Search results for: enterprise intelligence
1063 Stereotypes and Glass Ceiling Barriers for Young Women’s Leadership
Authors: Amna Khaliq
Abstract:
In this article, the phenomena of common stereotypes and glass ceiling barriers in women’s career advancement in men dominating society are explored. A brief background is provided on the misconception for women as soft, delicate, polite and compassionate at a workplace in the place of strong head and go-getter. Then, the literature review supports that stereotypes and glass ceiling barriers are still in existence for young women’s leadership. Increased encouragement, emotional intelligence, and better communication skills are recommended to parents, educators, and employers to prepare young women for senior leadership roles. Young women need mentorship from other women with no competition.Keywords: Gender inequality, Glass ceiling, Stereotypes, Leadership
Procedia PDF Downloads 1661062 A Case Study of Conceptual Framework for Process Performance
Authors: Ljubica Milanović Glavan, Vesna Bosilj Vukšić, Dalia Suša
Abstract:
In order to gain a competitive advantage, many companies are focusing on reorganization of their business processes and implementing process-based management. In this context, assessing process performance is essential because it enables individuals and groups to assess where they stand in comparison to their competitors. In this paper, it is argued that process performance measurement is a necessity for a modern process-oriented company and it should be supported by a holistic process performance measurement system. It seems very unlikely that a universal set of performance indicators can be applied successfully to all business processes. Thus, performance indicators must be process-specific and have to be derived from both the strategic enterprise-wide goals and the process goals. Based on the extensive literature review and interviews conducted in Croatian company a conceptual framework for process performance measurement system was developed. The main objective of such system is to help process managers by providing comprehensive and timely information on the performance of business processes. This information can be used to communicate goals and current performance of a business process directly to the process team, to improve resource allocation and process output regarding quantity and quality, to give early warning signals, to make a diagnosis of the weaknesses of a business process, to decide whether corrective actions are needed and to assess the impact of actions taken.Keywords: Croatia, key performance indicators, performance measurement, process performance
Procedia PDF Downloads 6731061 Analysis of Histogram Asymmetry for Waste Recognition
Authors: Janusz Bobulski, Kamila Pasternak
Abstract:
Despite many years of effort and research, the problem of waste management is still current. So far, no fully effective waste management system has been developed. Many programs and projects improve statistics on the percentage of waste recycled every year. In these efforts, it is worth using modern Computer Vision techniques supported by artificial intelligence. In the article, we present a method of identifying plastic waste based on the asymmetry analysis of the histogram of the image containing the waste. The method is simple but effective (94%), which allows it to be implemented on devices with low computing power, in particular on microcomputers. Such de-vices will be used both at home and in waste sorting plants.Keywords: waste management, environmental protection, image processing, computer vision
Procedia PDF Downloads 1191060 Assignment of Legal Personality to Robots: A Premature Meditation
Authors: Solomon Okorley
Abstract:
With the emergence of artificial intelligence, a proposition that has been made with increasing conviction is the need to assign legal personhood to robots. A major problem that arises when dealing with robots is the issue of liability: who do it hold liable when a robot causes harm? The suggestion to assign legal personality to robots has been made to aid in the assignment of liability. This paper contends that it is premature to assign legal personhood to robots. The paper employed the doctrinal and comparative research methodology. The paper first discusses the various theories that underpin the granting of legal personhood to juridical personalities to ascertain whether these theories can aid in the proposition to assign legal personhood to robots. These theories include fiction theory, aggregate theory, realist theory, and organism theory. Except for the aggregate theory, the fiction theory, the realist theory and the organism theory provide a good foundation to the proposal for legal personhood to be assigned to robots. The paper considers whether robots should be assigned legal personhood from a jurisprudential approach. The legal positivists assert that no metaphysical presuppositions are needed to determine who could be a legal person: the sole deciding factor is the engagement in legal relations and this prerequisite could be fulfilled by robots. However, rationalists, religionists and naturalists assert that the satisfaction of the metaphysical criteria is the basis of legal personality and since robots do not possess this feature, they