Search results for: probability-based damage detection (PBDD)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5715

Search results for: probability-based damage detection (PBDD)

4665 Development of a Sensitive Electrochemical Sensor Based on Carbon Dots and Graphitic Carbon Nitride for the Detection of 2-Chlorophenol and Arsenic

Authors: Theo H. G. Moundzounga

Abstract:

Arsenic and 2-chlorophenol are priority pollutants that pose serious health threats to humans and ecology. An electrochemical sensor, based on graphitic carbon nitride (g-C₃N₄) and carbon dots (CDs), was fabricated and used for the determination of arsenic and 2-chlorophenol. The g-C₃N₄/CDs nanocomposite was prepared via microwave irradiation heating method and was dropped-dried on the surface of the glassy carbon electrode (GCE). Transmission electron microscopy (TEM), X-ray diffraction (XRD), photoluminescence (PL), Fourier transform infrared spectroscopy (FTIR), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) were used for the characterization of structure and morphology of the nanocomposite. Electrochemical characterization was done by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The electrochemical behaviors of arsenic and 2-chlorophenol on different electrodes (GCE, CDs/GCE, and g-C₃N₄/CDs/GCE) was investigated by differential pulse voltammetry (DPV). The results demonstrated that the g-C₃N₄/CDs/GCE significantly enhanced the oxidation peak current of both analytes. The analytes detection sensitivity was greatly improved, suggesting that this new modified electrode has great potential in the determination of trace level of arsenic and 2-chlorophenol. Experimental conditions which affect the electrochemical response of arsenic and 2-chlorophenol were studied, the oxidation peak currents displayed a good linear relationship to concentration for 2-chlorophenol (R²=0.948, n=5) and arsenic (R²=0.9524, n=5), with a linear range from 0.5 to 2.5μM for 2-CP and arsenic and a detection limit of 2.15μM and 0.39μM respectively. The modified electrode was used to determine arsenic and 2-chlorophenol in spiked tap and effluent water samples by the standard addition method, and the results were satisfying. According to the measurement, the new modified electrode is a good alternative as chemical sensor for determination of other phenols.

Keywords: electrochemistry, electrode, limit of detection, sensor

Procedia PDF Downloads 142
4664 A Vehicle Detection and Speed Measurement Algorithm Based on Magnetic Sensors

Authors: Panagiotis Gkekas, Christos Sougles, Dionysios Kehagias, Dimitrios Tzovaras

Abstract:

Cooperative intelligent transport systems (C-ITS) can greatly improve safety and efficiency in road transport by enabling communication, not only between vehicles themselves but also between vehicles and infrastructure. For that reason, traffic surveillance systems on the road are of great importance. This paper focuses on the development of an on-road unit comprising several magnetic sensors for real-time vehicle detection, movement direction, and speed measurement calculations. Magnetic sensors can feel and measure changes in the earth’s magnetic field. Vehicles are composed of many parts with ferromagnetic properties. Depending on sensors’ sensitivity, changes in the earth’s magnetic field caused by passing vehicles can be detected and analyzed in order to extract information on the properties of moving vehicles. In this paper, we present a prototype algorithm for real-time, high-accuracy, vehicle detection, and speed measurement, which can be implemented as a portable, low-cost, and non-invasive to existing infrastructure solution with the potential to replace existing high-cost implementations. The paper describes the algorithm and presents results from its preliminary lab testing in a close to real condition environment. Acknowledgments: Work presented in this paper was co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship, and Innovation (call RESEARCH–CREATE–INNOVATE) under contract no. Τ1EDK-03081 (project ODOS2020).

Keywords: magnetic sensors, vehicle detection, speed measurement, traffic surveillance system

Procedia PDF Downloads 119
4663 Detection and Tracking Approach Using an Automotive Radar to Increase Active Pedestrian Safety

Authors: Michael Heuer, Ayoub Al-Hamadi, Alexander Rain, Marc-Michael Meinecke

Abstract:

Vulnerable road users, e.g. pedestrians, have a high impact on fatal accident numbers. To reduce these statistics, car manufactures are intensively developing suitable safety systems. Hereby, fast and reliable environment recognition is a major challenge. In this paper we describe a tracking approach that is only based on a 24 GHz radar sensor. While common radar signal processing loses much information, we make use of a track-before-detect filter to incorporate raw measurements. It is explained how the Range-Doppler spectrum can help to indicated pedestrians and stabilize tracking even in occultation scenarios compared to sensors in series.

Keywords: radar, pedestrian detection, active safety, sensor

Procedia PDF Downloads 528
4662 Immobilization of Cobalt Ions on F-Multi-Wall Carbon Nanotubes-Chitosan Thin Film: Preparation and Application for Paracetamol Detection

Authors: Shamima Akhter, Samira Bagheri, M. Shalauddin, Wan Jefrey Basirun

Abstract:

In the present study, a nanocomposite of f-MWCNTs-Chitosan was prepared by the immobilization of Co(II) transition metal through self-assembly method and used for the simultaneous voltammetric determination of paracetamol (PA). The composite material was characterized by field emission scanning electron microscopy (FESEM) and energy dispersive X-Ray analysis (EDX). The electroactivity of cobalt immobilized f-MWCNTs with excellent adsorptive polymer chitosan was assessed during the electro-oxidation of paracetamol. The resulting GCE modified f-MWCNTs/CTS-Co showed electrocatalytic activity towards the oxidation of PA. The electrochemical performances were investigated using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) methods. Under favorable experimental conditions, differential pulse voltammetry showed a linear dynamic range for paracetamol solution in the range of 0.1 to 400µmol L⁻¹ with a detection limit of 0.01 µmol L⁻¹. The proposed sensor exhibited significant selectivity for the paracetamol detection. The proposed method was successfully applied for the determination of paracetamol in commercial tablets and human serum sample.

