Search results for: nonparametric geographically weighted regression
2857 Flood Prevention Strategy for Reserving Quality Ground Water Considering Future Population Growth in Kabul
Authors: Said Moqeem Sadat, Saito Takahiro, Inuzuka Norikazu, Sugiyama Ikuo
Abstract:
Kabul city is the capital of Afghanistan with a population of about 4.0 million in 2009 and 6.5 million in 2025. It is geographically located in a narrow plain valley along the Kabul River and is surrounded by high mountains. Due to its sharp geological condition, the city has been suffering from floods caused by storm water and snow melting water in the rainy season. Meanwhile, potable water resources are becoming a critical issue as the underground water table is decreasing falling rapidly due to domestic usage, industrial and agricultural activities usage especially in the dry season. This paper focuses on flood water management in Kabul including suburban agricultural area considering not only for flood protection but also: 1. To reserve the quality underground water for the future population growth. 2. To irrigate farming area in dry season using storm water ponds in rainy season. 3. To discharge city contaminated flood water to the downstream safely using existing channels/new pipes. Cost and benefit is considered in this study to find out a suitable flood protection method both in rural area and city center from a view point of 1 to 3 mentioned above. In this analysis, cost mainly consists of lost opportunity to develop lands due to flood ponds in addition to construction and maintenance one including connecting channels for water collecting/discharging. Benefit mainly consists of damage reduction of flood loss due to counter measures (this is corresponding cost) in addition to the contribution to agricultural crops. As far as reservation of the ground water for the future city growth is concerned, future demand and supply are compared in case that the pumping amount is limited by this irrigation system.Keywords: cost-benefit, hydrological modeling, water management, water quality
Procedia PDF Downloads 2692856 Association Between Advanced Parental Age and Implantation Failure: A Prospective Cohort Study in Anhui, China
Authors: Jiaqian Yin, Ruoling Chen, David Churchill, Huijuan Zou, Peipei Guo, Chunmei Liang, Xiaoqing Peng, Zhikang Zhang, Weiju Zhou, Yunxia Cao
Abstract:
Purpose: This study aimed to explore the interaction of male and female age on implantation failure from in vitro fertilisation (IVF)/ intracytoplasmic sperm injection (ICSI) treatments in couples following their first cycles using the Anhui Maternal-Child Health Study (AMCHS). Methods: The AMCHS recruited 2042 infertile couples who were physically fit for in vitro fertilisation (IVF) or intracytoplasmic sperm injection (ICSI) treatment at the Reproductive Centre of the First Affiliated Hospital of Anhui Medical University between May 2017 to April 2021. This prospective cohort study analysed the data from 1910 cohort couples for the current paper data analysis. The multivariate logistic regression model was used to identify the effect of male and female age on implantation failure after controlling for confounding factors. Male age and female age were examined as continuous and categorical (male age: 20-<25, 25-<30, 30-<35, 35-<40, ≥40; female age: 20-<25, 25-<30, 30-<35, 35-<40, ≥40) predictors. Results: Logistic regression indicated that advanced maternal age was associated with increased implantation failure (P<0.001). There was evidence of an interaction between maternal age (30-<35 and ≥ 35) and paternal age (≥35) on implantation failure. (p<0.05). Only when the male was ≥35 years of increased maternal age was associated with the risk of implantation failure. Conclusion: In conclusion, there was an additive effect on implantation failure with advanced parental age. The impact of advanced maternal age was only seen in the older paternal age group. The delay of childbearing in both men and women will be a serious public issue that may contribute to a higher risk of implantation failure in patients needing assisted reproductive technology (ART).Keywords: parental age, infertility, cohort study, IVF
Procedia PDF Downloads 1542855 Role of Imaging in Predicting the Receptor Positivity Status in Lung Adenocarcinoma: A Chapter in Radiogenomics
Authors: Sonal Sethi, Mukesh Yadav, Abhimanyu Gupta
Abstract:
The upcoming field of radiogenomics has the potential to upgrade the role of imaging in lung cancer management by noninvasive characterization of tumor histology and genetic microenvironment. Receptor positivity like epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) genotyping are critical in lung adenocarcinoma for treatment. As conventional identification of receptor positivity is an invasive procedure, we analyzed the features on non-invasive computed tomography (CT), which predicts the receptor positivity in lung adenocarcinoma. Retrospectively, we did a comprehensive study from 77 proven lung adenocarcinoma patients with CT images, EGFR and ALK receptor genotyping, and clinical information. Total 22/77 patients were receptor-positive (15 had only EGFR mutation, 6 had ALK mutation, and 1 had both EGFR and ALK mutation). Various morphological characteristics and metastatic distribution on CT were analyzed along with the clinical information. Univariate and multivariable logistic regression analyses were used. On multivariable logistic regression analysis, we found spiculated margin, lymphangitic spread, air bronchogram, pleural effusion, and distant metastasis had a significant predictive value for receptor mutation status. On univariate analysis, air bronchogram and pleural effusion had significant individual predictive value. Conclusions: Receptor positive lung cancer has characteristic imaging features compared with nonreceptor positive lung adenocarcinoma. Since CT is routinely used in lung cancer diagnosis, we can predict the receptor positivity by a noninvasive technique and would follow a more aggressive algorithm for evaluation of distant metastases as well as for the treatment.Keywords: lung cancer, multidisciplinary cancer care, oncologic imaging, radiobiology
Procedia PDF Downloads 1362854 Driving Forces of Bank Liquidity: Evidence from Selected Ethiopian Private Commercial Banks
Authors: Tadele Tesfay Teame, Tsegaye Abrehame, Hágen István Zsombor
Abstract:
Liquidity is one of the main concerns for banks, and thus achieving the optimum level of liquidity is critical. The main objective of this study is to discover the driving force of selected private commercial banks’ liquidity. In order to achieve the objective explanatory research design and quantitative research approach were used. Data has been collected from a secondary source of the sampled Ethiopian private commercial banks’ financial statements, the National Bank of Ethiopia, and the Minister of Finance, the sample covering the period from 2011 to 2022. Bank-specific and macroeconomic variables were analyzed by using the balanced panel fixed effect regression model. Bank’s liquidity ratio is measured by the total liquid asset to total deposits. The findings of the study revealed that bank size, capital adequacy, loan growth rate, and non-performing loan had a statistically significant impact on private commercial banks’ liquidity, and annual inflation rate and interest rate margin had a statistically significant impact on the liquidity of Ethiopian private commercial banks measured by L1 (bank liquidity). Thus, banks in Ethiopia should not only be concerned about internal structures and policies/procedures, but they must consider both the internal environment and the macroeconomic environment together in developing their strategies to efficiently manage their liquidity position and private commercial banks to maintain their financial proficiency shall have bank liquidity management policy by assimilating both bank-specific and macro-economic variables.Keywords: liquidity, Ethiopian private commercial banks, liquidity ratio, panel data regression analysis