cannot be assigned legal personhood. This differing perspective shows that the jurisprudential school of thought to which one belongs influences the decision whether to assign legal personhood to robots. The paper makes arguments for and against the assigning of legal personhood to robots. Assigning legal personhood to robots is necessary for the assigning of liability; and since robots are independent in their operation, they should be assigned legal personhood. However, it is argued that the degree of autonomy is insufficient. Robots do not understand legal obligations; they do not have a will of their own and the purported autonomy that they possess is an ‘imputed autonomy’. A crucial question to be asked is ‘whether it is desirable to confer legal personhood on robots’ and not ‘whether legal personhood should be assigned to robots’. This is due to the subjective nature of the responses to such a question as well as the peculiarities of countries in response to this question. The main argument in support of assigning legal personhood to robots is to aid in assigning liability. However, it is argued conferring legal personhood on robots is not the only way to deal with liability issues. Since any of the stakeholders involved with the robot system can be held liable for an accident, it is not desirable to assign legal personhood to robot. It is forecasted that in the epoch of strong artificial intelligence, granting robots legal personhood is plausible; however, in the current era, it is premature.Keywords: autonomy, legal personhood, premature, jurisprudential
Procedia PDF Downloads 671059 Transforming Breast Density Measurement with Artificial Intelligence: Population-Level Insights from BreastScreen NSW
Authors: Douglas Dunn, Ricahrd Walton, Matthew Warner-Smith, Chirag Mistry, Kan Ren, David Roder
Abstract:
Introduction: Breast density is a risk factor for breast cancer, both due to increased fibro glandular tissue that can harbor malignancy and the masking of lesions on mammography. Therefore, evaluation of breast density measurement is useful for risk stratification on an individual and population level. This study investigates the performance of Lunit INSIGHT MMG for automated breast density measurement. We analyze the reliability of Lunit compared to breast radiologists, explore density variations across the BreastScreen NSW population, and examine the impact of breast implants on density measurements. Methods: 15,518 mammograms were utilized for a comparative analysis of intra- and inter-reader reliability between Lunit INSIGHT MMG and breast radiologists. Subsequently, Lunit was used to evaluate 624,113 mammograms for investigation of density variations according to age and birth country, providing insights into diverse population subgroups. Finally, we compared breast density in 4,047 clients with implants to clients without implants, controlling for age and birth country. Results: Inter-reader variability between Lunit and Breast Radiologists weighted kappa coefficient was 0.72 (95%CI 0.71-0.73). Highest breast densities were seen in women with a North-East Asia background, whilst those of Aboriginal background had the lowest density. Across all backgrounds, density was demonstrated to reduce with age, though at different rates according to country of birth. Clients with implants had higher density relative to the age-matched no-implant strata. Conclusion: Lunit INSIGHT MMG demonstrates reasonable inter- and intra-observer reliability for automated breast density measurement. The scale of this study is significantly larger than any previous study assessing breast density due to the ability to process large volumes of data using AI. As a result, it provides valuable insights into population-level density variations. Our findings highlight the influence of age, birth country, and breast implants on density, emphasizing the need for personalized risk assessment and screening approaches. The large-scale and diverse nature of this study enhances the generalisability of our results, offering valuable information for breast cancer screening programs internationally.Keywords: breast cancer, screening, breast density, artificial intelligence, mammography
Procedia PDF Downloads 31058 Integrating Inference, Simulation and Deduction in Molecular Domain Analysis and Synthesis with Peculiar Attention to Drug Discovery
Authors: Diego Liberati
Abstract:
Standard molecular modeling is traditionally done through Schroedinger equations via the help of powerful tools helping to manage them atom by atom, often needing High Performance Computing. Here, a full portfolio of new tools, conjugating statistical inference in the so called eXplainable Artificial Intelligence framework (in the form of Machine Learning of understandable rules) to the more traditional modeling and simulation control theory of mixed dynamic logic hybrid processes, is offered as quite a general purpose even if making an example to a popular chemical physics set of problems.Keywords: understandable rules ML, k-means, PCA, PieceWise Affine Auto Regression with eXogenous input
Procedia PDF Downloads 291057 A Machine Learning Approach for Classification of Directional Valve Leakage in the Hydraulic Final Test
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