Keywords: nanomaterials, paracetamol, electrochemical technique, multi-wall carbon nanotube

Procedia PDF Downloads 200
4661 EEG Diagnosis Based on Phase Space with Wavelet Transforms for Epilepsy Detection

Authors: Mohmmad A. Obeidat, Amjed Al Fahoum, Ayman M. Mansour

Abstract:

The recognition of an abnormal activity of the brain functionality is a vital issue. To determine the type of the abnormal activity either a brain image or brain signal are usually considered. Imaging localizes the defect within the brain area and relates this area with somebody functionalities. However, some functions may be disturbed without affecting the brain as in epilepsy. In this case, imaging may not provide the symptoms of the problem. A cheaper yet efficient approach that can be utilized to detect abnormal activity is the measurement and analysis of the electroencephalogram (EEG) signals. The main goal of this work is to come up with a new method to facilitate the classification of the abnormal and disorder activities within the brain directly using EEG signal processing, which makes it possible to be applied in an on-line monitoring system.

Keywords: EEG, wavelet, epilepsy, detection

Procedia PDF Downloads 536
4660 A Survey on Various Technique of Modified TORA over MANET

Authors: Shreyansh Adesara, Sneha Pandiya

Abstract:

The mobile ad-hoc network (MANET) is an important and open area research for the examination and determination of the performance evolution. Temporary ordered routing algorithm (TORA) is adaptable and distributed MANET routing algorithm which is totally dependent on internet MANET Encapsulation protocol (IMEP) for the detection of the link and sensing of the link. If IMEP detect the wrong link failure then the network suffer from congestion and unnecessary route maintenance. Thus, the improvement in link detection method of TORA is introduced by various methods on IMEP by different perspective from different person. There are also different reactive routing protocols like AODV, TORA and DSR has been compared for the knowledge of the routing scenario for different parameter and using different model.

Keywords: IMEP, mobile ad-hoc network, protocol, TORA

Procedia PDF Downloads 440
4659 Developing Optical Sensors with Application of Cancer Detection by Elastic Light Scattering Spectroscopy

Authors: May Fadheel Estephan, Richard Perks

Abstract:

Context: Cancer is a serious health concern that affects millions of people worldwide. Early detection and treatment are essential for improving patient outcomes. However, current methods for cancer detection have limitations, such as low sensitivity and specificity. Research Aim: The aim of this study was to develop an optical sensor for cancer detection using elastic light scattering spectroscopy (ELSS). ELSS is a noninvasive optical technique that can be used to characterize the size and concentration of particles in a solution. Methodology: An optical probe was fabricated with a 100-μm-diameter core and a 132-μm centre-to-centre separation. The probe was used to measure the ELSS spectra of polystyrene spheres with diameters of 2, 0.8, and 0.413 μm. The spectra were then analysed to determine the size and concentration of the spheres. Findings: The results showed that the optical probe was able to differentiate between the three different sizes of polystyrene spheres. The probe was also able to detect the presence of polystyrene spheres in suspension concentrations as low as 0.01%. Theoretical Importance: The results of this study demonstrate the potential of ELSS for cancer detection. ELSS is a noninvasive technique that can be used to characterize the size and concentration of cells in a tissue sample. This information can be used to identify cancer cells and assess the stage of the disease. Data Collection: The data for this study were collected by measuring the ELSS spectra of polystyrene spheres with different diameters. The spectra were collected using a spectrometer and a computer. Analysis Procedures: The ELSS spectra were analysed using a software program to determine the size and concentration of the spheres. The software program used a mathematical algorithm to fit the spectra to a theoretical model. Question Addressed: The question addressed by this study was whether ELSS could be used to detect cancer cells. The results of the study showed that ELSS could be used to differentiate between different sizes of cells, suggesting that it could be used to detect cancer cells. Conclusion: The findings of this research show the utility of ELSS in the early identification of cancer. ELSS is a noninvasive method for characterizing the number and size of cells in a tissue sample. To determine cancer cells and determine the disease's stage, this information can be employed. Further research is needed to evaluate the clinical performance of ELSS for cancer detection.