Procedia PDF Downloads 992853 Survival Analysis of Identifying the Risk Factors of Affecting the First Recurrence Time of Breast Cancer: The Case of Tigray, Ethiopia
Authors: Segen Asayehegn
Abstract:
Introduction: In Tigray, Ethiopia, next to cervical cancer, breast cancer is one of the most common cancer health problems for women. Objectives: This article is proposed to identify the prospective and potential risk factors affecting the time-to-first-recurrence of breast cancer patients in Tigray, Ethiopia. Methods: The data were taken from the patient’s medical record that registered from January 2010 to January 2020. The study considered a sample size of 1842 breast cancer patients. Powerful non-parametric and parametric shared frailty survival regression models (FSRM) were applied, and model comparisons were performed. Results: Out of 1842 breast cancer patients, about 1290 (70.02%) recovered/cured the disease. The median cure time from breast cancer is found at 12.8 months. The model comparison suggested that the lognormal parametric shared a frailty survival regression model predicted that treatment, stage of breast cancer, smoking habit, and marital status significantly affects the first recurrence of breast cancer. Conclusion: Factors like treatment, stages of cancer, and marital status were improved while smoking habits worsened the time to cure breast cancer. Recommendation: Thus, the authors recommend reducing breast cancer health problems, the regional health sector facilities need to be improved. More importantly, concerned bodies and medical doctors should emphasize the identified factors during treatment. Furthermore, general awareness programs should be given to the community on the identified factors.Keywords: acceleration factor, breast cancer, Ethiopia, shared frailty survival models, Tigray
Procedia PDF Downloads 1352852 Building Green Infrastructure Networks Based on Cadastral Parcels Using Network Analysis
Authors: Gon Park
Abstract:
Seoul in South Korea established the 2030 Seoul City Master Plan that contains green-link projects to connect critical green areas within the city. However, the plan does not have detailed analyses for green infrastructure to incorporate land-cover information to many structural classes. This study maps green infrastructure networks of Seoul for complementing their green plans with identifying and raking green areas. Hubs and links of main elements of green infrastructure have been identified from incorporating cadastral data of 967,502 parcels to 135 of land use maps using geographic information system. Network analyses were used to rank hubs and links of a green infrastructure map with applying a force-directed algorithm, weighted values, and binary relationships that has metrics of density, distance, and centrality. The results indicate that network analyses using cadastral parcel data can be used as the framework to identify and rank hubs, links, and networks for the green infrastructure planning under a variable scenarios of green areas in cities.Keywords: cadastral data, green Infrastructure, network analysis, parcel data
Procedia PDF Downloads 2062851 The Impact of Socio-Economic and Type of Religion on the Behavior of Obedience among Arab-Israeli Teenagers
Authors: Sadhana Ghnayem
Abstract:
This article examines the relationship between several socio-economic and background variables of Arab-Israeli families and their effect on the conflict management style of forcing, where teenage children are expected to obey their parents without questioning. The article explores the inter-generational gap and the desire of Arab-Israeli parents to force their teenage children to obey without questioning. The independent variables include: the sex of the parent, religion (Christian or Muslim), income of the parent, years of education of the parent, and the sex of the teenage child. We use the dependent variable of “Obedience Without Questioning” that is reported twice: by each of the parents as well as by the children. We circulated a questionnaire and collected data from a sample of 180 parents and their adolescent child living in the Galilee area during 2018. In this questionnaire we asked each of the parent and his/her teenage child about whether the latter is expected to follow the instructions of the former without questioning. The outcome of this article indicates, first, that Christian-Arab families are less authoritarian than Muslims families in demanding sheer obedience from their children. Second, female parents indicate more than male parents that their teenage child indeed obeys without questioning. Third, there is a negative correlation between the variable “Income” and “Obedience without Questioning.” Yet, the regression coefficient of this variable is close zero. Fourth, there is a positive correlation between years of education and obedience reported by the children. In other words, more educated parents are more likely to demand obedience from their children. Finally, after running the regression, the study also found that the impact of the variables of religion as well as the sex of the child on the dependent variable of obedience is also significant at above 95 and 90%, respectively.Keywords: conflict, religion, conflict management style, obedience
Procedia PDF Downloads 1692850 Intelligent Indoor Localization Using WLAN Fingerprinting
Authors: Gideon C. Joseph
Abstract:
The ability to localize mobile devices is quite important, as some applications may require location information of these devices to operate or deliver better services to the users. Although there are several ways of acquiring location data of mobile devices, the WLAN fingerprinting approach has been considered in this work. This approach uses the Received Signal Strength Indicator (RSSI) measurement as a function of the position of the mobile device. RSSI is a quantitative technique of describing the radio frequency power carried by a signal. RSSI may be used to determine RF link quality and is very useful in dense traffic scenarios where interference is of major concern, for example, indoor environments. This research aims to design a system that can predict the location of a mobile device, when supplied with the mobile’s RSSIs. The developed system takes as input the RSSIs relating to the mobile device, and outputs parameters that describe the location of the device such as the longitude, latitude, floor, and building. The relationship between the Received Signal Strengths (RSSs) of mobile devices and their corresponding locations is meant to be modelled; hence, subsequent locations of mobile devices can be predicted using the developed model. It is obvious that describing mathematical relationships between the RSSIs measurements and localization parameters is one option to modelling the problem, but the complexity of such an approach is a serious turn-off. In contrast, we propose an intelligent system that can learn the mapping of such RSSIs measurements to the localization