Due to increasing cost pressure in global markets, artificial intelligence is becoming a technology that is decisive for competition. Predictive quality enables machinery and plant manufacturers to ensure product quality by using data-driven forecasts via machine learning models as a decision-making basis for test results. The use of cross-process Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the quality characteristics of workpieces.Keywords: predictive quality, hydraulics, machine learning, classification, supervised learning
Procedia PDF Downloads 2301056 A Study of Industry 4.0 and Digital Transformation
Authors: Ibrahim Bashir, Yahaya Y. Yusuf
Abstract:
The ongoing shift towards Industry 4.0 represents a critical growth factor in the industrial enterprise, where the digital transformation of industries is increasingly seen as a crucial element for competitiveness. This transformation holds substantial potential, yet its full benefits have yet to be realized due to the fragmented approach to introducing Industry 4.0 technologies. Therefore, this pilot study aims to explore the individual and collective impact of Industry 4.0 technologies and digital transformation on organizational performance. Data were collected through a questionnaire-based survey across 51 companies in the manufacturing industry in the United Kingdom. The correlations and multiple linear regression analyses were conducted to assess the relationship and impact between the variables in the study. The results show that Industry 4.0 and digital transformation positively influence organizational performance and that Industry 4.0 technologies positively influence digital transformation. The results of this pilot study indicate that the implementation of Industry 4.0 technology is vital for increasing organizational performance; however, their roles differ largely. The differences are manifest in how the types of Industry 4.0 technologies correlate with how organizations integrate digital technologies into their operations. Hence, there is a clear indication of a strong correlation between Industry 4.0 technology, digital transformation, and organizational performance. Consequently, our study presents numerous pertinent implications that propel the theory of I4.0, digital business transformation (DBT), and organizational performance forward, as well as guide managers in the manufacturing sector.Keywords: industry 4.0 technologies, digital transformation, digital integration, organizational performance
Procedia PDF Downloads 1401055 Collaborative Rural Governance Strategy to Enhance Rural Economy Through Village-Owned Enterprise Using Soft System Methodology and Textual Network Analysis
Authors: Robert Saputra, Tomas Havlicek
Abstract:
This study discusses the design of collaborative rural governance strategies to enhance the rural economy through Village-owned Enterprises (VOE) in Riau Province, Indonesia. Using Soft Systems Methodology (SSM) combined with Textual Network Analysis (TNA) in the Rich Picture stage of SSM, we investigated the current state of VOE management. Significant obstacles identified include insufficient business feasibility analyses, lack of managerial skills, misalignment between strategy and practice, and inadequate oversight. To address these challenges, we propose a collaborative strategy involving regional governments, academic institutions, NGOs, and the private sector. This strategy emphasizes community needs assessments, efficient resource mobilization, and targeted training programs. A dedicated working group will ensure continuous monitoring and iterative improvements. Our research highlights the novel integration of SSM with TNA, providing a robust framework for improving VOE management and demonstrating the potential of collaborative efforts in driving rural economic development.Keywords: village-owned enterprises (VOE), rural economic development, soft system methodology (SSM), textual network analysis (TNA), collaborative governance
Procedia PDF Downloads 141054 Leveraging Li-Fi to Enhance Security and Performance of Medical Devices
Authors: Trevor Kroeger, Hayden Williams, Edward Holzinger, David Coleman, Brian Haberman
Abstract:
The network connectivity of medical devices is increasing at a rapid rate. Many medical devices, such as vital sign monitors, share information via wireless or wired connections. However, these connectivity options suffer from a variety of well-known limitations. Wireless connectivity, especially in the unlicensed radio frequency bands, can be disrupted. Such disruption could be due to benign reasons, such as a crowded spectrum, or to malicious intent. While wired connections are less susceptible to interference, they inhibit the mobility of the medical devices, which could be critical in a variety of scenarios. This work explores the application of Light Fidelity (Li-Fi) communication to enhance the security, performance, and mobility of medical devices in connected healthcare scenarios. A simple bridge for connected devices serves as an avenue to connect traditional medical devices to the Li-Fi network. This bridge was utilized to conduct bandwidth tests on a small Li-Fi network installed into a Mock-ICU setting with a backend enterprise network similar to that of a hospital. Mobile and stationary tests were conducted to replicate various different situations that might occur within a hospital setting. Results show that in room Li-Fi connectivity provides reasonable bandwidth and latency within a hospital like setting.Keywords: hospital, light fidelity, Li-Fi, medical devices, security