Keywords: elastic light scattering spectroscopy, polystyrene spheres in suspension, optical probe, fibre optics

Procedia PDF Downloads 78
4658 Molecular Detection of Acute Virus Infection in Children Hospitalized with Diarrhea in North India during 2014-2016

Authors: Ali Ilter Akdag, Pratima Ray

Abstract:

Background:This acute gastroenteritis viruses such as rotavirus, astrovirus, and adenovirus are mainly responsible for diarrhea in children below < 5 years old. Molecular detection of these viruses is crucially important to the understand development of the effective cure. This study aimed to determine the prevalence of common these viruses in children < 5 years old presented with diarrhea from Lala Lajpat Rai Memorial Medical College (LLRM) centre (Meerut) North India, India Methods: Total 312 fecal samples were collected from diarrheal children duration 3 years: in year 2014 (n = 118), 2015 (n = 128) and 2016 (n = 66) ,< 5 years of age who presented with acute diarrhea at the Lala Lajpat Rai Memorial Medical College (LLRM) centre(Meerut) North India, India. All samples were the first detection by EIA/RT-PCR for rotaviruses, adenovirus and astrovirus. Results: In 312 samples from children with acute diarrhea in sample viral agent was found, rotavirus A was the most frequent virus identified (57 cases; 18.2%), followed by Astrovirus in 28 cases (8.9%), adenovirus in 21 cases (6.7%). Mixed infections were found in 14 cases, all of which presented with acute diarrhea (14/312; 4.48%). Conclusions: These viruses are a major cause of diarrhea in children <5 years old in North India. Rotavirus A is the most common etiological agent, follow by astrovirus. This surveillance is important to vaccine development of the entire population. There is variation detection of virus year wise due to differences in the season of sampling, method of sampling, hygiene condition, socioeconomic level of the entire people, enrolment criteria, and virus detection methods. It was found Astrovirus higher then Rotavirus in 2015, but overall three years study Rotavirus A is mainly responsible for causing severe diarrhea in children <5 years old in North India. It emphasizes the required for cost-effective diagnostic assays for Rotaviruses which would help to determine the disease burden.

Keywords: adenovirus, Astrovirus, hospitalized children, Rotavirus

Procedia PDF Downloads 139
4657 Heavy Metal Contamination in Soils: Detection and Assessment Using Machine Learning Algorithms Based on Hyperspectral Images

Authors: Reem El Chakik

Abstract:

The levels of heavy metals in agricultural lands in Lebanon have been witnessing a noticeable increase in the past few years, due to increased anthropogenic pollution sources. Heavy metals pose a serious threat to the environment for being non-biodegradable and persistent, accumulating thus to dangerous levels in the soil. Besides the traditional laboratory and chemical analysis methods, Hyperspectral Imaging (HSI) has proven its efficiency in the rapid detection of HMs contamination. In Lebanon, a continuous environmental monitoring, including the monitoring of levels of HMs in agricultural soils, is lacking. This is due in part to the high cost of analysis. Hence, this proposed research aims at defining the current national status of HMs contamination in agricultural soil, and to evaluate the effectiveness of using HSI in the detection of HM in contaminated agricultural fields. To achieve the two main objectives of this study, soil samples were collected from different areas throughout the country and were analyzed for HMs using Atomic Absorption Spectrophotometry (AAS). The results were compared to those obtained from the HSI technique that was applied using Hyspex SWIR-384 camera. The results showed that the Lebanese agricultural soils contain high contamination levels of Zn, and that the more clayey the soil is, the lower reflectance it has.

Keywords: agricultural soils in Lebanon, atomic absorption spectrophotometer, hyperspectral imaging., heavy metals contamination

Procedia PDF Downloads 110
4656 Algorithms for Fast Computation of Pan Matrix Profiles of Time Series Under Unnormalized Euclidean Distances

Authors: Jing Zhang, Daniel Nikovski

Abstract:

We propose an approximation algorithm called LINKUMP to compute the Pan Matrix Profile (PMP) under the unnormalized l∞ distance (useful for value-based similarity search) using double-ended queue and linear interpolation. The algorithm has comparable time/space complexities as the state-of-the-art algorithm for typical PMP computation under the normalized l₂ distance (useful for shape-based similarity search). We validate its efficiency and effectiveness through extensive numerical experiments and a real-world anomaly detection application.

Keywords: pan matrix profile, unnormalized euclidean distance, double-ended queue, discord discovery, anomaly detection

Procedia PDF Downloads 245
4655 Application of Federated Learning in the Health Care Sector for Malware Detection and Mitigation Using Software-Defined Networking Approach

Authors: A. Dinelka Panagoda, Bathiya Bandara, Chamod Wijetunga, Chathura Malinda, Lakmal Rupasinghe, Chethana Liyanapathirana

Abstract:

This research takes us forward with the concepts of Federated Learning and Software-Defined Networking (SDN) to introduce an efficient malware detection technique and provide a mitigation mechanism to give birth to a resilient and automated healthcare sector network system by also adding the feature of extended privacy preservation. Due to the daily transformation of new malware attacks on hospital Integrated Clinical Environment (ICEs), the healthcare industry is at an undefinable peak of never knowing its continuity direction. The state of blindness by the array of indispensable opportunities that new medical device inventions and their connected coordination offer daily, a factor that should be focused driven is not yet entirely understood by most healthcare operators and patients. This solution has the involvement of four clients in the form of hospital networks to build up the federated learning experimentation architectural structure with different geographical participation to reach the most reasonable accuracy rate with privacy preservation. While the logistic regression with cross-entropy conveys the detection, SDN comes in handy in the second half of the research to stack up the initial development phases of the system with malware mitigation based on policy implementation. The overall evaluation sums up with a system that proves the accuracy with the added privacy. It is no longer needed to continue with traditional centralized systems that offer almost everything but not privacy.

