Search results for: green inhibition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3015

Search results for: green inhibition

1965 Toward Green Infrastructure Development: Dispute Prevention Mechanisms along the Belt and Road and Beyond

Authors: Shahla Ali

Abstract:

In the context of promoting green infrastructure development, new opportunities are emerging to re-examine sustainable development practices. This paper presents an initial exploration of the development of community-investor dispute prevention and facilitation mechanisms in the context of the Belt and Road Initiative (BRI) spanning Asia, Africa, and Europe. Given the widescale impact of China’s multi-jurisdictional development initiative, learning how to coordinate with local communities is vital to realizing inclusive and sustainable growth. In the 20 years since the development of the first multilateral community-investor dispute resolution mechanism developed by the International Finance Centre/World Bank, much has been learned about public facilitation, community engagement, and dispute prevention during the early stages of major infrastructure development programs. This paper will explore initial findings as they relate to initiatives underway along the BRI within the Asian Infrastructure Investment Bank and the Asian Development Bank. Given the borderless nature of sustainability concerns, insights from diverse regions are critical to deepening insights into best practices. Drawing on a case-based methodology, this paper will explore the achievements, challenges, and lessons learned in community-investor dispute prevention and resolution for major infrastructure projects in the greater China region.

Keywords: law and development, dispute prevention, sustainable development, mitigation

Procedia PDF Downloads 85
1964 Improved Visible Light Activities for Degrading Pollutants on ZnO-TiO2 Nanocomposites Decorated with C and Fe Nanoparticles

Authors: Yuvraj S. Malghe, Atul B. Lavand

Abstract:

In recent years, semiconductor photocatalytic degradation processes have attracted a lot of attention and are used widely for the destruction of organic pollutants present in waste water. Among various semiconductors, titanium dioxide (TiO2) is the most popular photocatalyst due to its excellent chemical stability, non-toxicity, relatively low cost and high photo-oxidation power. It has been known that zinc oxide (ZnO) with band gap energy 3.2 eV is a suitable alternative to TiO2 due to its high quantum efficiency, however it corrodes in acidic medium. Unfortunately TiO2 and ZnO both are active only in UV light due to their wide band gaps. Sunlight consist about 5-7% UV light, 46% visible light and 47% infrared radiation. In order to utilize major portion of sunlight (visible spectrum), it is necessary to modify the band gap of TiO2 as well as ZnO. This can be done by several ways such as semiconductor coupling, doping the material with metals/non metals. Doping of TiO2 using transition metals like Fe, Co and non-metals such as N, C or S extends its absorption wavelengths from UV to visible region. In the present work, we have synthesized ZnO-TiO2 nanocomposite using reverse microemulsion method. Visible light photocatalytic activity of synthesized nanocomposite was investigated for degradation of aqueous solution of malachite green (MG). To increase the photocatalytic activity of ZnO-TiO2 nanocomposite, it is decorated with C and Fe. Pure, carbon (C) doped and carbon, iron(C, Fe) co-doped nanosized ZnO-TiO2 nanocomposites were synthesized using reverse microemulsion method. These composites were characterized using, X-ray diffraction (XRD), Energy dispersive X-ray spectroscopy (EDX), Scanning electron microscopy (SEM), UV visible spectrophotometery and X-ray photoelectron spectroscopy (XPS). Visible light photocatalytic activities of synthesized nanocomposites were investigated for degradation of aqueous malachite green (MG) solution. C, Fe co-doped ZnO-TiO2 nanocomposite exhibit better photocatalytic activity and showed threefold increase in photocatalytic activity. Effect of amount of catalyst, pH and concentration of MG solution on the photodegradation rate is studied. Stability and reusability of photocatalyst is also studied. C, Fe decorated ZnO-TiO2 nanocomposite shows threefold increase in photocatalytic activity.

Keywords: malachite green, nanocomposite, photocatalysis, titanium dioxide, zinc oxide

Procedia PDF Downloads 275
1963 Sustained-Release Persulfate Tablets for Groundwater Remediation

Authors: Yu-Chen Chang, Yen-Ping Peng, Wei-Yu Chen, Ku-Fan Chen

Abstract:

Contamination of soil and groundwater has become a serious and widespread environmental problem. In this study, sustained-release persulfate tablets were developed using persulfate powder and a modified cellulose binder for organic-contaminated groundwater remediation. Conventional cement-based persulfate-releasing materials were also synthesized for the comparison. The main objectives of this study were to: (1) evaluate the release rates of the remedial tablets; (2) obtain the optimal formulas of the tablets; and (3) evaluate the effects of the tablets on the subsurface environment. The results of batch experiments show that the optimal parameter for the preparation of the persulfate-releasing tablet was persulfate:cellulose = 1:1 (wt:wt) with a 5,000 kg F/cm2 of pressure application. The cellulose-based persulfate tablet was able to release 2,030 mg/L of persulfate per day for 10 days. Compared to cement-based persulfate-releasing materials, the persulfate release rates of the cellulose-based persulfate tablets were much more stable. Moreover, since the tablets are soluble in water, no waste will be produced in the subsurface. The results of column tests show that groundwater flow would shorten the release time of the tablets. This study successfully developed unique persulfate tablets based on green remediation perspective. The efficacy of the persulfate-releasing tablets on the removal of organic pollutants needs to be further evaluated. The persulfate tablets are expected to be applied for site remediation in the future.

Keywords: sustained-release persulfate tablet, modified cellulose, green remediation, groundwater

Procedia PDF Downloads 267
1962 Influence of Culture Conditions on the Growth and Fatty Acid Composition of Green Microalgae Oocystis rhomboideus, Scenedesmus obliquus, Dictyochlorella globosa

Authors: Tatyana A. Karpenyuk, Saltanat B. Orazova, Yana S. Tzurkan, Alla V. Goncharova, Bakytzhan K. Kairat, Togzhan D. Mukasheva, Ludmila V. Ignatova, Ramza Z. Berzhanova

Abstract:

Microalgae due to the ability to accumulate high levels of practically valuable polyunsaturated fatty acids attract attention as a promising raw material for commercial products. It were defined the features of the growth processes of cells green protococcal microalgae Oocystis rhomboideus, Scenedesmus obliquus, Dictyochlorella globosa at cultivation in different nutritional mediums. For the rapid accumulation of biomass, combined with high productivity of total lipids fraction yield recommended to use the Fitzgerald medium (Scenodesmus obliquus, Oocystis rhomboideus) and/or Bold medium (Dictyochlorella globosa). Productivity of lipids decreased in sequence Dictyochlorella globosa > Scenodesmus obliquus > Oocystis rhomboideus. The bulk of fatty acids fraction of the total lipids is unsaturated fatty acids, which accounts for 70 to 83% of the total number of fatty acids. The share of monoenic acids varies from 16 to 36 %, the share of unsaturated fatty acids - from 44 to 65% of total fatty acids fraction. Among the unsaturated acids dominate α-linolenic acid (C18:3n-3), hexadecatetraenic acid (C16:4) and linoleic acid (C18:2).