Procedia PDF Downloads 1021053 Leveraging xAPI in a Corporate e-Learning Environment to Facilitate the Tracking, Modelling, and Predictive Analysis of Learner Behaviour
Authors: Libor Zachoval, Daire O Broin, Oisin Cawley
Abstract:
E-learning platforms, such as Blackboard have two major shortcomings: limited data capture as a result of the limitations of SCORM (Shareable Content Object Reference Model), and lack of incorporation of Artificial Intelligence (AI) and machine learning algorithms which could lead to better course adaptations. With the recent development of Experience Application Programming Interface (xAPI), a large amount of additional types of data can be captured and that opens a window of possibilities from which online education can benefit. In a corporate setting, where companies invest billions on the learning and development of their employees, some learner behaviours can be troublesome for they can hinder the knowledge development of a learner. Behaviours that hinder the knowledge development also raise ambiguity about learner’s knowledge mastery, specifically those related to gaming the system. Furthermore, a company receives little benefit from their investment if employees are passing courses without possessing the required knowledge and potential compliance risks may arise. Using xAPI and rules derived from a state-of-the-art review, we identified three learner behaviours, primarily related to guessing, in a corporate compliance course. The identified behaviours are: trying each option for a question, specifically for multiple-choice questions; selecting a single option for all the questions on the test; and continuously repeating tests upon failing as opposed to going over the learning material. These behaviours were detected on learners who repeated the test at least 4 times before passing the course. These findings suggest that gauging the mastery of a learner from multiple-choice questions test scores alone is a naive approach. Thus, next steps will consider the incorporation of additional data points, knowledge estimation models to model knowledge mastery of a learner more accurately, and analysis of the data for correlations between knowledge development and identified learner behaviours. Additional work could explore how learner behaviours could be utilised to make changes to a course. For example, course content may require modifications (certain sections of learning material may be shown to not be helpful to many learners to master the learning outcomes aimed at) or course design (such as the type and duration of feedback).Keywords: artificial intelligence, corporate e-learning environment, knowledge maintenance, xAPI
Procedia PDF Downloads 1211052 A Modeling Approach for Blockchain-Oriented Information Systems Design
Abstract:
The blockchain technology is regarded as the most promising technology that has the potential to trigger a technological revolution. However, besides the bitcoin industry, we have not yet seen a large-scale application of blockchain in those domains that are supposed to be impacted, such as supply chain, financial network, and intelligent manufacturing. The reasons not only lie in the difficulties of blockchain implementation, but are also root in the challenges of blockchain-oriented information systems design. As the blockchain members are self-interest actors that belong to organizations with different existing information systems. As they expect different information inputs and outputs of the blockchain application, a common language protocol is needed to facilitate communications between blockchain members. Second, considering the decentralization of blockchain organization, there is not any central authority to organize and coordinate the business processes. Thus, the information systems built on blockchain should support more adaptive business process. This paper aims to address these difficulties by providing a modeling approach for blockchain-oriented information systems design. We will investigate the information structure of distributed-ledger data with conceptual modeling techniques and ontology theories, and build an effective ontology mapping method for the inter-organization information flow and blockchain information records. Further, we will study the distributed-ledger-ontology based business process modeling to support adaptive enterprise on blockchain.Keywords: blockchain, ontology, information systems modeling, business process
Procedia PDF Downloads 4491051 Targeting Violent Extremist Narratives: Applying Network Targeting Techniques to the Communication Functions of Terrorist Groups
Authors: John Hardy
Abstract:
Over the last decade, the increasing utility of extremist narratives to the operational effectiveness of terrorist organizations has been evidenced by the proliferation of inspired or affiliated attacks across the world. Famous examples such as regional al-Qaeda affiliates and the self-styled “Islamic State” demonstrate the effectiveness of leveraging communication technologies to disseminate propaganda, recruit members, and orchestrate attacks. Terrorist organizations with the capacity to harness the communicative power offered by digital communication technologies and effective political narratives have held an advantage over their targets in recent years. Terrorists have leveraged the perceived legitimacy of grass-roots actors to appeal to a global audience of potential supporters and enemies alike, and have wielded a proficiency in profile-raising which remains unmatched by counter terrorism narratives around the world. In contrast, many attempts at propagating official counter-narratives have been received by target audiences as illegitimate, top-down and impersonally bureaucratic. However, the benefits provided by widespread communication and extremist narratives have come at an operational cost. Terrorist organizations now face a significant challenge in protecting their access to communications technologies and authority over the content they create and endorse. The dissemination of effective narratives has emerged as a core function of terrorist organizations with international reach via inspired or affiliated attacks. As such, it has become a critical function which can be targeted by intelligence and security forces. This study applies network targeting principles which have been used by coalition forces against a range of non-state actors in the Middle East and South Asia to the communicative function of terrorist organizations. This illustrates both a conceptual link between functional targeting and operational disruption in the abstract and a tangible impact on the operational effectiveness of terrorists by degrading communicative ability and legitimacy. Two case studies highlight the utility of applying functional targeting against terrorist organizations. The first case is the targeted killing of Anwar al-Awlaki, an al-Qaeda propagandist who crafted a permissive narrative and effective propaganda videos to attract recruits who committed inspired terrorist attacks in the US and overseas. The second is a series of operations against Islamic State propagandists in Syria, including the capture or deaths of a cadre of high profile Islamic State members, including Junaid Hussain, Abu Mohammad al-Adnani, Neil Prakash, and Rachid Kassim. The group of Islamic State propagandists were linked to a significant rise in affiliated and enabled terrorist attacks and were subsequently targeted by law enforcement and military agencies. In both cases, the disruption of communication between the terrorist organization and recruits degraded both communicative and operational functions. Effective functional targeting on member recruitment and operational tempo suggests that narratives are a critical function which can be leveraged against terrorist organizations. Further application of network targeting methods to terrorist narratives may enhance the efficacy of a range of counter terrorism techniques employed by security and intelligence agencies.Keywords: countering violent extremism, counter terrorism, intelligence, terrorism, violent extremism
Procedia PDF Downloads 2911050 The Role of Industrial Design in Fashion
Authors: Rojean Ghafariasar, Leili Nosrati
Abstract:
The article introduces the categories and characteristics of cross-design, respectively, between industry and industry designers, artists, brands and brands, science, technology, and fashion. It focuses on the combination of technology and fashion cross-design methods, corresponding case studies on the combination of new technology fabrics, fashion design, smart devices, and also 3D printing technology, emphasizing the integration and application value of technology and fashion. The document also introduces design elements into fashion design through scientific and technological intelligence, promoting fashion innovation as well as research and development of new materials and functions, and incubates an ecosystem for the fashion industry through science and technology.Keywords: fashion, design, industrial design, crossover design
Procedia PDF Downloads 921049 Advancements in AI Training and Education for a Future-Ready Healthcare System
Authors: Shamie Kumar
Abstract:
Background: Radiologists and radiographers (RR) need to educate themselves and their colleagues to ensure that AI is integrated safely, useful, and in a meaningful way with the direction it always benefits the patients. AI education and training are fundamental to the way RR work and interact with it, such that they feel confident using it as part of their clinical practice in a way they understand it. Methodology: This exploratory research will outline the current educational and training gaps for radiographers and radiologists in AI radiology diagnostics. It will review the status, skills, challenges of educating and teaching. Understanding the use of artificial intelligence within daily clinical practice, why it is fundamental, and justification on why learning about AI is essential for wider adoption. Results: The current knowledge among RR is very sparse, country dependent, and with radiologists being the majority of the end-users for AI, their targeted training and learning AI opportunities surpass the ones available to radiographers. There are many papers that suggest there is a lack of knowledge, understanding, and