Keywords: software-defined network, federated learning, privacy, integrated clinical environment, decentralized learning, malware detection, malware mitigation

Procedia PDF Downloads 186
4654 A Comparative Study of Deep Learning Methods for COVID-19 Detection

Authors: Aishrith Rao

Abstract:

COVID 19 is a pandemic which has resulted in thousands of deaths around the world and a huge impact on the global economy. Testing is a huge issue as the test kits have limited availability and are expensive to manufacture. Using deep learning methods on radiology images in the detection of the coronavirus as these images contain information about the spread of the virus in the lungs is extremely economical and time-saving as it can be used in areas with a lack of testing facilities. This paper focuses on binary classification and multi-class classification of COVID 19 and other diseases such as pneumonia, tuberculosis, etc. Different deep learning methods such as VGG-19, COVID-Net, ResNET+ SVM, Deep CNN, DarkCovidnet, etc., have been used, and their accuracy has been compared using the Chest X-Ray dataset.

Keywords: deep learning, computer vision, radiology, COVID-19, ResNet, VGG-19, deep neural networks

Procedia PDF Downloads 159
4653 A Review of Deep Learning Methods in Computer-Aided Detection and Diagnosis Systems based on Whole Mammogram and Ultrasound Scan Classification

Authors: Ian Omung'a

Abstract:

Breast cancer remains to be one of the deadliest cancers for women worldwide, with the risk of developing tumors being as high as 50 percent in Sub-Saharan African countries like Kenya. With as many as 42 percent of these cases set to be diagnosed late when cancer has metastasized and or the prognosis has become terminal, Full Field Digital [FFD] Mammography remains an effective screening technique that leads to early detection where in most cases, successful interventions can be made to control or eliminate the tumors altogether. FFD Mammograms have been proven to multiply more effective when used together with Computer-Aided Detection and Diagnosis [CADe] systems, relying on algorithmic implementations of Deep Learning techniques in Computer Vision to carry out deep pattern recognition that is comparable to the level of a human radiologist and decipher whether specific areas of interest in the mammogram scan image portray abnormalities if any and whether these abnormalities are indicative of a benign or malignant tumor. Within this paper, we review emergent Deep Learning techniques that will prove relevant to the development of State-of-The-Art FFD Mammogram CADe systems. These techniques will span self-supervised learning for context-encoded occlusion, self-supervised learning for pre-processing and labeling automation, as well as the creation of a standardized large-scale mammography dataset as a benchmark for CADe systems' evaluation. Finally, comparisons are drawn between existing practices that pre-date these techniques and how the development of CADe systems that incorporate them will be different.

Keywords: breast cancer diagnosis, computer aided detection and diagnosis, deep learning, whole mammogram classfication, ultrasound classification, computer vision

Procedia PDF Downloads 92
4652 The Effect of Jujube Extract and Resistance Training on the Reduction of Complications Caused by the Induction of Anabolic Steroid Boldenone on the Histopathological Changes of Pancreatic Tissue of Male Wistar Rats

Authors: Sayyed-javad Ziaolhagh, Ali-Reza Saadatifar

Abstract:

Introduction: Athletes frequently perform anabolic steroid resistance exercise, but the effects of medical doses and abuse along with resistance exercise on structural damage to the Pancreases and also jujube extract are unknown. The aim of this study was to investigate the effects of resistance training on body weight and hip fractures induced by boldenone injection in male rats. Materials and methods: In this experimental study, 30 male Wistar rats aged 8-12 weeks (weight 202±9.34 g) were randomly divided into five groups: control, boldenone, extract of iujuba+boldenone, boldenone+resistance training and boldenone+resistance training +extract of jujuba. The resistance training program included climbing the ladder for 8 weeks, 3 days a week, 1 session training in a day and each session consisted of the 3 sets and 5 repetitions. Injection was conducted in depth in the hamstring once a week on an appointed day. After anesthesia, autopsy was performed, and the cardiac tissue was isolated. Results: Results showed that boldenone caused tissue damage, congestion, and nuclei unclear and diffuse. In the group "resistance + Boldenone," The Pancreases tissue showed a high degree of hyperemia, and the muscle cells were somewhat abnormal. In boldenone + jujube, the appearance of the tissue was normal, and the rejuvenating effect was visible. Conclusion: Boldenone appears to cause structural damage to the Pancreases tissue. Strength training with Jujube Extract can reduce part of the pancreatic system disorders (necrosis and inflammation) caused by anabolic steroid use.