parameters to be predicted. The system is capable of upgrading its performance as more experiential knowledge is acquired. The most appealing consideration to using such a system for this task is that complicated mathematical analysis and theoretical frameworks are excluded or not needed; the intelligent system on its own learns the underlying relationship in the supplied data (RSSI levels) that corresponds to the localization parameters. These localization parameters to be predicted are of two different tasks: Longitude and latitude of mobile devices are real values (regression problem), while the floor and building of the mobile devices are of integer values or categorical (classification problem). This research work presents artificial neural network based intelligent systems to model the relationship between the RSSIs predictors and the mobile device localization parameters. The designed systems were trained and validated on the collected WLAN fingerprint database. The trained networks were then tested with another supplied database to obtain the performance of trained systems on achieved Mean Absolute Error (MAE) and error rates for the regression and classification tasks involved therein.Keywords: indoor localization, WLAN fingerprinting, neural networks, classification, regression
Procedia PDF Downloads 3472849 Extent of Derivative Usage, Firm Value and Risk: An Empirical Study on Pakistan Non-Financial Firms
Authors: Atia Alam
Abstract:
Growing liberalisation and intense market competition increase firm’s risk exposure and induce corporations to use derivatives extensively as a risk management instrument, which results in decrease in firm’s risk, and increase in value. Present study contributes towards existing literature by providing an in-depth analysis regarding the effect of extent of derivative usage on firm’s risk and value by using panel data models and seemingly unrelated regression technique. New evidence is established in current literature by dividing the sample data based on firm’s Exchange Rate (ER) and Interest Rate (IR) exposure. Analysis is performed for the effect of extent of derivative usage on firm’s risk and value and its variation with respect to the ER and IR exposure. Sample data consists of 166 Pakistani firms listed on Pakistan stock exchange for the period of 2004-2010. Results show that extensive usage of derivative instruments significantly increases firm value and reduces firm’s risk. Furthermore, comprehensive analysis depicts that Pakistani corporations having higher exchange rate exposure, with respect to foreign sales, and higher interest rate exposure, on the basis of industry adjusted leverage, have higher firm value and lower risk. Findings from seemingly unrelated regression also provide robustness to results obtained through panel data analysis. Study also highlights the role of derivative usage as a risk management instrument in high and low ER and IR risk and helps practitioners in understanding how value increasing effect of extent of derivative usage varies with the intensity of firm’s risk exposure.Keywords: extent of derivative usage, firm value, risk, Pakistan, non-financial firms
Procedia PDF Downloads 3562848 Receptiveness of Market Segmentation Towards Online Shopping Attitude: A Quality Management Strategy for Online Passenger Car Market
Authors: Noor Hasmini Abdghani, Nik Kamariah Nikmat, Nor Hayati Ahmad
Abstract:
Rapid growth of the internet technology led to changes in the consumer lifestyles. This involved customer buying behaviour-based internet that create new kind of buying strategy. Hence, it has summoned many of world firms including Malaysia to generate new quality strategy in preparation to face new customer buying lifestyles. Particularly, this study focused on identifying online customer segment of automobile passenger car customers. Secondly, the objective is to understand online customer’s receptiveness towards internet technologies. This study distributed 700 questionnaires whereby 582 were returned representing 83% response rate. The data were analysed using factor and regression analyses. The result from the factor analysis precipitates four online passenger car segmentations in Malaysia, which are: Segment (1)- Automobile Online shopping Preferences, Segment (2)- Automobile Online Brand Comparison, Segment (3)- Automobile Online Information Seeking and Segment (4)- Automobile Offline Shopping Preferences. In understanding the online customer’s receptiveness towards internet, the regression result shows that there is significant relationship between each of four segments of online passenger car customer with attitude towards automobile online shopping. This implies that, for online customers to have receptiveness toward internet technologies, he or she must have preferences toward online shopping or at least prefer to browse any related information online even if the actual purchase is made at the traditional store. With this proposed segmentation strategy, the firms especially the automobile firms will be able to understand their online customer behavior. At least, the proposed segmentation strategy will help the firms to strategize quality management approach for their online customers’ buying decision making.Keywords: Automobile, Market Segmentation, Online Shopping Attitude, Quality Management Strategy
Procedia PDF Downloads 5402847 Multi-Level Attentional Network for Aspect-Based Sentiment Analysis
Authors: Xinyuan Liu, Xiaojun Jing, Yuan He, Junsheng Mu
Abstract:
Aspect-based Sentiment Analysis (ABSA) has attracted much attention due to its capacity to determine the sentiment polarity of the certain aspect in a sentence. In previous works, great significance of the interaction between aspect and sentence has been exhibited in ABSA. In consequence, a Multi-Level Attentional Networks (MLAN) is proposed. MLAN consists of four parts: Embedding Layer, Encoding Layer, Multi-Level Attentional (MLA) Layers and Final Prediction Layer. Among these parts, MLA Layers including Aspect Level Attentional (ALA) Layer and Interactive Attentional (ILA) Layer is the innovation of MLAN, whose function is to focus on the important information and obtain multiple levels’ attentional weighted representation of aspect and sentence. In the experiments, MLAN is compared with classical TD-LSTM, MemNet, RAM, ATAE-LSTM, IAN, AOA, LCR-Rot and AEN-GloVe on SemEval 2014 Dataset. The experimental results show that MLAN outperforms those state-of-the-art models greatly. And in case study, the works of ALA Layer and ILA Layer have been proven to be effective and interpretable.Keywords: deep learning, aspect-based sentiment analysis, attention, natural language processing
Procedia PDF Downloads 1382846 Assessment of Body Mass Index among Children of Primary School in Behbahan City
Authors: Hosseini Siahi Zohreh, Sana Mohammad Jafar
Abstract:
With increase in fat and over weight in children and its undesirable effects on different organisms of the body and since many of the sicknesses are due to over weight and with losing weight these sicknesses disappear, and on the other hand with mal nutrition and under weight in children other kind of sicknesses such as derogation of body's security system, frequent infection, insufficient growth, shortness, and delay in maturity etc. are some of the signs of being under weight. Therefore recognition of signs of over weight and under weight and their prevalence in children are important. To determine this difficulty we have used the body mass index as screening tool since it is very prevalent and a good and important guide and has very good relation with body fat in children. In this study 2321 students from primary schools in Behbahan have been chosen randomly and evaluated by height and weight and their body mass index have been calculated and then recorded on the BMI percentile diagram which is for age and gender. The following results obtained: The amount of total fat, over weight and slimness are 9.3, 12.1 and 12.32 percent respectively. Therefore 21.4% of the children were over weighted. It did not show any meaningful statistical relation in fat conditions among boys and girls, but there has been a meaningful statistical relation in slimness among boys and girls.Keywords: assessment, students, Behbahan, Body Mass Index
Procedia PDF Downloads 5192845 Effective Factors on Farmers' Attitude toward Multifunctional Agriculture
Authors: Mohammad Sadegh Allahyari, Sorush Marzban
Abstract:
The main aim of this study was to investigate the factors affecting farmers' attitude of the Shanderman District in Masal (Guilan Province in the north of Iran), towards the concepts of multifunctional agriculture. The statistical population consisted of all 4908 in Shanderman.The sample of the present study consisted of 209 subjects who were selected from the total population using the Bartlett et al. Table. Questionnaire as the main tool of data collection was divided in two parts. The first part of questionnaire consisted of farmers' profiles regarding individual, technical-agronomic, economic and social characteristics. The second part included items to identify the farmers’ attitudes regarding different aspects of multifunctional agriculture. The validity of the questionnaire was assessed by professors and experts. Cronbach's alpha was used to determine the reliability (α= 0.844), which is considered an acceptable reliability value. Overall, the average scores of attitudes towards multifunctional agriculture show a positive tendency towards multifunctional agriculture, considering farmers' attitudes of the Shanderman district (SD = 0.53, M = 3.81). Results also highlight a significant difference between farmers' income source levels (F = 0.049) and agricultural literature review (F = 0.022) toward farmers' attitudes considering multifunctional agriculture (p < 0.05). Pearson correlations also indicated that there is a positive relationship between positive attitudes and family size (r = 0.154), farmers' experience (r = 0.246), size of land under cultivation (r = 0.186), income (r = 0.227), and social contribution activities (r = 0.224). The results of multiple regression analyses showed that the variation in the dependent variable depended on the farmers' experience in agricultural activities and their social contribution activities. This means that the variables included in the regression analysis are estimated to explain 12 percent of the variation in the dependent variable.Keywords: multifunctional agriculture, attitude, effective factor, sustainable agriculture
Procedia PDF Downloads 2352844 Re-Engineering Management Process in IRAN’s Smart Schools
Authors: M. R. Babaei, S. M. Hosseini, S. Rahmani, L. Moradi
Abstract:
Today, the quality of education and training systems and the effectiveness of the education systems of most concern to stakeholders and decision-makers of our country's development in each country. In Iran this is a double issue of concern to numerous reasons; So that governments, over the past decade have hardly even paid the running costs of education. ICT is claiming it has the power to change the structure of a program for training, reduce costs and increase quality, and do education systems and products consistent with the needs of the community and take steps to practice education. Own of the areas that the introduction of information technology has fundamentally changed is the field of education. The aim of this research is process reengineering management in schools simultaneously has been using field studies to collect data in the form of interviews and a questionnaire survey. The statistical community of this research has been the country of Iran and smart schools under the education. Sampling was targeted. The data collection tool was a questionnaire composed of two parts. The questionnaire consists of 36 questions that each question designates one of effective factors on the management of smart schools. Also each question consists of two parts. The first part designates the operating position in the management process, which represents the domain's belonging to the management agent (planning, organizing, leading, controlling). According to the classification of Dabryn and in second part the factors affect the process of managing the smart schools were examined, that Likert scale is used to classify. Questions the validity of the group of experts and prominent university professors in the fields of information technology, management and reengineering of approved and Cronbach's alpha reliability and also with the use of the formula is evaluated and approved. To analyse the data, descriptive and inferential statistics were used to analyse the factors contributing to the rating of (Linkert scale) descriptive statistics (frequency table data, mean, median, mode) was used. To analyse the data using analysis of variance and nonparametric tests and Friedman test, the assumption was evaluated. The research conclusions show that the factors influencing the management process re-engineering smart schools in school performance is affected.Keywords: re-engineering, management process, smart school, Iran's school
Procedia PDF Downloads 2442843 Machine Learning Techniques for Estimating Ground Motion Parameters
Authors: Farid Khosravikia, Patricia Clayton
Abstract:
The main objective of this study is to evaluate the advantages and disadvantages of various machine learning techniques in forecasting ground-motion intensity measures given source characteristics, source-to-site distance, and local site condition. Intensity measures such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Estimating these variables for future earthquake events is a key step in seismic hazard assessment and potentially subsequent risk assessment of different types of structures. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as a statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The algorithms are adjusted to quantify event-to-event and site-to-site variability of the ground motions by implementing them as random effects in the proposed models to reduce the aleatory uncertainty. All the algorithms are trained using a selected database of 4,528 ground-motions, including 376 seismic events with magnitude 3 to 5.8, recorded over the hypocentral distance range of 4 to 500 km in Oklahoma, Kansas, and Texas since 2005. The main reason of the considered database stems from the recent increase in the seismicity rate of these states attributed to petroleum production and wastewater disposal activities, which necessities further investigation in the ground motion models developed for these states. Accuracy of the models in predicting intensity measures, generalization capability of the models for future data, as well as usability of the models are discussed in the evaluation process. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available.Keywords: artificial neural network, ground-motion models, machine learning, random forest, support vector machine