Keywords: microalgae, lipids, fatty acids, culture conditions

Procedia PDF Downloads 435
1961 Advancing Phenological Understanding of Plants/Trees Through Phenocam Digital Time-lapse Images

Authors: Siddhartha Khare, Suyash Khare

Abstract:

Phenology, a crucial discipline in ecology, offers insights into the seasonal dynamics of organisms within natural ecosystems and the underlying environmental triggers. Leveraging the potent capabilities of digital repeat photography, PhenoCams capture invaluable data on the phenology of crops, plants, and trees. These cameras yield digital imagery in Red Green Blue (RGB) color channels, and some advanced systems even incorporate Near Infrared (NIR) bands. This study presents compelling case studies employing PhenoCam technology to unravel the phenology of black spruce trees. Through the analysis of RGB color channels, a range of essential color metrics including red chromatic coordinate (RCC), green chromatic coordinate (GCC), blue chromatic coordinate (BCC), vegetation contrast index (VCI), and excess green index (ExGI) are derived. These metrics illuminate variations in canopy color across seasons, shedding light on bud and leaf development. This, in turn, facilitates a deeper understanding of phenological events and aids in delineating the growth periods of trees and plants. The initial phase of this study addresses critical questions surrounding the fidelity of continuous canopy greenness records in representing bud developmental phases. Additionally, it discerns which color-based index most accurately tracks the seasonal variations in tree phenology within evergreen forest ecosystems. The subsequent section of this study delves into the transition dates of black spruce (Picea mariana (Mill.) B.S.P.) phenology. This is achieved through a fortnightly comparative analysis of the MODIS normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI). By employing PhenoCam technology and leveraging advanced color metrics, this study significantly advances our comprehension of black spruce tree phenology, offering valuable insights for ecological research and management.

Keywords: phenology, remote sensing, phenocam, color metrics, NDVI, GCC

Procedia PDF Downloads 43
1960 Evaluating Antimicrobial Activity of Selenium Nanoparticles Against Food-Borne Bacteria

Authors: Qunying Yuan, Manjula Bomma, Adrian Rhoden, Zhigang Xiao

Abstract:

Selenium is an essential micronutrient for all mammals and plays an important role in maintaining human physiological functions. The potential applications of selenium as food supplements, cancer-prevention, antimicrobial and anti-inflammatory agents have been investigated in biomedicine and food sciences. Nanoscale of selenium is of particular interest due to its better biocompatibility, higher bioavailability, lower toxicity, more homogeneous distribution, and presumptive controlled release of substances. The objective of this study is to explore whether selenium nanoparticle (SeNP) has the potential to be used as a food preservative to reduce food spoilage. SeNPs were synthesized through ascorbic acid reduction of sodium selenite using the bovine serum albumin (BSA) as capping and stabilizing agent. The chemically synthesized SeNPs had a spherical conformation and a size of 22.8 ± 4.7 nm. FTIR analysis confirmed that the nanoparticles were covered with BSA. We further tested the antimicrobial activity of these SeNPs against common food-borne bacteria. Colony forming unit assay showed that SeNPs exhibited good inhibition on the growth of Listeria Monocytogens (ATCC15313), Staphylococcus epidermidis (ATCC 700583) starting at 0.5µg/mL, but only a moderate inhibitory effect on the growth of Staphylococcus aureus (ATCC12600) and Vibrio alginolyticus (ATCC 33787) at a concentration higher than 10µg/mL and 2.5µg/mL, respectively. There was a mild effect against the growth Salmonella enterica (ATCC19585) when the concentration reached 15µg/mL. No inhibition was observed in the growth of Enterococcus faecalis (ATCC 19433). Surprisingly, SeNPs appeared to promote the growth of Vibrio parahaemolyticus (ATCC43996) and Salmonella enterica (ATCC49284) at 30 µg/mL and above. Our preliminary data suggested that the chemically synthesized SeNPs may be able to inhibit some food-borne bacteria, and SeNP as a food preservative should be used with caution. We will explore the mechanisms of the inhibitory action of chemically synthesized SeNPs on bacterial growth and whether the SeNPs are able to inhibit the development of biofilm and antibiotic resistance.

Keywords: antimicrobial, food-borne bacteria, nanoparticles, selenium

Procedia PDF Downloads 77
1959 BRG1 and Ep300 as a Transcriptional Regulators of Breast Cancer Growth

Authors: Maciej Sobczak, Julita Pietrzak, Tomasz Płoszaj, Agnieszka Robaszkiewicz

Abstract:

Brg1, a member of SWI/SNF complex, plays a role in chromatin remodeling, therefore, regulates expression of many genes. Brg1 is an ATPase of SWI/SNF complex, thus its activity requires ATP. Through its bromodomain recognizes acetylated histone residues and evicts them, thus promoting transcriptionally active state of chromatin. One of the enzymes that is responsible for acetylation of histone residues is Ep300. It was previously shown in the literature that cooperation of Brg1 and Ep300 occurs at the promoter regions that have binding sites for E2F-family transcription factors as well as CpG islands. According to literature, approximately 20% of human cancer possess mutation in Brg1 or any other crucial SWI/SNF subunit. That phenomenon makes Brg1-Ep300 a very promising target for anti-cancer therapy. Therefore in our study, we investigated if physical interaction between Brg1 and Ep300 exists and what impact those two proteins have on key for breast cancer cells processes such as DNA damage repair and cell proliferation. Bioinformatical analysis pointed out, that genes involved in cell proliferation and DNA damage repair are overexpressed in MCF7 and MDA-MB-231 cells. Moreover, promoter regions of these genes are highly acetylated, which suggests high transcriptional activity of those sites. Notably, many of those gene possess within their promoters an E2F, Brg1 motives, as well as CpG islands and acetylated histones. Our data show that Brg1 physically interacts with Ep300, and together they regulate expression of genes involved in DNA damage repair and cell proliferation. Upon inhibiting Brg1 or Ep300, expression of vital for cancer cell survival genes such as CDK2/4, BRCA1/2, PCNA, and XRCC1 is decreased in MDA-MB-231 and MCF7 cells. Moreover, inhibition or silencing of either Brg1 or Ep300 leads to cell cycle arrest in G1. After inhibition of BRG1 or Ep300 on tested gene promoters, the repressor complex including Rb, HDAC1, and EZH2 is formed, which inhibits gene expression. These results highlight potentially significant target for targeted anticancer therapy to be introduced as a supportive therapy.

Keywords: brg1, ep300, breast cancer, epigenetics

Procedia PDF Downloads 164
1958 Periplasmic Expression of Anti-RoxP Antibody Fragments in Escherichia Coli.

Authors: Caspar S. Carson, Gabriel W. Prather, Nicholas E. Wong, Jeffery R. Anton, William H. McCoy

Abstract:

Cutibacterium acnes is a commensal bacterium found on human skin that has been linked to acne. C. acnes can also be an opportunistic pathogen when it infiltrates the body during surgery. This pathogen can cause dangerous infections of medical implants, such as shoulder replacements, leading to life-threatening blood infections. Compounding this issue, C. acnes resistance to many antibiotics has become an increasing problem worldwide, creating a need for special forms of treatment. C. acnes expresses the protein RoxP, and it requires this protein to colonize human skin. Though this protein is required for C. acnes skin colonization, its function is not yet understood. Inhibition of RoxP function might be an effective treatment for C. acnes infections. To develop such reagents, the McCoy Laboratory generated four unique anti-RoxP antibodies. Preliminary studies in the McCoy Lab have established that each antibody binds a distinct site on RoxP. To assess the potential of these antibodies as therapeutics, it is necessary to specifically characterize these antibody epitopes and evaluate them in assays that assess their ability to inhibit RoxP-dependent C. acnes growth. To provide material for these studies, an antibody expression construct, Fv-clasp(v2), was adapted to encode anti-RoxP antibody sequences. The author hypothesizes that this expression strategy can produce sufficient amounts of >95% pure antibody fragments for further characterization of these antibodies. Four anti-RoxP Fv-clasp(v2) expression constructs (pET vector-based) were transformed into E. coli BL21-Gold(DE3) cells and a small-scale expression and purification trial was performed for each construct to evaluate anti-RoxP Fv-clasp(v2) yield and purity. Successful expression and purification of these antibody constructs will allow for their use in structural studies, such as protein crystallography and cryogenic electron microscopy. Such studies would help to define the antibody binding sites on RoxP, which could then be leveraged in the development of certain methods to treat C. acnes infection through RoxP inhibition.