Keywords: boldenone, Jujube extract, pancreases tissue, resistance training

Procedia PDF Downloads 70
4651 Fake News Detection Based on Fusion of Domain Knowledge and Expert Knowledge

Authors: Yulan Wu

Abstract:

The spread of fake news on social media has posed significant societal harm to the public and the nation, with its threats spanning various domains, including politics, economics, health, and more. News on social media often covers multiple domains, and existing models studied by researchers and relevant organizations often perform well on datasets from a single domain. However, when these methods are applied to social platforms with news spanning multiple domains, their performance significantly deteriorates. Existing research has attempted to enhance the detection performance of multi-domain datasets by adding single-domain labels to the data. However, these methods overlook the fact that a news article typically belongs to multiple domains, leading to the loss of domain knowledge information contained within the news text. To address this issue, research has found that news records in different domains often use different vocabularies to describe their content. In this paper, we propose a fake news detection framework that combines domain knowledge and expert knowledge. Firstly, it utilizes an unsupervised domain discovery module to generate a low-dimensional vector for each news article, representing domain embeddings, which can retain multi-domain knowledge of the news content. Then, a feature extraction module uses the domain embeddings discovered through unsupervised domain knowledge to guide multiple experts in extracting news knowledge for the total feature representation. Finally, a classifier is used to determine whether the news is fake or not. Experiments show that this approach can improve multi-domain fake news detection performance while reducing the cost of manually labeling domain labels.

Keywords: fake news, deep learning, natural language processing, multiple domains

Procedia PDF Downloads 72
4650 Potassium-Phosphorus-Nitrogen Detection and Spectral Segmentation Analysis Using Polarized Hyperspectral Imagery and Machine Learning

Authors: Nicholas V. Scott, Jack McCarthy

Abstract:

Military, law enforcement, and counter terrorism organizations are often tasked with target detection and image characterization of scenes containing explosive materials in various types of environments where light scattering intensity is high. Mitigation of this photonic noise using classical digital filtration and signal processing can be difficult. This is partially due to the lack of robust image processing methods for photonic noise removal, which strongly influence high resolution target detection and machine learning-based pattern recognition. Such analysis is crucial to the delivery of reliable intelligence. Polarization filters are a possible method for ambient glare reduction by allowing only certain modes of the electromagnetic field to be captured, providing strong scene contrast. An experiment was carried out utilizing a polarization lens attached to a hyperspectral imagery camera for the purpose of exploring the degree to which an imaged polarized scene of potassium, phosphorus, and nitrogen mixture allows for improved target detection and image segmentation. Preliminary imagery results based on the application of machine learning algorithms, including competitive leaky learning and distance metric analysis, to polarized hyperspectral imagery, suggest that polarization filters provide a slight advantage in image segmentation. The results of this work have implications for understanding the presence of explosive material in dry, desert areas where reflective glare is a significant impediment to scene characterization.

Keywords: explosive material, hyperspectral imagery, image segmentation, machine learning, polarization

Procedia PDF Downloads 137
4649 Therapeutic Effect of Diisopropyldithiocarbamate Sodium Salt Against Diclofenac Induced Testicular Damage in Male Wistar Rats

Authors: Tella Toluwani, Adegbegi Ademuyiwa, Musei Chiedu, Adekunle Odola, Ayangbenro Ayansina, Adaramoye Oluwatosin

Abstract:

Dithiocarbamates are very useful biological agents with antioxidant properties. Diclofenac (DIC) is a non-steroidal analgesic, anti-inflammatory, and antipyretic agent. The use of diclofenac has been linked with reproductive toxicity/damage. The purpose of this study is (i) To investigate the therapeutic potential of diisopropyldithiocarbamate sodium salt (Na(i-Pr₂dtc)) and vitamin E (VIT E) against diclofenac induced toxicity in the testes of male Wistar rats. (ii) To investigate the effect of (Na(i-Pr₂dtc)) and vitamin E on ameliorating damage done to the testes through histological analysis of the testes. Thirty-six (36) male Wistar rats were used for the experiment, they were divided into six (6) groups, the animals in group 1 served as control, animals in groups 2, 3, 4, 5 and 6 received DIC only, DIC and (Na(i-Pr₂dtc)), DIC and VIT E, (Na(i-Pr₂dtc) only and VIT E only respectively. A single dose of 100 mg/kg body weight of DIC was administered to male Wistar rats, while 30 mg/kg body weight of (Na(i-Pr₂dtc)) was used to treat both normal and DIC treated animals, control animals were treated with the vehicle, after 24 hrs of treatment the animals were euthanized and the testes were removed for analysis. The treatment of rats with Na(i-Pr₂dtc) significantly restored catalase (CAT) activity depressed by diclofenac. (Na(i-Pr₂dtc)) also restored glutathione levels reduced by DIC treatment and this was also accompanied by reduced lipid peroxidation (LPO) level. VIT E significantly restored superoxide dismutase (SOD) activity when compared with DIC only treated animals. Photomicrographs of testes from (Na(i-Pr₂dtc)) treated rats showed seminiferous epithelium with no lesions. We conclude that (Na(i-Pr₂dtc)) has an antioxidant effect, which might be related to the dose and duration of administration.

