bernardo Vila Rodriguez
Abstract:
Up to five statistical pre-processings have been carried out considering the pollutant records of the stations present in Cartagena de Indias, Colombia, also taking into account the childhood asthma incidence surveys conducted in hospitals in the city by the Health Ministry of Colombia for this study. These pre-processings have consisted of different techniques such as the determination of the quality of data collection, determination of the quality of the registration network, identification and debugging of errors in data collection, completion of missing data and purified data, as well as the improvement of the time scale of records. The characterization of the quality of the data has been conducted by means of density analysis of the pollutant registration stations using ArcGis Software and through mass balance techniques, making it possible to determine inconsistencies in the records relating the registration data between stations following the linear regression. The results obtained in this process have highlighted the positive quality in the pollutant registration process. Consequently, debugging of errors has allowed us to identify certain data as statistically non-significant in the incidence and series of contamination. This data, together with certain missing records in the series recorded by the measuring stations, have been completed by statistical imputation equations. Following the application of these prior processes, the basic series of incidence data for respiratory disease and pollutant records have allowed the characterization of the influence of pollutants on respiratory diseases such as, for example, childhood asthma. This characterization has been carried out using statistical correlation methods, including visual correlation, simple linear regression correlation and spectral analysis with PAST Software which identifies maximum periodicity cycles and minimums under the formula of the Lomb periodgram. In relation to part of the results obtained, up to eleven maximums and minimums considered contemporary between the incidence records and the particles have been identified taking into account the visual comparison. The spectral analyses that have been performed on the incidence and the PM2.5 have returned a series of similar maximum periods in both registers, which are at a maximum during a period of one year and another every 25 days (0.9 and 0.07 years). The bivariate analysis has managed to characterize the variable "Daily Vehicular Flow" in the ninth position of importance of a total of 55 variables. However, the statistical correlation has not obtained a favorable result, having obtained a low value of the R2 coefficient. The series of analyses conducted has demonstrated the importance of the influence of pollutants such as PM2.5 in the development of childhood asthma in Cartagena. The quantification of the influence of the variables has been able to determine that there is a 56% probability of dependence between PM2.5 and childhood respiratory asthma in Cartagena. Considering this justification, the study could be completed through the application of the BenMap Software, throwing a series of spatial results of interpolated values of the pollutant contamination records that exceeded the established legal limits (represented by homogeneous units up to the neighborhood level) and results of the impact on the exacerbation of pediatric asthma. As a final result, an economic estimate (in Colombian Pesos) of the monthly and individual savings derived from the percentage reduction of the influence of pollutants in relation to visits to the Hospital Emergency Room due to asthma exacerbation in pediatric patients has been granted.Keywords: Asthma Incidence, BenMap, PM2.5, Statistical Analysis
Procedia PDF Downloads 12128305 Poverty Dynamics in Thailand: Evidence from Household Panel Data
Authors: Nattabhorn Leamcharaskul
Abstract:
This study aims to examine determining factors of the dynamics of poverty in Thailand by using panel data of 3,567 households in 2007-2017. Four techniques of estimation are employed to analyze the situation of poverty across households and time periods: the multinomial logit model, the sequential logit model, the quantile regression model, and the difference in difference model. Households are categorized based on their experiences into 5 groups, namely chronically poor, falling into poverty, re-entering into poverty, exiting from poverty and never poor households. Estimation results emphasize the effects of demographic and socioeconomic factors as well as unexpected events on the economic status of a household. It is found that remittances have positive impact on household’s economic status in that they are likely to lower the probability of falling into poverty or trapping in poverty while they tend to increase the probability of exiting from poverty. In addition, not only receiving a secondary source of household income can raise the probability of being a never poor household, but it also significantly increases household income per capita of the chronically poor and falling into poverty households. Public work programs are recommended as an important tool to relieve household financial burden and uncertainty and thus consequently increase a chance for households to escape from poverty.Keywords: difference in difference, dynamic, multinomial logit model, panel data, poverty, quantile regression, remittance, sequential logit model, Thailand, transfer