training of AI in radiology amongst RR, and because of this, they are unable to comprehend exactly how AI works, integrates, benefits of using it, and its limitations. There is an indication they wish to receive specific training; however, both professions need to actively engage in learning about it and develop the skills that enable them to effectively use it. There is expected variability amongst the profession on their degree of commitment to AI as most don’t understand its value; this only adds to the need to train and educate RR. Currently, there is little AI teaching in either undergraduate or postgraduate study programs, and it is not readily available. In addition to this, there are other training programs, courses, workshops, and seminars available; most of these are short and one session rather than a continuation of learning which cover a basic understanding of AI and peripheral topics such as ethics, legal, and potential of AI. There appears to be an obvious gap between the content of what the training program offers and what the RR needs and wants to learn. Due to this, there is a risk of ineffective learning outcomes and attendees feeling a lack of clarity and depth of understanding of the practicality of using AI in a clinical environment. Conclusion: Education, training, and courses need to have defined learning outcomes with relevant concepts, ensuring theory and practice are taught as a continuation of the learning process based on use cases specific to a clinical working environment. Undergraduate and postgraduate courses should be developed robustly, ensuring the delivery of it is with expertise within that field; in addition, training and other programs should be delivered as a way of continued professional development and aligned with accredited institutions for a degree of quality assurance.Keywords: artificial intelligence, training, radiology, education, learning
Procedia PDF Downloads 851048 Developing Measurement Instruments for Enterprise Resources Planning (ERP) Post-Implementation Failure Model
Authors: Malihe Motiei, Nor Hidayati Zakaria, Davide Aloini
Abstract:
This study aims to present a method to develop the failure measurement model for ERP post-implementation. To achieve this outcome, the study firstly evaluates the suitability of Technology-Organization-Environment framework for the proposed conceptual model. This study explains how to discover the constructs and subsequently to design and evaluate the constructs as formative or reflective. Constructs are used including reflective and purely formative. Then, the risk dimensions are investigated to determine the instruments to examine the impact of risk on ERP failure after implementation. Two construct as formative constructs consist inadequate implementation and poor organizational decision making. Subsequently six construct as reflective construct include technical risks, operational risks, managerial risks, top management risks, lack of external risks, and user’s inefficiency risks. A survey was conducted among Iranian industries to collect data. 69 data were collected from manufacturing sectors and the data were analyzed by Smart PLS software. The results indicated that all measurements included 39 critical risk factors were acceptable for the ERP post-implementation failure model.Keywords: critical risk factors (CRFs), ERP projects, ERP post-implementation, measurement instruments, ERP system failure measurement model
Procedia PDF Downloads 3631047 Use of AI for the Evaluation of the Effects of Steel Corrosion in Mining Environments
Authors: Maria Luisa de la Torre, Javier Aroba, Jose Miguel Davila, Aguasanta M. Sarmiento
Abstract:
Steel is one of the most widely used materials in polymetallic sulfide mining installations. One of the main problems suffered by these facilities is the economic losses due to the corrosion of this material, which is accelerated and aggravated by the contact with acid waters generated in these mines when sulfides come into contact with oxygen and water. This generation of acidic water, in turn, is accelerated by the presence of acidophilic bacteria. In order to gain a more detailed understanding of this corrosion process and the interaction between steel and acidic water, a laboratory experiment was carried out in which carbon steel plates were introduced into four different solutions for 27 days: distilled water (BK), which tried to assimilate the effect produced by rain on this material, an acid solution from a mine with a high Fe2+/Fe3+ (PO) content, another acid solution of water from another mine with a high Fe3+/Fe2+ (PH) content and, finally, one that reproduced the acid mine water with a high Fe2+/Fe3+ content but in which there were no bacteria (ST). Every 24 hours, physicochemical parameters were measured and water samples were taken to carry out an analysis of the dissolved elements. The results of these measurements were processed using an explainable AI model based on fuzzy logic. It could be seen that, in all cases, there was an increase in pH, as well as in the concentrations of Fe and, in particular, Fe(II), as a consequence of the oxidation of the steel plates. Proportionally, the increase in Fe concentration was higher in PO and ST than in PH because Fe precipitates were produced in the latter. The rise