Keywords: structural biology, protein expression, infectious disease, antibody, therapeutics, E. coli

Procedia PDF Downloads 45
1957 Heterothic Effect of Some Quantitative Traits in F1 Diallel Hybrids of Various Tobacco Types

Authors: Jane Aleksoski

Abstract:

The mode of inheritance and heterotic effect were studied in ten F1 crosses obtained by one-way diallel crossing between five parental genotypes: MV-1, P 76/86, Adiyaman, Basma-Djebel, and P 66 9 7. The following quantitative traits were studied: the number of leaves per stalk, length of leaves from the middle belt of the stalk, and yield of green leaf mass per stalk and per hectare. The trial was set up in the experimental field of Scientific Tobacco Institute - Prilep, using a randomized block design with four replications in the period 2018-2019. Traditional cultural practices were applied during the growing season of tobacco in the field. The aim of this work was to study the mode of inheritance of the quantitative traits, to detect heterosis in the F1 generation, and to assess its economic viability. Analysis of variance determined statistically significant differences in traits between parents and their hybrids in the two-year investigation. The most common way of trait inheritance is partial-dominant, then intermediate. The negative heterotic effect on the number of leaves per stalk has P 76/86 x P 66 9 7. The hybrids MV-1 x Adiyaman, P 76/86 x Basma-Djebel, P 76/86 x P 66 9 7, and Basma-Djebel x P 66 9 7 have a positive heterotic effect on the length of the leaves. Oriental hybrids, where one of the parents is variety P 66 9 7, have positive heterosis in the yield of green leaf mass per stalk. The investigation provides very useful guidance for future successive selection activities.

Keywords: dominance, heterosis, inheritance, tobacco.

Procedia PDF Downloads 61
1956 Closed Loop Traffic Control System Using PLC

Authors: Chinmay Shah

Abstract:

The project is all about development of a close loop traffic light control system using PLC (Programmable Logic Controller). This project is divided into two parts which are hardware and software. The hardware part for this project is a model of four way junction of a traffic light. Three indicator lamps (Red, Yellow and Green) are installed at each lane for represents as traffic light signal. This traffic control model is a replica of actuated traffic control. Actuated traffic control system is a close loop traffic control system which controls the timing of the indicator lamps depending on the fluidity of traffic for a particular lane. To make it autonomous, in each lane three IR sensors are placed which helps to sense the percentage of traffic present on any particular lane. The IR Sensors and Indicator lamps are connected to LG PLC XGB series. The PLC controls every signal which is coming from the inputs (IR Sensors) to software and display to the outputs (Indicator lamps). Default timing for the indicator lamps is 30 seconds for each lane. But depending on the percentage of traffic present, if the traffic is nearly 30-35%, green lamp will be on for 10 seconds, for 65-70% traffic it will be 20 seconds, for full 100% traffic it will be on for full 30 seconds. The software part that operates with LG PLC is “XG 5000” Programmer. Using this software, the ladder logic diagram is programmed to control the traffic light base on the flow chart. At the end of this project, the traffic light system is actuated successfully by PLC.

Keywords: close loop, IR sensor, PLC, light control system

Procedia PDF Downloads 550
1955 Significance of Bike-Frame Geometric Factors for Cycling Efficiency and Muscle Activation

Authors: Luen Chow Chan

Abstract:

With the advocacy of green transportation and green traveling, cycling has become increasingly popular nowadays. Physiology and bike design are key factors for the influence of cycling efficiency. Therefore, this study aimed to investigate the significance of bike-frame geometric factors on cycling efficiency and muscle activation for different body sizes of non-professional Asian male cyclists. Participants who represented various body sizes, as measured by leg and back lengths, carried out cycling tests using a tailor-assembled road bike with different ergonomic design configurations including seat-height adjustments (i.e., 96%, 100%, and 104% of trochanteric height) and bike frame sizes (i.e., small and medium frames) for an assessable distance of 1 km. A specific power meter and self-developed adaptable surface electromyography (sEMG) were used to measure average pedaling power and cadence generated and muscle activation, respectively. The results showed that changing the seat height was far more significant than the body and bike frame sizes. The sEMG data evidently provided a better understanding of muscle activation as a function of different seat heights. Therefore, the interpretation of this study is that the major bike ergonomic design factor dominating the cycling efficiency of Asian participants with different body sizes was the seat height.

Keywords: bike frame sizes, cadence rate, pedaling power, seat height

Procedia PDF Downloads 108
1954 Effect of a Muscarinic Antagonist Drug on Extracellular Lipase Activityof Pseudomonas aeruginosa

Authors: Zohreh Bayat, Dariush Minai-Tehrani

Abstract:

Pseudomonas aeruginosa is a Gram-negative, rode shape and aerobic bacterium that has shown to be resistance to many antibiotics. This resistance makes the bacterium very harmful in some diseases. It can also generate diseases in any part of the gastrointestinal tract from oropharynx to rectum. P. aeruginosa has become an important cause of infection, especially in patients with compromised host defense mechanisms. One of the most important reasons that make P. aeruginosa an emerging opportunistic pathogen in patients is its ability to use various compounds as carbon sources. Lipase is an enzyme that catalyzes the hydrolysis of lipids. Most lipases act at a specific position on the glycerol backbone of lipid substrate. Some lipases are expressed and secreted by pathogenic organisms during the infection. Muscarinic antagonist used as an antispasmodic and in urinary incontinence. The drug has little effect on glandular secretion or the cardiovascular system. It does have some local anesthetic properties and is used in gastrointestinal, biliary, and urinary tract spasms. Aim: In this study the inhibitory effect of a muscarinic antagonist on lipase of P. aeruginosa was investigated. Methods: P. aeruginosa was cultured in minimal salt medium with 1% olive oil as carbon source. The cells were harvested and the supernatant, which contained lipase, was used for enzyme assay. Results: Our results showed that the drug can inhibit P. aeruginosa lipase by competitive manner. In the presence of different concentrations of the drug, the Vmax (2 mmol/min/mg protein) of enzyme did not change, while the Km raised by increasing the drug concentration. The Ki (inhibition constant) and IC50 (the half maximal inhibitory concentration) value of drug was estimated to be about 30 uM and 60 uM which determined that the drug binds to enzyme with high affinity. Maximum activity of the enzyme was observed at pH 8 in the absence and presence of muscarinic antagonist, respectively. The maximum activity of lipase was observed at 600C and the enzyme became inactive at 900C. Conclusion: The muscarinic antagonist drug could inhibit lipase of P. aeruginosa and changed the kinetic parameters of the enzyme. The drug binded to enzyme with high affinity and did not chang the optimum pH of the enzyme. Temperature did not affect the binding of drug to musmuscarinic antagonist.