Procedia PDF Downloads 11928304 Comparative Study to Evaluate Chronological Age and Dental Age in North Indian Population Using Cameriere Method
Authors: Ranjitkumar Patil
Abstract:
Age estimation has its importance in forensic dentistry. Dental age estimation has emerged as an alternative to skeletal age determination. The methods based on stages of tooth formation, as appreciated on radiographs, seems to be more appropriate in the assessment of age than those based on skeletal development. The study was done to evaluate dental age in north Indian population using Cameriere’s method. Aims/Objectives: The study was conducted to assess the dental age of North Indian children using Cameriere’smethodand to compare the chronological age and dental age for validation of the Cameriere’smethod in the north Indian population. A comparative study of 02 year duration on the OPG (using PLANMECA Promax 3D) data of 497 individuals with age ranging from 5 to 15 years was done based on simple random technique ethical approval obtained from the institutional ethical committee. The data was obtained based on inclusion and exclusion criteria was analyzed by a software for dental age estimation. Statistical analysis: Student’s t test was used to compare the morphological variables of males with those of females and to compare observed age with estimated age. Regression formula was also calculated. Results: Present study was a comparative study of 497 subjects with a distribution between male and female, with their dental age assessed by using Panoramic radiograph, following the method described by Cameriere, which is widely accepted. Statistical analysis in our study indicated that gender does not have a significant influence on age estimation. (R2= 0.787). Conclusion: This infers that cameriere’s method can be effectively applied in north Indianpopulation.Keywords: Forensic, Chronological Age, Dental Age, Skeletal Age
Procedia PDF Downloads 9228303 Major Depressive Disorder: Diagnosis based on Electroencephalogram Analysis
Authors: Wajid Mumtaz, Aamir Saeed Malik, Syed Saad Azhar Ali, Mohd Azhar Mohd Yasin
Abstract:
In this paper, a technique based on electroencephalogram (EEG) analysis is presented, aiming for diagnosing major depressive disorder (MDD) among a potential population of MDD patients and healthy controls. EEG is recognized as a clinical modality during applications such as seizure diagnosis, index for anesthesia, detection of brain death or stroke. However, its usability for psychiatric illnesses such as MDD is less studied. Therefore, in this study, for the sake of diagnosis, 2 groups of study participants were recruited, 1) MDD patients, 2) healthy people as controls. EEG data acquired from both groups were analyzed involving inter-hemispheric asymmetry and composite permutation entropy index (CPEI). To automate the process, derived quantities from EEG were utilized as inputs to classifier such as logistic regression (LR) and support vector machine (SVM). The learning of these classification models was tested with a test dataset. Their learning efficiency is provided as accuracy of classifying MDD patients from controls, their sensitivities and specificities were reported, accordingly (LR =81.7 % and SVM =81.5 %). Based on the results, it is concluded that the derived measures are indicators for diagnosing MDD from a potential population of normal controls. In addition, the results motivate further exploring other measures for the same purpose.Keywords: major depressive disorder, diagnosis based on EEG, EEG derived features, CPEI, inter-hemispheric asymmetry
Procedia PDF Downloads 54928302 Spatial Analysis and Determinants of Number of Antenatal Health Care Visit Among Pregnant Women in Ethiopia: Application of Spatial Multilevel Count Regression Models
Authors: Muluwerk Ayele Derebe
Abstract:
Background: Antenatal care (ANC) is an essential element in the continuum of reproductive health care for preventing preventable pregnancy-related morbidity and mortality. Objective: The aim of this study is to assess the spatial pattern and predictors of ANC visits in Ethiopia. Method: This study was done using Ethiopian Demographic and Health Survey data of 2016 among 7,174 pregnant women aged 15-49 years which was a nationwide community-based cross-sectional survey. Spatial analysis was done using Getis-Ord Gi* statistics to identify hot and cold spot areas of ANC visits. Multilevel glmmTMB packages adjusted for spatial effects were used in R software. Spatial multilevel count regression was conducted to identify predictors of antenatal care visits for pregnant women, and proportional change in variance was done to uncover the effect of individual and community-level factors of ANC visits. Results: The distribution of ANC visits was spatially clustered Moran’s I = 0.271, p<.0.001, ICC = 0.497, p<0.001). The highest spatial outlier areas of ANC visit was found in Amhara (South Wollo, Weast Gojjam, North Shewa), Oromo (west Arsi and East Harariga), Tigray (Central Tigray) and Benishangul-Gumuz (Asosa and Metekel) regions. The data was found with excess zeros (34.6%) and over-dispersed. The expected ANC visit of pregnant women with pregnancy complications was higher at 0.7868 [ARR= 2.1964, 95% CI: 1.8605, 2.5928, p-value <0.0001] compared to pregnant women who had no pregnancy complications. The expected ANC visit of a pregnant woman who lived in a rural area was 1.2254 times higher [ARR=3.4057, 95% CI: 2.1462, 5.4041, p-value <0.0001] as compared to a pregnant woman who lived in an urban. The study found