of Fe(II) was proportionally much higher in PH and, especially in the first hours of exposure, because it started from a lower initial concentration of this ion. Although to a lesser extent than in PH, the greater increase in Fe(II) also occurred faster in PO than in ST, a consequence of the action of the catalytic bacteria. On the other hand, Cu concentrations decreased throughout the experiment (with the exception of distilled water, which initially had no Cu, as a result of an electrochemical process that generates a precipitation of Cu together with Fe hydroxides. This decrease is lower in PH because the high total acidity keeps it in solution for a longer time. With the application of an artificial intelligence tool, it has been possible to evaluate the effects of steel corrosion in mining environments, corroborating and extending what was obtained by means of classical statistics. Acknowledgments: This work has been supported by MCIU/AEI/10.13039/501100011033/FEDER, UE, throughout the project PID2021-123130OB-I00.Keywords: carbon steel, corrosion, acid mine drainage, artificial intelligence, fuzzy logic
Procedia PDF Downloads 201046 Evaluation of UI for 3D Visualization-Based Building Information Applications
Authors: Monisha Pattanaik
Abstract:
In scenarios where users have to work with large amounts of hierarchical data structures combined with visualizations (For example, Construction 3d Models, Manufacturing equipment's models, Gantt charts, Building Plans), the data structures have a high density in terms of consisting multiple parent nodes up to 50 levels and their siblings to descendants, therefore convey an immediate feeling of complexity. With customers moving to consumer-grade enterprise software, it is crucial to make sophisticated features made available to touch devices or smaller screen sizes. This paper evaluates the UI component that allows users to scroll through all deep density levels using a slider overlay on top of the hierarchy table, performing several actions to focus on one set of objects at any point in time. This overlay component also solves the problem of excessive horizontal scrolling of the entire table on a fixed pane for a hierarchical table. This component can be customized to navigate through parents, only siblings, or a specific component of the hierarchy only. The evaluation of the UI component was done by End Users of application and Human-Computer Interaction (HCI) experts to test the UI component's usability with statistical results and recommendations to handle complex hierarchical data visualizations.Keywords: building information modeling, digital twin, navigation, UI component, user interface, usability, visualization
Procedia PDF Downloads 1381045 Smart Construction Sites in KSA: Challenges and Prospects
Authors: Ahmad Mohammad Sharqi, Mohamed Hechmi El Ouni, Saleh Alsulamy
Abstract:
Due to the emerging technologies revolution worldwide, the need to exploit and employ innovative technologies for other functions and purposes in different aspects has become a remarkable matter. Saudi Arabia is considered one of the most powerful economic countries in the world, where the construction sector participates effectively in its economy. Thus, the construction sector in KSA should convoy the rapid digital revolution and transformation and implement smart devices on sites. A Smart Construction Site (SCS) includes smart devices, artificial intelligence, the internet of things, augmented reality, building information modeling, geographical information systems, and cloud information. This paper aims to study the level of implementation of SCS in KSA, analyze the obstacles and challenges of adopting SCS and find out critical success factors for its implementation. A survey of close-ended questions (scale and multi-choices) has been conducted on professionals in the construction sector of Saudi Arabia. A total number of twenty-nine questions has been prepared for respondents. Twenty-four scale questions were established, and those questions were categorized into several themes: quality, scheduling, cost, occupational safety and health, technologies and applications, and general perception. Consequently, the 5-point Likert scale tool (very low to very high) was adopted for this survey. In addition, five close-ended questions with multi-choice types have also been prepared; these questions have been derived from a previous study implemented in the United Kingdom (UK) and the Dominic Republic (DR), these questions have been rearranged and organized to fit the structured survey in order to place the Kingdom of Saudi Arabia in comparison with the United Kingdom (UK) as well as the Dominican Republic (DR). A total number of one hundred respondents have participated in this survey from all regions of the Kingdom of Saudi Arabia: southern, central, western, eastern, and northern regions. The drivers, obstacles, and success factors for implementing smart devices and technologies in KSA’s construction sector have been investigated and analyzed. Besides, it has been concluded that KSA is on the right path toward adopting smart construction sites with attractive results comparable to and even better than the UK in some factors.Keywords: artificial intelligence, construction projects management, internet of things, smart construction sites, smart devices