Keywords: Pseudomonas aeruginosa, drug, enzyme, inhibition

Procedia PDF Downloads 417
1953 Evaluation of Alpha-Glucosidase Inhibitory Effect of Two Plants from Brazilian Cerrado

Authors: N. A. P. Camaforte, P. M. P. Vareda, L. L. Saldanha, A. L. Dokkedal, J. M. Rezende-Neto, M. R. Senger, F. P. Silva-Jr, J. R. Bosqueiro

Abstract:

Diabetes mellitus is a disease characterized by deficiency of insulin secretion and/or action which results in hyperglycemia. Nowadays, acarbose is a medicine used by diabetic people to inhibit alpha-glucosidases leading to the decreasing of post-feeding glycaemia, but with low effectiveness and many side effects. Medicinal plants have been used for the treatment of many diseases including diabetes and their action occurs through the modulation of insulin-depending processes, pancreas regeneration or inhibiting glucose absorption by the intestine. Previous studies in our laboratory showed that the treatment using two crude extracts of plants from Brazilian cerrado was able to decrease fasting blood glucose and improve glucose tolerance in streptozotocin-diabetic mice. Because of this and the importance of the search for new alternatives to decrease the hyperglycemia, we decided to evaluate the inhibitory action of two plants from Brazilian cerrado - B.H. and Myrcia bella. The enzymatic assay was performed in 50 µL of final volume using pancreatic α-amylase and maltase together with theirs commercial substrates. The inhibition potency (IC50) was determined by the incubation of eight different concentrations of both extracts and the enzymes for 5 minutes at 37ºC. After, the substrate was added to start the reaction. Glucosidases assay was evaluated measuring the quantity of p-nitrophenol in 405 nmin 384 wells automatic reader. The in vitro assay with the extracts of B.H. and M. bella showed an IC50 of 28,04µg/mL and 16,93 µg/mL for α-amilase, and 43,01µg/mL and 17 µg/mL for maltase, respectively. M. bella extract showed a higher inhibitory activity for those enzymes than B.H. extract. The crude extracts tested showed a higher inhibition rate to α-amylase, but were less effective against maltase in comparison to acarbose (IC50 36µg/mL and 9 µg/mL, respectively). In conclusion, the crude extract of B.H. and M. bella showed a potent inhibitory effect against α-amylase and showed promising results to the possible development of new medicines to treat diabetes with less or even without side effects.

Keywords: alfa-glucosidases, diabetes mellitus, glycaemia, medicinal plants

Procedia PDF Downloads 220
1952 A Case for Strategic Landscape Infrastructure: South Essex Estuary Park

Authors: Alexandra Steed

Abstract:

Alexandra Steed URBAN was commissioned to undertake the South Essex Green and Blue Infrastructure Study (SEGBI) on behalf of the Association of South Essex Local Authorities (ASELA): a partnership of seven neighboring councils within the Thames Estuary. Located on London’s doorstep, the 70,000-hectare region is under extraordinary pressure for regeneration, further development, and economic expansion, yet faces extreme challenges: sea-level rise and inadequate flood defenses, stormwater flooding and threatened infrastructure, loss of internationally important habitats, significant existing community deprivation, and lack of connectivity and access to green space. The brief was to embrace these challenges in the creation of a document that would form a key part of ASELA’s Joint Strategic Framework and feed into local plans and master plans. Thus, helping to tackle climate change, ecological collapse, and social inequity at a regional scale whilst creating a relationship and awareness between urban communities and the surrounding landscapes and nature. The SEGBI project applied a ‘land-based’ methodology, combined with a co-design approach involving numerous stakeholders, to explore how living infrastructure can address these significant issues, reshape future planning and development, and create thriving places for the whole community of life. It comprised three key stages, including Baseline Review; Green and Blue Infrastructure Assessment; and the final Green and Blue Infrastructure Report. The resulting proposals frame an ambitious vision for the delivery of a new regional South Essex Estuary (SEE) Park – 24,000 hectares of protected and connected landscapes. This unified parkland system will drive effective place-shaping and “leveling up” for the most deprived communities while providing large-scale nature recovery and biodiversity net gain. Comprehensive analysis and policy recommendations ensure best practices will be embedded within planning documents and decisions guiding future development. Furthermore, a Natural Capital Account was undertaken as part of the strategy showing the tremendous economic value of the natural assets. This strategy sets a pioneering precedent that demonstrates how the prioritisation of living infrastructure has the capacity to address climate change and ecological collapse, while also supporting sustainable housing, healthier communities, and resilient infrastructures. It was only achievable through a collaborative and cross-boundary approach to strategic planning and growth, with a shared vision of place, and a strong commitment to delivery. With joined-up thinking and a joined-up region, a more impactful plan for South Essex was developed that will lead to numerous environmental, social, and economic benefits across the region, and enhancing the landscape and natural environs on the periphery of one of the largest cities in the world.

Keywords: climate change, green and blue infrastructure, landscape architecture, master planning, regional planning, social equity

Procedia PDF Downloads 82
1951 Living Lab as a Service: Developing Context Induced, Co-creational Innovation Routines as a Process Tool for Nature Based Solutions

Authors: Immanuel Darkwa

Abstract:

Climate change and environmental degradation are existential threats requiring urgent transnational action. The SDGs, as well as regional initiatives the like European Green Deal, as ambitious as they are, put an emphasis on innovatively tackling threats posed by climate change regionally. While co-creational approaches are being propagated, there is no reference blueprint for how potential solutions, particularly nature-based solutions, may be developed and implemented within urban-settings. Using a single case study in Zagreb, Croatia, this paper proposes a workshop-tool for a Living Lab as a Service model for sustainable Nature-Based-Thinking, Nature–Centred-Design and Nature based solutions. The approach is based on a co-creational methodology developed through literature synthesis, expert interviews, focus group discussions, surveys and synthesized through rigorous research analysis and participatory observation. The ensuing tool involves workshop-processes, tested with through-the-process identified stakeholders with distinctive roles and functions. The resulting framework proposes a Nature-Based-Centred-Thinking process tool involving ‘green’ routines supported by a focal unit and a collaborative network, and that allows for the development of nature-based solutions.

Keywords: living labs, nature-based solutions, nature- based design, innovation processes, innovation routines and tools

Procedia PDF Downloads 57
1950 Influence of Maturity Stage on Nutritional and Therapeutic Potentialities of Solanum anguivi Lam Berries (Gnagnan) Cultivated in CôTe D'Ivoire

Authors: G. Dan Chépo, L. Ban-Koffi, N. Kouassi Kouakou, M. Dje Kouakou, J. Nemlin, A. Sahore Drogba, L. Kouame Patrice

Abstract:

Solanum anguivi Lam, collectively called Gnagnan in Côte d'Ivoire is an eggplant with nutritional and therapeutic potentialities more or less known. The present study was undertaken to analyze the biochemical composition of berries at the different stages of maturity. Data showed that at the first stage of maturity (green berries), fruits are rich in ascorbic acid (34.48 ± 1.7 mg / 100 g dm), phenolic compounds (956.7 ± 71.14 mg / 100 g dm), iron (467.7 ± 1.84 mg / 100 g dm), magnesium (404.6 ± 16.25 mg / 100 g dm) and potassium (404.64 ± 16.25 mg/100 g dm). However, at the last stage of maturity (red berries), fruits are rich in proteins, cellulose, total sugars, fat and potassium with the values of 22.53 ± 2 g/100 g dm, 19.12 ± 0.35 g/100 g dm, 3.7 ± 0.2 g/100 g dm, 2.65 ± 0.19 g/100 g dm and 2290.84 ± 22.24 mg / 100 g dm, respectively. The chromatography on thin layer revealed the presence of glucose, ribose, xylose, arabinose and fructose at all the maturity stages. Except for alkaloids and gallic tannins, the phytochemical sorting revealed that Gnagnan contain many pharmacological components. According to the maturity stages, orange and red berries showed a higher content in sterols and polyterpens, flavonoids and saponins. The green berries contain most of polyphenols, catechintannins and quinons. As for the yellow berries, they are rich in polyphenols and catechintannins. These data contribute to enhance clinical researches on nutritional and pharmacological properties of S. anguivi Lam.