dissimilar clusters with a low number of zero counts for a mean number of ANC visits surrounded by clusters with a higher number of counts of an average number of ANC visits when other variables held constant. Conclusion: This study found that the number of ANC visits in Ethiopia had a spatial pattern associated with socioeconomic, demographic, and geographic risk factors. Spatial clustering of ANC visits exists in all regions of Ethiopia. The predictor age of the mother, religion, mother’s education, husband’s education, mother's occupation, husband's occupation, signs of pregnancy complication, wealth index and marital status had a strong association with the number of ANC visits by each individual. At the community level, place of residence, region, age of the mother, sex of the household head, signs of pregnancy complications and distance to health facility factors had a strong association with the number of ANC visits.Keywords: Ethiopia, ANC, spatial, multilevel, zero inflated Poisson
Procedia PDF Downloads 7728301 Mathematical Modeling of Carotenoids and Polyphenols Content of Faba Beans (Vicia faba L.) during Microwave Treatments
Authors: Ridha Fethi Mechlouch, Ahlem Ayadi, Ammar Ben Brahim
Abstract:
Given the importance of the preservation of polyphenols and carotenoids during thermal processing, we attempted in this study to investigate the variation of these two parameters in faba beans during microwave treatment using different power densities (1; 2; and 3W/g), then to perform a mathematical modeling by using non-linear regression analysis to evaluate the models constants. The variation of the carotenoids and polyphenols ratio of faba beans and the models are tested to validate the experimental results. Exponential models were found to be suitable to describe the variation of caratenoid ratio (R²= 0.945, 0.927 and 0.946) for power densities (1; 2; and 3W/g) respectively, and polyphenol ratio (R²= 0.931, 0.989 and 0.982) for power densities (1; 2; and 3W/g) respectively. The effect of microwave power density Pd(W/g) on the coefficient k of models were also investigated. The coefficient is highly correlated (R² = 1) and can be expressed as a polynomial function.Keywords: microwave treatment, power density, carotenoid, polyphenol, modeling
Procedia PDF Downloads 26228300 In Silico Modeling of Drugs Milk/Plasma Ratio in Human Breast Milk Using Structures Descriptors
Authors: Navid Kaboudi, Ali Shayanfar
Abstract:
Introduction: Feeding infants with safe milk from the beginning of their life is an important issue. Drugs which are used by mothers can affect the composition of milk in a way that is not only unsuitable, but also toxic for infants. Consuming permeable drugs during that sensitive period by mother could lead to serious side effects to the infant. Due to the ethical restrictions of drug testing on humans, especially women, during their lactation period, computational approaches based on structural parameters could be useful. The aim of this study is to develop mechanistic models to predict the M/P ratio of drugs during breastfeeding period based on their structural descriptors. Methods: Two hundred and nine different chemicals with their M/P ratio were used in this study. All drugs were categorized into two groups based on their M/P value as Malone classification: 1: Drugs with M/P>1, which are considered as high risk 2: Drugs with M/P>1, which are considered as low risk Thirty eight chemical descriptors were calculated by ACD/labs 6.00 and Data warrior software in order to assess the penetration during breastfeeding period. Later on, four specific models based on the number of hydrogen bond acceptors, polar surface area, total surface area, and number of acidic oxygen were established for the prediction. The mentioned descriptors can predict the penetration with an acceptable accuracy. For the remaining compounds (N= 147, 158, 160, and 174 for models 1 to 4, respectively) of each model binary regression with SPSS 21 was done in order to give us a model to predict the penetration ratio of compounds. Only structural descriptors with p-value<0.1 remained in the final model. Results and discussion: Four different models based on the number of hydrogen bond acceptors, polar surface area, and total surface area were obtained in order to predict the penetration of drugs into human milk during breastfeeding period About 3-4% of milk consists of lipids, and the amount of lipid after parturition increases. Lipid soluble drugs diffuse alongside with fats from plasma to mammary glands. lipophilicity plays a vital role in predicting the penetration class of drugs during lactation period. It was shown in the logistic regression models that compounds with number of hydrogen bond acceptors, PSA and TSA above 5, 90 and 25 respectively, are less permeable to milk because they are less soluble in the amount of fats in milk. The pH of milk is acidic and due to that, basic compounds tend to be concentrated in milk than plasma while acidic compounds may consist lower concentrations in milk than plasma. Conclusion: In this study, we developed four regression-based models to predict the penetration class of drugs during the lactation period. The obtained models can lead to a higher speed in drug development process, saving energy, and costs. Milk/plasma ratio assessment of drugs requires multiple steps of animal testing, which has its own ethical issues. QSAR modeling could help scientist to reduce the amount of animal testing, and our models are also eligible to do that.Keywords: logistic regression, breastfeeding, descriptors, penetration