Procedia PDF Downloads 1222842 Assessment of the Work-Related Stress and Associated Factors among Sanitation Workers in Public Hospitals during COVID-19, Addis Ababa, Ethiopia
Authors: Zerubabel Mihret
Abstract:
Background: Work-related stress is a pattern of reactions to work demands unmatched by worker’s knowledge, skills, or abilities. Healthcare institutions are considered high-risk and intensive work areas for work-related stress. However, there is the nonexistence of clear and strong data about the magnitude of work-related stress on sanitation workers in hospitals in Ethiopia. The aim of this study was to determine the magnitude of work-related stress among sanitation workers in public hospitals during COVID-19 in Addis Ababa, Ethiopia. Methods: Institution-based cross-sectional study was conducted from October 2021 to February 2022 among 494 sanitation workers who were selected from 4 hospitals. HSE (Health and Safety Executive of UK) standard data collection tool was used, and an interviewer-administered questionnaire was used to collect the data using KOBO collect application. The collected data were cleaned and analyzed using SPSS version 20.0. Both binary and multivariable logistic regression analyses were done to identify important factors having an association with work-related stress. Variables with p-value ≤ 0.25 in the bivariate analysis were entered into the multivariable logistic regression model. A statistically significant level was declared at a p-value ≤ 0.05. Results: This study revealed that the magnitude of work-related stress among sanitation workers was 49.2% (95% CI 45-54). Significant proportions (72.7%) of sanitation workers were dissatisfied with their current job. Sex, age, experience, and chewing khat were significantly associated with work-related stress. Conclusion: Work-related stress is significantly high among sanitation workers. Sex, age, experience, and chewing khat were identified as factors associated with work-related stress. Intervention program focusing on the prevention and control of stress is desired by hospitals.Keywords: work-related stress, sanitation workers, Likert scale, public hospitals, Ethiopia
Procedia PDF Downloads 832841 A Five-Year Follow-up Survey Using Regression Analysis Finds Only Maternal Age to Be a Significant Medical Predictor for Infertility Treatment
Authors: Lea Stein, Sabine Rösner, Alessandra Lo Giudice, Beate Ditzen, Tewes Wischmann
Abstract:
For many couples bearing children is a consistent life goal; however, it cannot always be fulfilled. Undergoing infertility treatment does not guarantee pregnancies and live births. Couples have to deal with miscarriages and sometimes even discontinue infertility treatment. Significant medical predictors for the outcome of infertility treatment have yet to be fully identified. To further our understanding, a cross-sectional five-year follow-up survey was undertaken, in which 95 women and 82 men that have been treated at the Women’s Hospital of Heidelberg University participated. Binary logistic regressions, parametric and non-parametric methods were used for our sample to determine the relevance of biological (infertility diagnoses, maternal and paternal age) and lifestyle factors (smoking, drinking, over- and underweight) on the outcome of infertility treatment (clinical pregnancy, live birth, miscarriage, dropout rate). During infertility treatment, 72.6% of couples became pregnant and 69.5% were able to give birth. Suffering from miscarriages 27.5% of couples and 20.5% decided to discontinue an unsuccessful fertility treatment. The binary logistic regression models for clinical pregnancies, live births and dropouts were statistically significant for the maternal age, whereas the paternal age in addition to maternal and paternal BMI, smoking, infertility diagnoses and infections, showed no significant predicting effect on any of the outcome variables. The results confirm an effect of maternal age on infertility treatment, whereas the relevance of other medical predictors remains unclear. Further investigations should be considered to increase our knowledge of medical predictors.Keywords: advanced maternal age, assisted reproductive technology, female factor, male factor, medical predictors, infertility treatment, reproductive medicine
Procedia PDF Downloads 1092840 Beyond Adoption: Econometric Analysis of Impacts of Farmer Innovation Systems and Improved Agricultural Technologies on Rice Yield in Ghana
Authors: Franklin N. Mabe, Samuel A. Donkoh, Seidu Al-Hassan
Abstract:
In order to increase and bridge the differences in rice yield, many farmers have resorted to adopting Farmer Innovation Systems (FISs) and Improved Agricultural Technologies (IATs). This study econometrically analysed the impacts of adoption of FISs and IATs on rice yield using multinomial endogenous switching regression (MESR). Nine-hundred and seven (907) rice farmers from Guinea Savannah Zone (GSZ), Forest Savannah Transition Zone (FSTZ) and Coastal Savannah Zone (CSZ) were used for the study. The study used both primary and secondary data. FBO advice, rice farming experience and distance from farming communities to input markets increase farmers’ adoption of only FISs. Factors that increase farmers’ probability of adopting only IATs are access to extension advice, credit, improved seeds and contract farming. Farmers located in CSZ have higher probability of adopting only IATs than their counterparts living in other agro-ecological zones. Age and access to input subsidy increase the probability of jointly adopting FISs and IATs. FISs and IATs have heterogeneous impact on rice yield with adoption of only IATs having the highest impact followed by joint adoption of FISs and IATs. It is important for stakeholders in rice subsector to champion the provision of improved rice seeds, the intensification of agricultural extension services and contract farming concept. Researchers should endeavour to researched into FISs.Keywords: farmer innovation systems, improved agricultural technologies, multinomial endogenous switching regression, treatment effect
Procedia PDF Downloads 4252839 Early Gastric Cancer Prediction from Diet and Epidemiological Data Using Machine Learning in Mizoram Population
Authors: Brindha Senthil Kumar, Payel Chakraborty, Senthil Kumar Nachimuthu, Arindam Maitra, Prem Nath
Abstract:
Gastric cancer is predominantly caused by demographic and diet factors as compared to other cancer types. The aim of the study is to predict Early Gastric Cancer (ECG) from diet and lifestyle factors using supervised machine learning algorithms. For this study, 160 healthy individual and 80 cases were selected who had been followed for 3 years (2016-2019), at Civil Hospital, Aizawl, Mizoram. A dataset containing 11 features that are core risk factors for the gastric cancer were extracted. Supervised machine algorithms: Logistic Regression, Naive Bayes, Support Vector Machine (SVM), Multilayer perceptron, and Random Forest were used to analyze the dataset using Python Jupyter Notebook Version 3. The obtained classified results had been evaluated using metrics parameters: minimum_false_positives, brier_score, accuracy, precision, recall, F1_score, and Receiver Operating Characteristics (ROC) curve. Data analysis results showed Naive Bayes - 88, 0.11; Random Forest - 83, 0.16; SVM - 77, 0.22; Logistic Regression - 75, 0.25 and Multilayer perceptron - 72, 0.27 with respect to accuracy and brier_score in percent. Naive Bayes algorithm out performs with very low false positive rates as well as brier_score and good accuracy. Naive Bayes algorithm classification results in predicting ECG showed very satisfactory results using only diet cum lifestyle factors which will be very helpful for the physicians to educate the patients and public, thereby mortality of gastric cancer can be reduced/avoided with this knowledge mining work.Keywords: Early Gastric cancer, Machine Learning, Diet, Lifestyle Characteristics