Keywords: diisopropyldithiocarbamate sodium salt, diclofenac, vitamin E, testes

Procedia PDF Downloads 186
4648 Development of Liquefaction-Induced Ground Damage Maps for the Wairau Plains, New Zealand

Authors: Omer Altaf, Liam Wotherspoon, Rolando Orense

Abstract:

The Wairau Plains are located in the north-east of the South Island of New Zealand in the region of Marlborough. The region is cut by many active crustal faults such as the Wairau, Awatere, and Clarence faults, which give rise to frequent seismic events. This paper presents the preliminary results of the overall project in which liquefaction-induced ground damage maps are developed in the Wairau Plains based on the Ministry of Business, Innovation and Employment NZ guidance. A suite of maps has been developed in relation to the level of details that was available to inform the liquefaction hazard mapping. Maps at the coarsest level of detail make use of regional geologic information, applying semi-quantitative criteria based on geological age, design peak ground accelerations and depth to the water table. The next level of detail incorporates higher resolution surface geomorphologic characteristics to better delineate potentially liquefiable and non-liquefiable deposits across the region. The most detailed assessment utilised CPT sounding data to develop ground damage response curves for areas across the region and provide a finer level of categorisation of liquefaction vulnerability. Linking these with design level earthquakes defined through NZGS guidelines will enable detailed classification to be carried out at CPT investigation locations, from very low through to high liquefaction vulnerability. To update classifications to these detailed levels, CPT investigations in geomorphic regions are grouped together to provide an indication of the representative performance of the soils in these areas making use of the geomorphic mapping outlined above.

Keywords: hazard, liquefaction, mapping, seismicity

Procedia PDF Downloads 137
4647 Evaluating the Hepato-Protective Activities of Combination of Aqueous Extract of Roots of Tinospora cordifolia and Rhizomes of Curcuma longa against Paracetamol Induced Hepatic Damage in Rats

Authors: Amberkar Mohanbabu Vittalrao, Avin, Meena Kumari Kamalkishore, Padmanabha Udupa, Vinaykumar Bavimane, Honnegouda

Abstract:

Objective: To evaluate the hepato-protective activity of Tinospora cordiofolia (Tc) against paracetamol induced hepatic damage in rats. Methods: The plant stem (test drug) was procured locally, shade dried, powdered and extracted with water. Silymarin was used as standard hepatoprotective drugs and 2% gum acacia as a control (vehicle) against paracetamol (PCT) induced hepatotoxicity. Results and Discussion: The hepato-protective activity of aqueous stem extract was assessed by paracetamol induced hepatotoxicity preventive model in rats. Alteration in the levels of biochemical markers of hepatic damage like AST, ALT, ALP and lipid peroxides were tested in both paracetamol treated and untreated groups. Paracetamol (3g/kg) had enhanced the AST, ALT, ALP and the lipid peroxides in the serum. Treatment of silymarin and aqueous stem extract of Tc (200 and 400mg/kg) extract showed significant hepatoprotective activity by altering biochemical marker levels to the near normal. Preliminary phytochemical tests were done. Aqueous Tc extract showed presence of phenolic compound and flavonoids. Our findings suggested that Tc extract possessed hepatoprotective activity in a dose dependent manner. Conclusions: Tc was found to possess significant hepatoprotective property when treated with PCT. This was evident by decreasing the liver enzymes significantly when treated with PCT as compared to PCT only treated group (P < 0.05). Hence Tinospora cardiofolia could be a good, promising, preventive agent against PCT induced hepatotoxicity.

Keywords: Tinospora cardiofolia, hepatoprotection, paracetamol, silymarin

Procedia PDF Downloads 201
4646 Optimize Data Evaluation Metrics for Fraud Detection Using Machine Learning

Authors: Jennifer Leach, Umashanger Thayasivam

Abstract:

The use of technology has benefited society in more ways than one ever thought possible. Unfortunately, though, as society’s knowledge of technology has advanced, so has its knowledge of ways to use technology to manipulate people. This has led to a simultaneous advancement in the world of fraud. Machine learning techniques can offer a possible solution to help decrease this advancement. This research explores how the use of various machine learning techniques can aid in detecting fraudulent activity across two different types of fraudulent data, and the accuracy, precision, recall, and F1 were recorded for each method. Each machine learning model was also tested across five different training and testing splits in order to discover which testing split and technique would lead to the most optimal results.

Keywords: data science, fraud detection, machine learning, supervised learning

Procedia PDF Downloads 193
4645 Non-thermal Plasma Promotes Boar Sperm Quality Through Increasing AMPK Methylation

Authors: Jiaojiao Zhang

Abstract:

Boar sperm quality, as an important indicator of reproductive efficiency, directly affects the efficiency of livestock production. Here, this study was conducted to improve the boar sperm quality by using a non-thermal dielectric barrier discharge (DBD) plasma. Our results showed that DBD plasma exposure at 2.1 W for 15 s could improve boar sperm quality by increasing the exon methylation level of adenosine monophosphate-activated protein kinase (AMPK) and thus improving the glycolytic flux, mitochondrial function, and antioxidant capacity without damaging the integrity of sperm DNA and acrosome. In addition, DBD plasma could rescue DNA methyltransferase inhibitor decitabine-caused low sperm quality by reducing oxidative stress and mitochondrial damage. Therefore, the application of non-thermal plasma provides a new strategy for reducing sperm oxidative damage and improving sperm quality, which shows great potential in assisted reproduction to solve the problem of male infertility.