Keywords: Gnagnan, maturity stage, chemical composition, chromatography thin layer, phytochemical sorting

Procedia PDF Downloads 478
1949 Canthin-6-One Alkaloid Inhibits NF-κB and AP-1 Activity: An Inhibitory Action At Transcriptional Level

Authors: Fadia Gafri, Kathryn Mckintosh, Louise Young, Alan Harvey, Simon Mackay, Andrew Paul, Robin Plevin

Abstract:

Nuclear factor-kappa B (NF-κB) is a ubiquitous transcription factor found originally to play a key role in regulating inflammation. However considerable evidence links this pathway to the suppression of apoptosis, cellular transformation, proliferation and invasion (Aggarwal et al., 2006). Moreover, recent studies have also linked inflammation to cancer progression making NF-κB overall a promising therapeutic target for drug discovery (Dobrovolskaia & Kozlov, 2005). In this study we examined the effect of the natural product canthin-6-one (SU182) as part of a CRUK small molecule drug discovery programme for effects upon the NF-κB pathway. Initial studies demonstrated that SU182 was found to have good potency against the inhibitory kappa B kinases (IKKs) at 30M in vitro. However, at concentrations up to 30M, SU182 had no effect upon TNFα stimulated loss in cellular IκBα or p65 phosphorylation in the keratinocyte cell line NCTC2544. Nevertheless, 30M SU182 reduced TNF-α / PMA-induced NF-κB-linked luciferase reporter activity to (22.9 ± 5%) and (34.6± 3 %, P<0.001) respectively, suggesting an action downstream of IKK signalling. Indeed, SU182 neither decreased NF-κB-DNA binding as assayed by EMSA nor prevented the translocation of p65 (NF-κB) to the nucleus assessed by immunofluorescence and subcellular fractionation. In addition to the inhibition of transcriptional activity of TNFα-induced NF-κB reporter activity SU182 significantly reduced PMA-induced AP-1-linked luciferase reporter activity to about (48± 9% at 30M, P<0.001) . This mode of inhibition was not sufficient to prevent the activation of NF-κB dependent induction of other proteins such as COX-2 and iNOS, or activated MAP kinases (p38, JNK and ERK1/2) in LPS stimulated RAW 264.7 macrophages. Taken together these data indicate the potential for SU182 to interfere with the transcription factors NF-κB and AP-1 at transcriptional level. However, no potential anti-inflammatory effect was indicated, further investigation for other NF-κB dependent proteins linked to survival are also required to identify the exact mechanism of action.

Keywords: Canthin-6-one, NF-κB, AP-1, phosphorylation, Nuclear translocation, DNA-binding activity, inflammatory proteins.

Procedia PDF Downloads 446
1948 A Re-Evaluation of Green Architecture and Its Contributions to Environmental Sustainability

Authors: Po-Ching Wang

Abstract:

Considering the notable effects of natural resource consumption and impacts on fragile ecosystems, reflection on contemporary sustainable design is critical. Nevertheless, the idea of ‘green’ has been misapplied and even abused, and, in fact, much damage to the environment has been done in its name. In 1996’s popular science fiction film Independence Day, an alien species, having exhausted the natural resources of one planet, moves on to another —a fairly obvious irony on contemporary human beings’ irresponsible use of the Earth’s natural resources in modern times. In fact, the human ambition to master nature and freely access the world’s resources has long been inherent in manifestos evinced by productions of the environmental design professions. Ron Herron’s Walking City, an experimental architectural piece of 1964, is one example that comes to mind here. For this design concept, the architect imagined a gigantic nomadic urban aggregate that by way of an insect-like robotic carrier would move all over the world, on land and sea, to wherever its inhabitants want. Given the contemporary crisis regarding natural resources, recently ideas pertinent to structuring a sustainable environment have been attracting much interest in architecture, a field that has been accused of significantly contributing to ecosystem degradation. Great art, such as Fallingwater building, has been regarded as nature-friendly, but its notion of ‘green’ might be inadequate in the face of the resource demands made by human populations today. This research suggests a more conservative and scrupulous attitude to attempting to modify nature for architectural settings. Designs that pursue spiritual or metaphysical interconnections through anthropocentric aesthetics are not sufficient to benefit ecosystem integrity; though high-tech energy-saving processes may contribute to a fine-scale sustainability, they may ultimately cause catastrophe in the global scale. Design with frugality is proposed in order to actively reduce environmental load. The aesthetic taste and ecological sensibility of design professions and the public alike may have to be reshaped in order to make the goals of environmental sustainability viable.

Keywords: anthropocentric aesthetic, aquarium sustainability, biosphere 2, ecological aesthetic, ecological footprint, frugal design

Procedia PDF Downloads 196
1947 Hypotensive, Free Radical Scavenging and Anti-Lipid Peroxidation Activities of Crataegus azarolus L. Leaves Extracts Growing in Algeria

Authors: Amel Bouaziz, Seddik Khennouf, Mussa Abu Zarga, Shtayway Abdalla, Saliha Djidel, Assia Bentahar, Saliha Dahamna, Smain Amira

Abstract:

The present study aimed to evaluate the hypotensive and the in vitro antioxidant activities of Crataegus azarolus L. (Rosaceae), a plant widely used as natural remedy for hypertension in folk medicine. The antioxidant potential of methanolic extract (ME)and its three fractions of Chloroform (CHE), ethyl acetate (EAE)and water (AqE) have been investigated using several assays, including the DPPH scavenging, ABTS scavenging, hydroxyl radical scavenging. Inhibition of lipid peroxidation was performed by the β-carotene bleaching assay, ferric thiocyanate method and thiobarburic acid method. Total phenolic and total flavonoid contents of the extracts were estimated using Folin-Chiocalteu reagent and AlCl3, respectively. EAE extract showed the highest polyphenolic and flavonoids contents (396,04±1.20 mg GAE/g of dry extract and 32,73 ± 0.03mg QE/g of dry extract) respectively. Similarly, this extract possessed the highest scavenging activity for DPPH radical (IC 50 = 0,006±0,0001mg /ml), ABTS radical (IC50=0.0035±0,0007 mg/ml) and hydroxyl radical(IC 50=0,283± 0.01 mg/ml). In addition, the EAE exhibited the highest antioxidant activity in the inhibition of linoleic acid/ß-carotene coupled oxidation (89,21%), lipid peroxidation in the ferric thiocyanate(FTC) method (90.13%), and thio-barbituric acid (TBA) method (74.23%). Intravenous administration of Me and EAE decreased mean arterial blood pressure, systolic and diastolic blood pressure in anesthetized rats dose-dependently, at the dose range of 0.4 to 12 mg/kg. The mean arterial blood pressure dropped by 27.58 and 39.37% for ME and EAE, respectively. In conclusion, The present study supported the significant potential to use C. azarolus by-products as a source of natural antioxidants and provides scientific justification for its traditional uses as cardio-protective and anti-hypertensive remedy.