Procedia PDF Downloads 1612838 Meta Model for Optimum Design Objective Function of Steel Frames Subjected to Seismic Loads
Authors: Salah R. Al Zaidee, Ali S. Mahdi
Abstract:
Except for simple problems of statically determinate structures, optimum design problems in structural engineering have implicit objective functions where structural analysis and design are essential within each searching loop. With these implicit functions, the structural engineer is usually enforced to write his/her own computer code for analysis, design, and searching for optimum design among many feasible candidates and cannot take advantage of available software for structural analysis, design, and searching for the optimum solution. The meta-model is a regression model used to transform an implicit objective function into objective one and leads in turn to decouple the structural analysis and design processes from the optimum searching process. With the meta-model, well-known software for structural analysis and design can be used in sequence with optimum searching software. In this paper, the meta-model has been used to develop an explicit objective function for plane steel frames subjected to dead, live, and seismic forces. Frame topology is assumed as predefined based on architectural and functional requirements. Columns and beams sections and different connections details are the main design variables in this study. Columns and beams are grouped to reduce the number of design variables and to make the problem similar to that adopted in engineering practice. Data for the implicit objective function have been generated based on analysis and assessment for many design proposals with CSI SAP software. These data have been used later in SPSS software to develop a pure quadratic nonlinear regression model for the explicit objective function. Good correlations with a coefficient, R2, in the range from 0.88 to 0.99 have been noted between the original implicit functions and the corresponding explicit functions generated with meta-model.Keywords: meta-modal, objective function, steel frames, seismic analysis, design
Procedia PDF Downloads 2432837 Comparison of Carcass Weight of Pure and Mixed Races Namebar 30-Day Squabs
Authors: Sepehr Moradi, Mehdi Asadi Rad
Abstract:
The aim of this study is to evaluate and compare carcass weight of pure and mixed races Namebar 30-day pigeons to investigate about their sex, race, and some auxiliary variables. In this paper, 68 pieces of pigeons as 34 male and female pairs with equal age are studied randomly. A natural incubation was done from each pair. All produced chickens were slaughtered at 30 days age after 12 hours hunger. Then their carcasses were weighted by a scale with one gram precision. A covariance analysis was used since there were many auxiliary variables and unequal observations. SAS software was used for statistical analysis. Mean weight of carcass in pure race (Namebar-Namebar) with 8 records, 219.5±61.3 gr and mixed races of Kabood-Namebar, Parvazy-Namebar, Tizpar-Namebar, Namebar-Kabood, Namebar-Tizpar, and Namebar-Parvazy with 8, 10, 8, 12, 12, and 10 records were 369.9±54.6, 338.3±52.7, 224.5±73.6, 142.3±67.8, 155.6±56.2, and 170.2±55 gr, respectively.. Difference carcass weight of 30-day of Namebar-Namebar race with Namebar-Kabood, Namebar-Parvazy, Namebar-Tizpar, Parvazy-Namebar and Tizpar-Namebar mixed races was not significant, and was significant in level 5% with Kabood- Namebar (P < 0.05). Effect of sex and age were also significant in 1% level (P < 0.01), but mutual effect of sex and race was not significant. The results showed that most and least weights of carcass belonged to Kabood-Namebar and Namebar-Kabood.Keywords: squab, Namebar race, 30-day carcass weight, pigeons
Procedia PDF Downloads 1802836 Influence of Mass Flow Rate on Forced Convective Heat Transfer through a Nanofluid Filled Direct Absorption Solar Collector
Authors: Salma Parvin, M. A. Alim
Abstract:
The convective and radiative heat transfer performance and entropy generation on forced convection through a direct absorption solar collector (DASC) is investigated numerically. Four different fluids, including Cu-water nanofluid, Al2O3-waternanofluid, TiO2-waternanofluid, and pure water are used as the working fluid. Entropy production has been taken into account in addition to the collector efficiency and heat transfer enhancement. Penalty finite element method with Galerkin’s weighted residual technique is used to solve the governing non-linear partial differential equations. Numerical simulations are performed for the variation of mass flow rate. The outcomes are presented in the form of isotherms, average output temperature, the average Nusselt number, collector efficiency, average entropy generation, and Bejan number. The results present that the rate of heat transfer and collector efficiency enhance significantly for raising the values of m up to a certain range.Keywords: DASC, forced convection, mass flow rate, nanofluid
Procedia PDF Downloads 2932835 Assesment of Financial Performance: An Empirical Study of Crude Oil and Natural Gas Companies in India
Authors: Palash Bandyopadhyay
Abstract:
Background and significance of the study: Crude oil and natural gas is of crucial importance due to its increasing demand in India. The demand has been increased because of change of lifestyle overtime. Since India has poor utilization of oil production capacity, constantly the import of it has been increased progressively day by day. This ultimately hit the foreign exchange reserves of India, however it negatively affect the Indian economy as well. The financial performance of crude oil and natural gas companies in India has been trimmed down year after year because of underutilization of production capacity, enhancement of demand, change in life style, and change in import bill and outflows of foreign currencies. In this background, the current study seeks to measure the financial performance of crude oil and natural gas companies of India in the post liberalization period. Keeping in view of this, this study assesses the financial performance in terms of liquidity management, solvency, efficiency, financial stability, and profitability of the companies under study. Methodology: This research work is encircled on yearly ratio data collected from Centre for Monitoring Indian Economy (CMIE) Prowess database for the periods between 1993-94 and 2012-13 with 20 observations using liquidity, solvency and efficiency indicators, profitability indicators and financial stability indicators of all the major crude oil and natural gas companies in India. In the course of analysis, descriptive statistics, correlation statistics, and linear regression test have been utilized. Major findings: Descriptive statistics indicate that liquidity position is satisfactory in case of three crude oil and natural gas companies (Oil and Natural Gas Companies Videsh Limited, Oil India Limited and Selan exploration and transportation Limited) out of selected companies under study but solvency position is satisfactory only for one company (Oil and Natural Gas Companies Videsh Limited). However, efficiency