Keywords: non-thermal DBD plasma, sperm quality, AMPK methylation, energy metabolism, antioxidant capacity

Procedia PDF Downloads 7
4644 New Result for Optical OFDM in Code Division Multiple Access Systems Using Direct Detection

Authors: Cherifi Abdelhamid

Abstract:

In optical communication systems, OFDM has received increased attention as a means to overcome various limitations of optical transmission systems such as modal dispersion, relative intensity noise, chromatic dispersion, polarization mode dispersion and self-phase modulation. The multipath dispersion limits the maximum transmission data rates. In this paper we investigate OFDM system where multipath induced intersymbol interference (ISI) is reduced and we increase the number of users by combining OFDM system with OCDMA system using direct detection Incorporate OOC (orthogonal optical code) for minimize a bit error rate.

Keywords: OFDM, OCDMA, OOC (orthogonal optical code), (ISI), prim codes (Pc)

Procedia PDF Downloads 650
4643 A Finite Element Study of Laminitis in Horses

Authors: Naeim Akbari Shahkhosravi, Reza Kakavand, Helen M. S. Davies, Amin Komeili

Abstract:

Equine locomotion and performance are significantly affected by hoof health. One of the most critical diseases of the hoof is laminitis, which can lead to horse lameness in a severe condition. This disease exhibits the mechanical properties degradation of the laminar junction tissue within the hoof. Therefore, it is essential to investigate the biomechanics of the hoof, focusing specifically on excessive and cumulatively accumulated stresses within the laminar junction tissue. For this aim, the current study generated a novel equine hoof Finite Element (FE) model under dynamic physiological loading conditions and employing a hyperelastic material model. Associated tissues of the equine hoof were segmented from computed tomography scans of an equine forelimb, including the navicular bone, third phalanx, sole, frog, laminar junction, digital cushion, and medial- dorsal- lateral wall areas. The inner tissues were connected based on the hoof anatomy, and the hoof was under a dynamic loading over cyclic strides at the trot. The strain distribution on the hoof wall of the model was compared with the published in vivo strain measurements to validate the model. Then the validated model was used to study the development of laminitis. The ultimate stress tolerated by the laminar junction before rupture was considered as a stress threshold. The tissue damage was simulated through iterative reduction of the tissue’s mechanical properties in the presence of excessive maximum principal stresses. The findings of this investigation revealed how damage initiates from the medial and lateral sides of the tissue and propagates through the hoof dorsal area.

Keywords: horse hoof, laminitis, finite element model, continuous damage

Procedia PDF Downloads 181
4642 Evaluation of Thermal Barrier Coating According to Temperature and Curvature

Authors: Hyunwoo Song, Jeong-Min Lee, Yongseok Kim, Junghan Yun, Jungin Byun, Jae-Mean Koo, Chang-Sung Seok

Abstract:

To avoid the damage of gas turbine blade from high-temperature, thermal barrier coating (TBC) is applied on the blade. However, it is damaged by thermal fatigue during the operation of gas turbine, and this damage lead to delamination of TBC between top coat and bond coat. The blade can be damaged after the failure of TBC, so durability evaluation of TBC should be performed. The durability of thermal barrier coating was decreased according to the increase of temperature, because thermal stress according to increase of temperature. Also, the curvature can be affect to durability of TBC, because the stress is determined by the shape of the TBC. Therefore, the effect of temperature and curvature on the stress should be evaluated. In this study, finite element analysis according to temperature and curvature were performed in the same condition of Kim et al. Finally, the stress was evaluated from the finite element analysis results according to temperature and curvature.

Keywords: curvature, finite element analysis, thermal barrier coating, thermal fatigue, temperature

Procedia PDF Downloads 564
4641 Using Vulnerability to Reduce False Positive Rate in Intrusion Detection Systems

Authors: Nadjah Chergui, Narhimene Boustia

Abstract:

Intrusion Detection Systems are an essential tool for network security infrastructure. However, IDSs have a serious problem which is the generating of massive number of alerts, most of them are false positive ones which can hide true alerts and make the analyst confused to analyze the right alerts for report the true attacks. The purpose behind this paper is to present a formalism model to perform correlation engine by the reduction of false positive alerts basing on vulnerability contextual information. For that, we propose a formalism model based on non-monotonic JClassicδє description logic augmented with a default (δ) and an exception (є) operator that allows a dynamic inference according to contextual information.

Keywords: context, default, exception, vulnerability

Procedia PDF Downloads 258
4640 Heart Murmurs and Heart Sounds Extraction Using an Algorithm Process Separation

Authors: Fatima Mokeddem

Abstract:

The phonocardiogram signal (PCG) is a physiological signal that reflects heart mechanical activity, is a promising tool for curious researchers in this field because it is full of indications and useful information for medical diagnosis. PCG segmentation is a basic step to benefit from this signal. Therefore, this paper presents an algorithm that serves the separation of heart sounds and heart murmurs in case they exist in order to use them in several applications and heart sounds analysis. The separation process presents here is founded on three essential steps filtering, envelope detection, and heart sounds segmentation. The algorithm separates the PCG signal into S1 and S2 and extract cardiac murmurs.