Keywords: Crataegus azarolus, polyphenols, flavonoids, hypertension, antioxidant activity, free radicals, peroxidation

Procedia PDF Downloads 326
1946 Arginase Enzyme Activity in Human Serum as a Marker of Cognitive Function: The Role of Inositol in Combination with Arginine Silicate

Authors: Katie Emerson, Sara Perez-Ojalvo, Jim Komorowski, Danielle Greenberg

Abstract:

The purpose of this study was to evaluate arginase activity levels in response to combinations of an inositol-stabilized arginine silicate (ASI; Nitrosigine®), L-arginine, and Inositol. Arginine acts as a vasodilator that promotes increased blood flow resulting in enhanced delivery of oxygen and nutrients to the brain and other tissues. ASI alone has been shown to improve performance on cognitive tasks. Arginase, found in human serum, catalyzes the conversion of arginine to ornithine and urea, completing the last step in the urea cycle. Decreasing arginase levels maintains arginine and results in increased nitric oxide production. This study aimed to determine the most effective combination of ASI, L-arginine and inositol for minimizing arginase levels and therefore maximize ASI’s effect on cognition. Serum was taken from untreated healthy donors by separation from clotted factors. Arginase activity of serum in the presence or absence of test products was determined (QuantiChrom™, DARG-100, Bioassay Systems, Hayward CA). The remaining ultra-filtrated serum units were harvested and used as the source for the arginase enzyme. ASI alone or combined with varied levels of Inositol were tested as follows: ASI + inositol at 0.25 g, 0.5 g, 0.75 g, or 1.00 g. L-arginine was also tested as a positive control. All tests elicited changes in arginase activity demonstrating the efficacy of the method used. Adding L-arginine to serum from untreated subjects, with or without inositol only had a mild effect. Adding inositol at all levels reduced arginase activity. Adding 0.5 g to the standardized amount of ASI led to the lowest amount of arginase activity as compared to the 0.25g 0.75g or 1.00g doses of inositol or to L-arginine alone. The outcome of this study demonstrates an interaction of the pairing of inositol with ASI on the activity of the enzyme arginase. We found that neither the maximum nor minimum amount of inositol tested in this study led to maximal arginase inhibition. Since the inhibition of arginase activity is desirable for product formulations looking to maintain arginine levels, the most effective amount of inositol was deemed preferred. Subsequent studies suggest this moderate level of inositol in combination with ASI leads to cognitive improvements including reaction time, executive function, and concentration.

Keywords: arginine, inositol, arginase, cognitive benefits

Procedia PDF Downloads 90
1945 Evaluation of the Inhibitory Activity of Natural Extracts From Spontaneous Plant on the Α-Amylase and Α–Glucosidase and Their Antioxidant Activities

Authors: Ihcen Khacheba, Amar Djeridane, Abdelkarim Kamli, Mohamed Yousfi

Abstract:

Plant materials constitute an important source of natural bioactive molecules. Thus plants have been used from antiquity as sources of medicament against various diseases. These properties are usually attributed to secondary metabolites that are the subject of a lot of research in this field. This is particularly the case of phenolic compounds plants that are widely renowned in therapeutics as anti-inflammatories, enzyme inhibitors, and antioxidants, particularly flavonoïds. With the aim of acquiring a better knowledge of the secondary metabolism of the vegetable kingdom in the region of Laghouat and of the discovering of new natural therapeutics, 10 extracts from 5 Saharan plant species were submitted to chemical screening.The analysis of the preceding biological targets led to the evaluation of the biological activity of the extracts of the species Genista Corsica. The first step, consists in extracting and quantifying phenolic compounds. The second step has been devoted to stugying the effects of phenolic compounds on the kinetics catalyzed by two enzymes belonging to the class of hydrolase (the α-amylase and α-glucosidase) responsible for the digestion of sugars and finally we evaluate the antiantioxidant potential. The analysis results of phenolic extracts show clearly a low content of phenolic compounds in investigated plants. Average total phenolics ranged from 0.0017 to 11.35 mg equivalent gallic acid/g of the crude extract. Whereas the total flavonoids content lie between 0.0015 and 10.,96 mg/g equivalent of rutin. The results of the kinetic study of enzymatic reactions show that the extracts have inhibitory effects on both enzymes, with IC50 values ranging from 95.03 µg/ml to 1033.53 µg/ml for the α-amylase and 279.99 µg/ml to 1215.43 µg/ml for α-glucosidase whose greatest inhibition was found for the acetone extract of June (IC50 = 95.03 µg/ml). The results the antioxidant activity determined by ABTS, DPPH, and phosphomolybdenum tests clearly showed a good antioxidant capacity comparatively to antioxidants taken as reference the biological potential of these plants and could find their use in medicine to replace synthetic products.

Keywords: phenolic extracts, inhibition effect, α-amylase, α-glucosidase, antioxidant activity

Procedia PDF Downloads 372
1944 Anti-Hypertensive Effect of Proteolysate Generated from Actinopyga lecanora in Rats

Authors: Mahdokht Sadeghvishkaei, Azizah Abdul-Hamid, Amin Ismail, Nazamid Saari

Abstract:

Hypertension is a common and serious chronic health problem and known as the most important risk factor for development of many diseases such as stroke. Since angiotensin I-converting enzyme (ACE) is the key enzyme involved in blood pressure, one of the well accepted mechanisms to control hypertension is through ACE inhibition. The ACE inhibitory effect of Actinopyga lecanora (stone fish) proteolysate in vitro had been reported. Hence, this study aimed to evaluate the ACE inhibitory potential of Actinopyga lecanora proteolysate in vivo in normotensive rats. Therefore the ACE inhibitory capability of the proteolysate to prevent increasing systolic blood pressure, after inducing hypertension by angiotensin I was examined. The pre-fed rats with the proteolysates at various doses (200, 400, 800 mg/kg body weight) revealed the significant (p ≤ 0.05) suppression effect compared with control groups. Furthermore, different doses of the proteolysate (200, 400, 800 mg/kg body weight) were examined to find its optimum effective dose. Results depicted that 800 mg proteolysate/kg body weight significantly reduced systolic blood pressure without negative effect on normal blood pressure (p ≤ 0.05). Furthermore, Sub-acute toxicity study based on OECD guideline demonstrated the safety of the proteolysate in vivo. The present study indicated that the proteolysate at a dose of 1000 mg/kg daily for 14 days did not cause toxicity signs such as death, changes in activity, or piloerection. Since there are no significant differences between treated groups and control groups, hematological and biochemical analysis confirmed safety of the proteolysate (p > 0.05). In addition, there were no significant differences between organs weights of the treated groups and the control groups. Morphologically, neither histopathological changes, nor gross abnormalities were observed. However, the proteolysate caused significant decrease in body weight in relation to the control groups (p ≤ 0.05) probably due to appetite stimulation by the proteolysate, leading to decreased food consumption in sub-acute group. It is concluded that the proteolysate generated from Actinopyga lecanora possess a significant anti-hypertensive effect and would be potentially used as natural alternative of ACE inhibitors.

Keywords: ACE inhibition, Actinopyga lecanora, anti-hypertensive activity, bioactive peptides, normotensive rats

Procedia PDF Downloads 419
1943 Urban Energy Demand Modelling: Spatial Analysis Approach

Authors: Hung-Chu Chen, Han Qi, Bauke de Vries

Abstract:

Energy consumption in the urban environment has attracted numerous researches in recent decades. However, it is comparatively rare to find literary works which investigated 3D spatial analysis of urban energy demand modelling. In order to analyze the spatial correlation between urban morphology and energy demand comprehensively, this paper investigates their relation by using the spatial regression tool. In addition, the spatial regression tool which is applied in this paper is ordinary least squares regression (OLS) and geographically weighted regression (GWR) model. Normalized Difference Built-up Index (NDBI), Normalized Difference Vegetation Index (NDVI), and building volume are explainers of urban morphology, which act as independent variables of Energy-land use (E-L) model. NDBI and NDVI are used as the index to describe five types of land use: urban area (U), open space (O), artificial green area (G), natural green area (V), and water body (W). Accordingly, annual electricity, gas demand and energy demand are dependent variables of the E-L model. Based on the analytical result of E-L model relation, it revealed that energy demand and urban morphology are closely connected and the possible causes and practical use are discussed. Besides, the spatial analysis methods of OLS and GWR are compared.