analysis points out that Oil and Natural Gas Companies Videsh Limited performs effectively the management of inventory, receivables, and payables, but the overall liquidity management is not well. Profitability position is very much satisfactory in case of all the companies except Tata Petrodyne Limited, but profitability management is not satisfactory for all the companies under study. Financial stability analysis shows that all the companies are more dependent on debt capital, which bears a financial risk. Correlation and regression test results illustrates that profitability is positively and negatively associated with liquidity, solvency, efficiency, and financial stability indicators. Concluding statement: Management of liquidity and profitability of crude oil and natural gas companies in India should have been improved through controlling unnecessary imports in spite of the heavy demand of crude oil and natural gas in India and proper utilization of domestic oil reserves. At the same time, Indian government has to concern about rupee depreciation and interest rates.Keywords: financial performance, crude oil and natural gas companies, India, linear regression
Procedia PDF Downloads 3222834 Asset Pricing Puzzle and GDP-Growth: Pre and Post Covid-19 Pandemic Effect on Pakistan Stock Exchange
Authors: Mohammad Azam
Abstract:
This work is an endeavor to empirically investigate the Gross Domestic Product-Growth as mediating variable between various factors and portfolio returns using a broad sample of 522 financial and non-financial firms enlisted on Pakistan Stock Exchange between January-1993 and June-2022. The study employs the Structural Equation modeling and Ordinary Least Square regression to determine the findings before and during the Covid-19 epidemiological situation, which has not received due attention by researchers. The analysis reveals that market and investment factors are redundant, whereas size and value show significant results, whereas Gross Domestic Product-Growth performs significant mediating impact for the whole time frame. Using before Covid-19 period, the results reveal that market, value, and investment are redundant, but size, profitability, and Gross Domestic Product-Growth are significant. During the Covid-19, the statistics indicate that market and investment are redundant, though size and Gross Domestic Product-Growth are highly significant, but value and profitability are moderately significant. The Ordinary Least Square regression shows that market and investment are statistically insignificant, whereas size is highly significant but value and profitability are marginally significant. Using the Gross Domestic Product-Growth augmented model, a slight growth in R-square is observed. The size, value and profitability factors are recommended to the investors for Pakistan Stock Exchange. Conclusively, in the Pakistani market, the Gross Domestic Product-Growth indicates a feeble moderating effect between risk-premia and portfolio returns.Keywords: asset pricing puzzle, mediating role of GDP-growth, structural equation modeling, COVID-19 pandemic, Pakistan stock exchange
Procedia PDF Downloads 732833 Low-Cost Image Processing System for Evaluating Pavement Surface Distress
Authors: Keerti Kembhavi, M. R. Archana, V. Anjaneyappa
Abstract:
Most asphalt pavement condition evaluation use rating frameworks in which asphalt pavement distress is estimated by type, extent, and severity. Rating is carried out by the pavement condition rating (PCR), which is tedious and expensive. This paper presents the development of a low-cost technique for image pavement distress analysis that permits the identification of pothole and cracks. The paper explores the application of image processing tools for the detection of potholes and cracks. Longitudinal cracking and pothole are detected using Fuzzy-C- Means (FCM) and proceeded with the Spectral Theory algorithm. The framework comprises three phases, including image acquisition, processing, and extraction of features. A digital camera (Gopro) with the holder is used to capture pavement distress images on a moving vehicle. FCM classifier and Spectral Theory algorithms are used to compute features and classify the longitudinal cracking and pothole. The Matlab2016Ra Image preparing tool kit utilizes performance analysis to identify the viability of pavement distress on selected urban stretches of Bengaluru city, India. The outcomes of image evaluation with the utilization semi-computerized image handling framework represented the features of longitudinal crack and pothole with an accuracy of about 80%. Further, the detected images are validated with the actual dimensions, and it is seen that dimension variability is about 0.46. The linear regression model y=1.171x-0.155 is obtained using the existing and experimental / image processing area. The R2 correlation square obtained from the best fit line is 0.807, which is considered in the linear regression model to be ‘large positive linear association’.Keywords: crack detection, pothole detection, spectral clustering, fuzzy-c-means
Procedia PDF Downloads 1812832 Modelling of Aerosols in Absorption Column
Authors: Hammad Majeed, Hanna Knuutila, Magne Hillestad, Hallvard F. Svendsen
Abstract:
Formation of aerosols can cause serious complications in industrial exhaust gas cleaning processes. Small mist droplets and fog formed can normally not be removed in conventional demisting equipment because their submicron size allows the particles or droplets to follow the gas flow. As a consequence of this, aerosol based emissions in the order of grams per Nm3 have been identified from PCCC plants. The model predicts the droplet size, the droplet internal variable profiles, and the mass transfer fluxes as function of position in the absorber. The Matlab model is based on a subclass method of weighted residuals for boundary value problems named, orthogonal collocation method. This paper presents results describing the basic simulation tool for the characterization of aerosols formed in CO2 absorption columns and describes how various entering droplets grow or shrink through an absorber and how their composition changes with respect to time. Below are given some preliminary simulation results for an aerosol droplet composition and temperature profiles.Keywords: absorption columns, aerosol formation, amine emissions, internal droplet profiles, monoethanolamine (MEA), post combustion CO2 capture, simulation
Procedia PDF Downloads 2442831 Exploring Key Elements of Successful Distance Learning Programs: A Case Study in Palau
Authors: Maiya Smith, Tyler Thorne
Abstract:
Background: The Pacific faces multiple healthcare crises, including high rates of noncommunicable diseases, infectious disease outbreaks, and susceptibility to natural disasters. These issues are expected to worsen in the coming decades, increasing the burden on an already understaffed healthcare system. Telehealth is not new to the Pacific, but improvements in technology and accessibility have increased its utility and have already proven to reduce costs and increase access to care in remote areas. Telehealth includes distance learning; a form of education that can help alleviate many healthcare issues by providing continuing education to healthcare professionals and upskilling staff, while decreasing costs. This study examined distance learning programs at the Ministry of Health in the Pacific nation of Palau and identified key elements to their successful distance learning programs. Methods: Staff at the Belau National Hospital in Koror, Palau as well as private practitioners were interviewed to assess distance learning programs utilized. This included physicians, IT personnel, public health members, and department managers of allied health. In total, 36 people were interviewed. Standardized questions and surveys were conducted in person throughout the month of July 2019. Results: Two examples of successful distance learning programs were identified. Looking at the factors that made these programs successful, as well as consulting with staff who undertook other distance learning programs, four factors for success were determined: having a cohort, having a facilitator, dedicated study time off from work, and motivation. Discussion: In countries as geographically isolated as the Pacific, with poor access to specialists and resources, telehealth has the potential to radically change how healthcare is delivered. Palau shares similar resources and issues as other countries in the Pacific and the lessons learned from their successful programs can be adapted to help other Pacific nations develop their own distance learning programs.Keywords: distance learning, Pacific, Palau, telehealth
Procedia PDF Downloads 1402830 Forecast of the Small Wind Turbines Sales with Replacement Purchases and with or without Account of Price Changes
Authors: V. Churkin, M. Lopatin
Abstract:
The purpose of the paper is to estimate the US small wind turbines market potential and forecast the small wind turbines sales in the US. The forecasting method is based on the application of the Bass model and the generalized Bass model of innovations diffusion under replacement purchases. In the work an exponential distribution is used for modeling of replacement purchases. Only one parameter of such distribution is determined by average lifetime of small wind turbines. The identification of the model parameters is based on nonlinear regression analysis on the basis of the annual sales statistics which has been published by the American Wind Energy Association (AWEA) since 2001 up to 2012. The estimation of the US average market potential of small wind turbines (for adoption purchases) without account of price changes is 57080 (confidence interval from 49294 to 64866 at P = 0.95) under average lifetime of wind turbines 15 years, and 62402 (confidence interval from 54154 to 70648 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 90,7%, while in the second - 91,8%. The effect of the wind turbines price changes on their sales was estimated using generalized Bass model. This required a price forecast. To do this, the polynomial regression function, which is based on the Berkeley Lab statistics, was used. The estimation of the US average market potential of small wind turbines (for adoption purchases) in that case is 42542 (confidence interval from 32863 to 52221 at P = 0.95) under average lifetime of wind turbines 15 years, and 47426 (confidence interval from 36092 to 58760 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 95,3%, while in the second –95,3%.Keywords: bass model, generalized bass model, replacement purchases, sales forecasting of innovations, statistics of sales of small wind turbines in the United States
Procedia PDF Downloads 3482829 The Prognostic Prediction Value of Positive Lymph Nodes Numbers for the Hypopharyngeal Squamous Cell Carcinoma
Authors: Wendu Pang, Yaxin Luo, Junhong Li, Yu Zhao, Danni Cheng, Yufang Rao, Minzi Mao, Ke Qiu, Yijun Dong, Fei Chen, Jun Liu, Jian Zou, Haiyang Wang, Wei Xu, Jianjun Ren
Abstract:
We aimed to compare the prognostic prediction value of positive lymph node number (PLNN) to the American Joint Committee on Cancer (AJCC) tumor, lymph node, and metastasis (TNM) staging system for patients with hypopharyngeal squamous cell carcinoma (HPSCC). A total of 826 patients with HPSCC from the Surveillance, Epidemiology, and End Results database (2004–2015) were identified and split into two independent cohorts: training (n=461) and validation (n=365). Univariate and multivariate Cox regression analyses were used to evaluate the prognostic effects of PLNN in patients with HPSCC. We further applied six Cox regression models to compare the survival predictive values of the PLNN and AJCC TNM staging system. PLNN showed a significant association with overall survival (OS) and cancer-specific survival (CSS) (P < 0.001) in both univariate and multivariable analyses, and was divided into three groups (PLNN 0, PLNN 1-5, and PLNN>5). In the training cohort, multivariate analysis revealed that the increased PLNN of HPSCC gave rise to significantly poor OS and CSS after adjusting for age, sex, tumor size, and cancer stage; this trend was also verified by the validation cohort. Additionally, the survival model incorporating a composite of PLNN and TNM classification (C-index, 0.705, 0.734) performed better than the PLNN and AJCC TNM models. PLNN can serve as a powerful survival predictor for patients with HPSCC and is a surrogate supplement for cancer staging systems.Keywords: hypopharyngeal squamous cell carcinoma, positive lymph nodes number, prognosis, prediction models, survival predictive values
Procedia PDF Downloads 1542828 Association of Maternal Age, Ethnicity and BMI with Gestational Diabetes Prevalence in Multi-Racial Singapore
Authors: Nur Atiqah Adam, Mor Jack Ng, Bernard Chern, Kok Hian Tan
Abstract:
Introduction: Gestational diabetes (GDM) is a common pregnancy complication with short and long-term health consequences for both mother and fetus. Factors such as family history of diabetes mellitus, maternal obesity, maternal age, ethnicity and parity have been reported to influence the risk of GDM. In a multi-racial country like Singapore, it is worthwhile to study the GDM prevalences of different ethnicities. We aim to investigate the influence of ethnicity on the racial prevalences of GDM in Singapore. This is important as it may help us to improve guidelines on GDM healthcare services according to significant risk factors unique to Singapore. Materials and Methods: Obstetric cohort data of 926 singleton deliveries in KK Women’s and Children’s Hospital (KKH) from 2011 to 2013 was obtained. Only patients aged 18 and above and without complicated pregnancies or chronic illnesses were targeted. Factors such as ethnicity, maternal age, parity and maternal body mass index (BMI) at booking visit were studied. A multivariable logistic regression model, adjusted for confounders, was used to determine which of these factors are significantly associated with an increased risk of GDM. Results: The overall GDM prevalence rate based on WHO 1999 criteria & at risk screening (race alone not a risk factor) was 8.86%. GDM rates were higher among women above 35 years old (15.96%), obese (15.15%) and multiparous women (10.12%). Indians had a higher GDM rate (13.0 %) compared to the Chinese (9.57%) and Malays (5.20%). However, using multiple logistic regression model, variables that are significantly related to GDM rates were maternal age (p < 0.001) and maternal BMI at booking visit (p = 0.006). Conclusion: Maternal age (p < 0.001) and maternal booking BMI (p = 0.006) are the strongest risk factors for GDM. Ethnicity per se does not seem to have a significant influence on the prevalence of GDM in Singapore (p = 0.064). Hence we should tailor guidelines on GDM healthcare services according to maternal age and booking BMI rather than ethnicity.Keywords: ethnicity, gestational diabetes, healthcare, pregnancy
Procedia PDF Downloads 226