Keywords: phonocardiogram signal, filtering, Envelope, Detection, murmurs, heart sounds

Procedia PDF Downloads 139
4639 In vivo Protective Effects of Ginger Extract on Cyclophosphamide Induced Chromosomal Aberrations in Bone Marrow Cells of Swiss Mice

Authors: K. Yadamma, K. Rudrama Devi

Abstract:

The protective effect of Ginger Extract against cyclophosphamide induced cytotoxicity was evaluated in in vivo animal model using analysis of chromosomal aberrations in somatic cells of mice. Three doses of Ginger Extract (150mg/kg, 200mg/kg, and 250mg/kg body weight) were selected for modulation and given to animals after priming. The animals were sacrificed 24, 48, 72 hrs after the treatment and slides were prepared for the incidence of chromosomal aberrations in bone marrow cells of mice. When animals were treated with cyclophosphamide 50mg/kg, showed cytogenetic damage in somatic cells. However, a significant decrease was observed in the percentage of chromosomal aberrations when animals were primed with various doses of Ginger Extract. The present results clearly indicate the protective nature of Ginger Extract against cyclophosphamide induced genetic damage in mouse bone marrow cells.

Keywords: ginger extract, protection, bone marrow cells, swiss albino mice

Procedia PDF Downloads 436
4638 Protective Effects of Genistein against Cyclophosphamide-Induced Hepatotoxicity in Rats: Involvement of Anti-Inflammatory and Anti-Oxidant Activities

Authors: Dina F. Mansour, Dalia O. Saleh, Rasha E. Mostafa

Abstract:

Cyclophosphamide (CP), the most commonly used chemotherapeutic agent, was reported to cause many side effects including urotoxicity, cardiotoxicity, gonadotoxicity, and hepatotoxicity; this limits its clinical practice. In the present study, the protective effect of genistein (GEN), the major phytoestrogen in soy products that possesses various pharmacological activities, has been investigated against CP-induced acute liver damage in rats. Forty adult Sprague-Dawley rats were allocated into five groups. The first group received the vehicles and act as normal control. In the other groups, rats were injected with a single dose of CP (200 mg/kg, i.p). The last three groups were pretreated with subcutaneous GEN at doses of 0.5, 1 and 2 mg/kg/day, respectively, for 15 consecutive days prior CP injection. Forty-eight hours following CP injection, rats of all groups were investigated for the serum levels of alanine transaminase and aspartate transaminase, as well as the liver contents of reduced glutathione, malondialdehyde, nitrite, interleukin-1β, and myeloperoxidase. Histopathological examination of liver tissues was also conducted. CP resulted in acute liver damage in rats as evidenced by alteration of liver function biomarkers, oxidative stress, and inflammatory markers; that was confirmed by the histopathological outcomes. Pretreatment of rats with GEN significantly protected against CP-induced deterioration of liver function and showed marked anti-oxidant and anti-inflammatory properties that were demonstrated by the biochemical and histopathological findings. In conclusion, the present findings demonstrated the protective effects of GEN against CP-induced liver damage and suggested role of its antioxidant and anti-inflammatory activities.

Keywords: cyclophosphamide, genistein, inflammation, interleukin-1β, liver, myeloperoxidase, oxidative stress

Procedia PDF Downloads 301
4637 Sensor Validation Using Bottleneck Neural Network and Variable Reconstruction

Authors: Somia Bouzid, Messaoud Ramdani

Abstract:

The success of any diagnosis strategy critically depends on the sensors measuring process variables. This paper presents a detection and diagnosis sensor faults method based on a Bottleneck Neural Network (BNN). The BNN approach is used as a statistical process control tool for drinking water distribution (DWD) systems to detect and isolate the sensor faults. Variable reconstruction approach is very useful for sensor fault isolation, this method is validated in simulation on a nonlinear system: actual drinking water distribution system. Several results are presented.

Keywords: fault detection, localization, PCA, NLPCA, auto-associative neural network

Procedia PDF Downloads 387
4636 Using Satellite Images Datasets for Road Intersection Detection in Route Planning

Authors: Fatma El-Zahraa El-Taher, Ayman Taha, Jane Courtney, Susan Mckeever

Abstract:

Understanding road networks plays an important role in navigation applications such as self-driving vehicles and route planning for individual journeys. Intersections of roads are essential components of road networks. Understanding the features of an intersection, from a simple T-junction to larger multi-road junctions, is critical to decisions such as crossing roads or selecting the safest routes. The identification and profiling of intersections from satellite images is a challenging task. While deep learning approaches offer the state-of-the-art in image classification and detection, the availability of training datasets is a bottleneck in this approach. In this paper, a labelled satellite image dataset for the intersection recognition problem is presented. It consists of 14,692 satellite images of Washington DC, USA. To support other users of the dataset, an automated download and labelling script is provided for dataset replication. The challenges of construction and fine-grained feature labelling of a satellite image dataset is examined, including the issue of how to address features that are spread across multiple images. Finally, the accuracy of the detection of intersections in satellite images is evaluated.

Keywords: satellite images, remote sensing images, data acquisition, autonomous vehicles

Procedia PDF Downloads 143