Keywords: energy demand model, geographically weighted regression, normalized difference built-up index, normalized difference vegetation index, spatial statistics

Procedia PDF Downloads 133
1942 Changes of Chemical Composition and Physicochemical Properties of Banana during Ethylene-Induced Ripening

Authors: Chiun-C.R. Wang, Po-Wen Yen, Chien-Chun Huang

Abstract:

Banana is produced in large quantities in tropical and subtropical areas. Banana is one of the important fruits which constitute a valuable source of energy, vitamins and minerals. The ripening and maturity standards of banana vary from country to country depending on the expected shelf life of market. The compositions of bananas change dramatically during ethylene-induced ripening that are categorized as nutritive values and commercial utilization. Nevertheless, there is few study reporting the changes of physicochemical properties of banana starch during ethylene-induced ripening of green banana. The objectives of this study were to investigate the changes of chemical composition and enzyme activity of banana and physicochemical properties of banana starch during ethylene-induced ripening. Green bananas were harvested and ripened by ethylene gas at low temperature (15℃) for seven stages. At each stage, banana was sliced and freeze-dried for banana flour preparation. The changes of total starch, resistant starch, chemical compositions, physicochemical properties, activity of amylase, polyphenolic oxidase (PPO) and phenylalanine ammonia lyase (PAL) of banana were analyzed each stage during ripening. The banana starch was isolated and analyzed for gelatinization properties, pasting properties and microscopic appearance each stage of ripening. The results indicated that the highest total starch and resistant starch content of green banana were 76.2% and 34.6%, respectively at the harvest stage. Both total starch and resistant starch content were significantly declined to 25.3% and 8.8%, respectively at the seventh stage. Soluble sugars content of banana increased from 1.21% at harvest stage to 37.72% at seventh stage during ethylene-induced ripening. Swelling power of banana flour decreased with the progress of ripening stage, but solubility increased. These results strongly related with the decreases of starch content of banana flour during ethylene-induced ripening. Both water insoluble and alcohol insoluble solids of banana flour decreased with the progress of ripening stage. Both activity of PPO and PAL increased, but the total free phenolics content decreased, with the increases of ripening stages. As ripening stage extended, the gelatinization enthalpy of banana starch significantly decreased from 15.31 J/g at the harvest stage to 10.55 J/g at the seventh stage. The peak viscosity and setback increased with the progress of ripening stages in the pasting properties of banana starch. The highest final viscosity, 5701 RVU, of banana starch slurry was found at the seventh stage. The scanning electron micrograph of banana starch showed the shapes of banana starch appeared to be round and elongated forms, ranging in 10-50 μm at the harvest stage. As the banana closed to ripe status, some parallel striations were observed on the surface of banana starch granular which could be caused by enzyme reaction during ripening. These results inferred that the highest resistant starch was found in the green banana at the harvest stage could be considered as a potential application of healthy foods. The changes of chemical composition and physicochemical properties of banana could be caused by the hydrolysis of enzymes during the ethylene-induced ripening treatment.

Keywords: ethylene-induced ripening, banana starch, resistant starch, soluble sugars, physicochemical properties, gelatinization enthalpy, pasting characteristics, microscopic appearance

Procedia PDF Downloads 457
1941 Characterization of a Putative Type 1 Toxin-Antitoxin System in Shigella Flexneri

Authors: David Sarpong, Waleed Khursheed, Ernest Danquah, Erin Murphy

Abstract:

Shigella is a pathogenic bacterium responsible for shigellosis, a severe diarrheal disease that claims the lives of immunocompromised individuals worldwide. To develop therapeutics against this disease, an understanding of the molecular mechanisms underlying the pathogen’s physiology is crucial. Small non-coding RNAs (sRNAs) have emerged as important regulators of bacterial physiology, including as components of toxin-antitoxin systems. In this study, we investigated the role of RyfA in S. flexneri physiology and virulence. RyfA, originally identified as an sRNA in Escherichia coli, is conserved within the Enterobacteriaceae family, including Shigella. Whereas two copies of ryfA are present in S. dysenteriae, all other Shigella species contain only one copy of the gene. Additionally, we identified a putative open reading frame within the RyfA transcript, suggesting that it may be a dual-functioning gene encoding a small protein in addition to its sRNA function. To study ryfA in vitro, we cloned the gene into an inducible plasmid and observed the effect on bacterial growth. Here, we report that RyfA production inhibits the growth of S. flexneri, and this inhibition is dependent on the contained open reading frame. In-silico analyses have revealed the presence of two divergently transcribed sRNAs, RyfB1 and RyfB2, which share nucleotide complementarity with RyfA and thus are predicted to function as anti-toxins. Our data demonstrate that RyfB2 has a stronger antitoxin effect than RyfB1. This regulatory pattern suggests a novel form of a toxin-antitoxin system in which the activity of a single toxin is inhibited to varying degrees by two sRNA antitoxins. Studies are ongoing to investigate the regulatory mechanism(s) of the antitoxin genes, as well as the downstream targets and mechanism of growth inhibition by the RyfA toxin. This study offers distinct insights into the regulatory mechanisms underlying Shigella physiology and may inform the development of new anti-Shigella therapeutics.

Keywords: sRNA, shigella, toxin-antitoxin, Type 1 toxin antitoxin

Procedia PDF Downloads 29
1940 The Potential of Tempo-Oxidized Cellulose Nanofibers to Replace EthylenE-propylene-Diene Monomer Rubber

Authors: Sibel Dikmen Kucuk, Yusuf Guner

Abstract:

In recent years, petroleum-based polymers began to be limited due to the effects on the human and environmental point of view in many countries. Thus, organic-based biodegradable materials have attracted much interest in the composite industry because of environmental concerns. As a result of this, it has been asked that inorganic and petroleum-based materials should be reduced and altered with biodegradable materials. In this point, in this study, it is aimed to investigate the potential of the use of TEMPO (2,2,6,6- tetramethylpiperidine 1-oxyl)-mediated oxidation nano-fibrillated cellulose instead of EPDM (ethylene-propylene-diene monomer) rubber, which is a petroleum-based material. Thus, the exchange of petroleum-based EPDM rubber with organic-based cellulose nanofibers, which are environmentally friendly (green) and biodegradable, will be realized. The effect of tempo-oxidized cellulose nanofibers (TCNF) instead of EPDM rubber was analyzed by rheological, mechanical, chemical, thermal, and aging analyses. The aged surfaces were visually scrutinized, and surface morphological changes were examined via scanning electron microscopy (SEM). The results obtained showed that TEMPO oxidation nano-fibrillated cellulose could be used at an amount of 1.0 and 2.2 phr resulting the values stay within tolerance according to customer standard and without any chemical degradation, crack, color change or staining.