Procedia PDF Downloads 7628299 New Technologies in Corporate Finance Management in the Digital Economy: Case of Kyrgyzstan
Authors: Marat Kozhomberdiev
Abstract:
The research will investigate the modern corporate finance management technologies currently used in the era of digitalization of the global economy and the degree to which financial institutions are utilizing these new technologies in the field of corporate finance management in Kyrgyzstan. The main purpose of the research is to reveal the role of financial management technologies as joint service centers, intercompany banks, specialized payment centers in the third-world country. Particularly, the analysis of the implacability of automated corporate finance management systems such as enterprise resource planning system (ERP) and treasury management system (TMS) will be carried out. Moreover, the research will investigate the role of cloud accounting systems in corporate finance management in Kyrgyz banks and whether it has any impact on the field of improving corporate finance management. The study will utilize a data collection process via surveying 3 banks in Kyrgyzstan, namely Mol-Bulak, RSK, and KICB. The banks were chosen based on their ownerships, such as state banks, private banks with local authorized capital, and private bank with international capital. The regression analysis will be utilized to reveal the correlation between the ownership of the bank and the use of new financial management technologies. The research will provide policy recommendations to both private and state banks on developing strategies for switching and utilizing modern corporate finance management technologies in their daily operations.Keywords: digital economy, corporate finance, digital environment, digital technologies, cloud technologies, financial management
Procedia PDF Downloads 7428298 The Relationship among Exercise Participation, Job Stress and Job Satisfaction: A Study on Food Service Employees in Taiwan
Authors: Jui-Hsiu Chang
Abstract:
As an increasing number of restaurants are growing, the demand for man force in the food service industry is dramatically increasing as well. However, food service workers often complete the heavy workload, infrequent breaks, long hours and shifts. With the overwhelming workload, many workers have experienced high injury rates. As a result, the restaurant industry reports a higher employee turnover rate compare to other service industries in Taiwan. Restaurant managers are seeing ways to retain good employees in order to provide good quality service for daily operation. The purpose of this study was to explore the relationship among exercise participation, job stress and job satisfaction on the food service employees. In addition, to examine how the job stress affected their job satisfaction. A survey using a self-reported questionnaire was conducted to collect data, and 269 questionnaires were collected for data analysis. The obtained materials were analyzed using descriptive statistic, independent t-test, one-way ANOVA, linear regression analysis. The results show that 1. Job stress had a significantly negative influence on employees’ job satisfaction. 2. Exercise participation had significantly positive influence on employees’ job satisfaction. 3. Job stress and job satisfaction varied among the groups of respondent with different level of exercise involvement. Furthermore, the practical implications were proposed for the food service company management when developing daily operational strategies.Keywords: exercise participation, food service employees, job satisfaction, job stress
Procedia PDF Downloads 27228297 Quantitative Structure-Property Relationship Study of Base Dissociation Constants of Some Benzimidazoles
Authors: Sanja O. Podunavac-Kuzmanović, Lidija R. Jevrić, Strahinja Z. Kovačević
Abstract:
Benzimidazoles are a group of compounds with significant antibacterial, antifungal and anticancer activity. The studied compounds consist of the main benzimidazole structure with different combinations of substituens. This study is based on the two-dimensional and three-dimensional molecular modeling and calculation of molecular descriptors (physicochemical and lipophilicity descriptors) of structurally diverse benzimidazoles. Molecular modeling was carried out by using ChemBio3D Ultra version 14.0 software. The obtained 3D models were subjected to energy minimization using molecular mechanics force field method (MM2). The cutoff for structure optimization was set at a gradient of 0.1 kcal/Åmol. The obtained set of molecular descriptors was used in principal component analysis (PCA) of possible similarities and dissimilarities among the studied derivatives. After the molecular modeling, the quantitative structure-property relationship (QSPR) analysis was applied in order to get the mathematical models which can be used in prediction of pKb values of structurally similar benzimidazoles. The obtained models are based on statistically valid multiple linear regression (MLR) equations. The calculated cross-validation parameters indicate the high prediction ability of the established QSPR models. This study is financially supported by COST action CM1306 and the project No. 114-451-347/2015-02, financially supported by the Provincial Secretariat for Science and Technological Development of Vojvodina.Keywords: benzimidazoles, chemometrics, molecular modeling, molecular descriptors, QSPR
Procedia PDF Downloads 294