Keywords: EPDM, lignin, green materials, biodegradable fillers

Procedia PDF Downloads 107
1939 Phytoextraction of Some Heavy Metals from Artificially Polluted soil

Authors: Kareem Kalo Qassim, Hassan A. M. Mezori

Abstract:

The bioaccumulation of heavy metals in the environment has become a matter of public interest because it persists in the soil longer than other components of the biosphere. Bioremediation has emerged as the ideal alternative environmentally friendly and ecological sound technology for removing pollutants from polluted sites. Phytoremediation is an attractive remediation technology that makes use of plants to remove contaminants from the environment. A pot experiment was conducted under lath house conditions to evaluate the ability of plants (H. Annuus, S. Bicolor, and Z. Mays) to phytoextract heavy metals from artificially polluted soils by different concentrations of Cadmium, Lead, and Copper (0, 100, 200, 200 + EDTA). The Seed germination was influenced by the presence of heavy metals and inhibition increased by increasing the heavy metals concentration. A significant difference was observed in the effect of lead and copper. Generally, the length of root, shoot, and intact plant was reduced by all the concentrations used in the experiments. The root system was affected more than the shoot system of the same plants. All heavy metals concentrations caused a reduction in the dry weight and chlorophyll content of all tested plant species; the reduction was increased by increasing the concentration of all heavy metals, especially when EDTA was added. The Bioaccumulation of heavy metals concentration of all the tested plants increased by increasing the concentration. The highest accumulation of cadmium was (81.77mg kg⁻¹), and copper was ( 65.07 mg kg⁻¹) in S. bicolor, while lead-in H. annuus was (60.74 mg kg⁻¹). The order of accumulation of heavy metals in all the tested plant species in the root system and the intact plant was as follows: H. annuus ˃ S. bicolor ˃ Z. mays and shoot system was: H. annuus ˃ Z. mays ˃ S. bicolor. The highest TF of cadmium was (0.41) in H. annuus; lead was (0.72) in Z. mays and S. bicolor, and copper was (0.44) in Z. mays. The tested plant species varied in their response to the heavy metals and the inhibition was concentration depended. In general, the roots system was more affected by heavy metals toxicity than the shoots system; the roots system accumulated more heavy metals in the roots than the shoots system. The addition of EDTA to the last concentration of heavy metals facilitated the availably and absorption of heavy metals from the polluted soil by all tested plant species.

Keywords: phytoextyraction, phytoremediation, translocation, heavy metals, soil pollution

Procedia PDF Downloads 124
1938 An Analysis of Structural Relationship among Perceived Restorative Environment, Relaxing Experience, Subjective Vitality and the Health-Related Quality of Life of the Participants in Nature-Based Urban Outdoor Recreation

Authors: Lee Jin-Eui, Kim Jin-OK, Han Seung-Hoon, Kim Nam-Jo

Abstract:

Recently, there has been a growing interest in wellbeing where individuals pursue a healthy life. About the half of world population is living in cities, and the urban environment is negatively affecting the mental health of modern people. The stress level of urban dwellers continues to increase, and they pursue nature-based recreation activities to relieve their stresses. It was found that activities in green spaces are improving concentration, relieving mental stress, and positively affecting physical activities and social relationship, thus enhancing the quality of life. For that reason, studies have been continuously conducted on the role of nature, which is a green space for pursuing health and relieving the stress of urban dwellers. Therefore, this study investigated the effect of experiencing a restoration from nature-based outdoor recreation activities of urban dwellers on their quality of life for the groups with high and low-stress levels. The results of the analysis against visitors who trekked and climbed Mt. Bukhan National Park in Seoul, South Korea showed that the effect of perceiving restorative environment on relaxation, calmness and subjective vitality, and the effect of relaxation and calmness on the quality of life were similar in both groups. However, it was found that subjective vitality affected the quality of life in the group with the high-stress group, while it did not show a significant result in the low-stress group. This is because the high-stress group increased their belief in the future and themselves and vitality through nature-based outdoor activities, which in turn affected their quality of life, while people in the low-stress group normally have subjective vitality in their daily lives, not affected by nature-based outdoor recreation. This result suggests that urban dwellers feel relaxed and calm through nature-based outdoor recreation activities with perceived restorative environment, and such activities enhance their quality of life. Therefore, a wellbeing policy is needed to enhance the quality of life of citizens by creating green spaces in city centers for the promotion of public health.

Keywords: healing tourism, nature-based outdoor recreation, perceived restorative environment, quality of life

Procedia PDF Downloads 201
1937 Product Separation of Green Processes and Catalyst Recycling of a Homogeneous Polyoxometalate Catalyst Using Nanofiltration Membranes

Authors: Dorothea Voß, Tobias Esser, Michael Huber, Jakob Albert

Abstract:

The growing world population and the associated increase in demand for energy and consumer goods, as well as increasing waste production, requires the development of sustainable processes. In addition, the increasing environmental awareness of our society is a driving force for the requirement that processes must be as resource and energy efficient as possible. In this context, the use of polyoxometalate catalysts (POMs) has emerged as a promising approach for the development of green processes. POMs are bifunctional polynuclear metal-oxo-anion cluster characterized by a strong Brønsted acidity, a high proton mobility combined with fast multi-electron transfer and tunable redox potential. In addition, POMs are soluble in many commonly known solvents and exhibit resistance to hydrolytic and oxidative degradation. Due to their structure and excellent physicochemical properties, POMs are efficient acid and oxidation catalysts that have attracted much attention in recent years. Oxidation processes with molecular oxygen are worth mentioning here. However, the fact that the POM catalysts are homogeneous poses a challenge for downstream processing of product solutions and recycling of the catalysts. In this regard, nanofiltration membranes have gained increasing interest in recent years, particularly due to their relative sustainability advantage over other technologies and their unique properties such as increased selectivity towards multivalent ions. In order to establish an efficient downstream process for the highly selective separation of homogeneous POM catalysts from aqueous solutions using nanofiltration membranes, a laboratory-scale membrane system was designed and constructed. By varying various process parameters, a sensitivity analysis was performed on a model system to develop an optimized method for the recovery of POM catalysts. From this, process-relevant key figures such as the rejection of various system components were derived. These results form the basis for further experiments on other systems to test the transferability to serval separation tasks with different POMs and products, as well as for recycling experiments of the catalysts in processes on laboratory scale.

Keywords: downstream processing, nanofiltration, polyoxometalates, homogeneous catalysis, green chemistry

Procedia PDF Downloads 75
1936 Developing Customizable Scaffolds With Antimicrobial Properties for Vascular Tissue Regeneration Using Low Temperature Plasma

Authors: Komal Vig, Syamala Soumyakrishnan, Yadav Baral

Abstract:

Bypass surgery, using the autologous vein has been one of the most effective treatments for cardiovascular diseases (CVD). More recently tissue engineering including engineered vascular grafts to synthesize blood vessels is gaining usage. Dacron and ePTFE has been employed for vascular grafts, however, these does not work well for small diameter grafts (<6 mm) due to intimal hyperplasia and thrombosis. In the present study PTFE was treated with LTP to improve the endothelialization of intimal surface of graft. Scaffolds were also modified with polyvinylpyrrolidone coated silver nanoparticles (Ag-PVP) and the antimicrobial peptides, p753 and p359. Human umbilical vein endothelial cells (HUVEC) were plated on the developed scaffolds and cell proliferation was determined by the MTT assay. Cells attachment on scaffolds was visualized by microscopy. mRNA expressions levels of different cell markers were investigated using quantitative real-time PCR (qPCR). X ray photoelectron spectroscopic confirmed the introduction of oxygenated functionalities from LTP air plasma. Microscopic and MTT assays indicated increase in cell viability in LTP treated scaffolds. Gene expression studies shows enhanced expression of cell adhesion marker Integrin- α 5 gene after LTP treatment. The KB test displayed a zone of inhibition for Ag-PVP, p753 and p359 of 19mm, 14mm, and 12mm respectively. To determine toxicity of antimicrobial agents to cells, MTT Assay was performed using HEK293 cells. MTT Assay exhibited that Ag-PVP and the peptides were non-toxic to cells at 100μg/mL and 50μg/mL, respectively. Live/dead analysis and plate count of treated bacteria exhibited bacterial inhibition on develop scaffold compared to non-treated scaffold. SEM was performed to analyze the structural changes of bacteria after treatment with antimicrobial agents. Gene expression studies were conducted on RNA from bacteria treated with Ag-PVP and peptides using qRT-PCR. Based on our initial results, more scaffolds alternatives will be developed and investigated for cell growth and vascularization studies.

Keywords: low temperature plasma, vascular graft, HUVEC cells, antimicrobial

Procedia PDF Downloads 225