Procedia PDF Downloads 1561044 Data Access, AI Intensity, and Scale Advantages
Authors: Chuping Lo
Abstract:
This paper presents a simple model demonstrating that ceteris paribus countries with lower barriers to accessing global data tend to earn higher incomes than other countries. Therefore, large countries that inherently have greater data resources tend to have higher incomes than smaller countries, such that the former may be more hesitant than the latter to liberalize cross-border data flows to maintain this advantage. Furthermore, countries with higher artificial intelligence (AI) intensity in production technologies tend to benefit more from economies of scale in data aggregation, leading to higher income and more trade as they are better able to utilize global data.Keywords: digital intensity, digital divide, international trade, scale of economics
Procedia PDF Downloads 681043 The Impact of Information and Communication Technology on the Re-Engineering Process of Small and Medium Enterprises
Authors: Hiba Mezaache
Abstract:
The current study aimed to know the impact of using information and communication technology on the process of re-engineering small and medium enterprises, as the world witnessed the speed development of the latter in its field of work and the diversity of its objectives and programs, that also made its process important for the growth and development of the institution and also gaining the flexibility to face the changes that may occur in the environment of work, so in order to know the impact of information and communication technology on the success of this process, we prepared an electronic questionnaire that included (70) items, and we also used the SPSS statistical calendar to analyze the data obtained. In the end of our study, our conclusion was that there was a positive correlation between the four dimensions of information and communication technology, i.e., hardware and equipment, software, communication networks, databases, and the re-engineering process, in addition to the fact that the studied institutions attach great importance to formal communication, for its positive advantages that it achieves in reducing time and effort and costs in performing the business. We could also say that communication technology contributes to the process of formulating objectives related to the re-engineering strategy. Finally, we recommend the necessity of empowering workers to use information technology and communication more in enterprises, and to integrate them more into the activity of the enterprise by involving them in the decision-making process, and also to keep pace with the development in the field of software, hardware, and technological equipment.Keywords: information and communication technology, re-engineering, small and medium enterprises, the impact
Procedia PDF Downloads 1771042 Ethical Issues in AI: Analyzing the Gap Between Theory and Practice - A Case Study of AI and Robotics Researchers
Authors: Sylvie Michel, Emmanuelle Gagnou, Joanne Hamet
Abstract:
New major ethical dilemmas are posed by artificial intelligence. This article identifies an existing gap between the ethical questions that AI/robotics researchers grapple with in their research practice and those identified by literature review. The objective is to understand which ethical dilemmas are identified or concern AI researchers in order to compare them with the existing literature. This will enable to conduct training and awareness initiatives for AI researchers, encouraging them to consider these questions during the development of AI. Qualitative analyses were conducted based on direct observation of an AI/Robotics research team focused on collaborative robotics over several months. Subsequently, semi-structured interviews were conducted with 16 members of the team. The entire process took place during the first semester of 2023. The observations were analyzed using an analytical framework, and the interviews were thematically analyzed using Nvivo software. While the literature identifies three primary ethical concerns regarding AI—transparency, bias, and responsibility—the results firstly demonstrate that AI researchers are primarily concerned with the publication and valorization of their work, with the initial ethical concerns revolving around this matter. Questions arise regarding the extent to which to "market" publications and the usefulness of some publications. Research ethics are a central consideration for these teams. Secondly, another result shows that the researchers studied adopt a consequentialist ethics (though not explicitly formulated as such). They ponder the consequences of their development in terms of safety (for humans in relation to Robots/AI), worker autonomy in relation to the robot, and the role of work in society (can robots take over jobs?). Lastly, results indicate that the ethical dilemmas highlighted in the literature (responsibility, transparency, bias) do not explicitly appear in AI/Robotics research. AI/robotics researchers raise specific and pragmatic ethical questions, primarily concerning publications initially and consequentialist considerations afterward. Results demonstrate that these concerns are distant from the existing literature. However, the dilemmas highlighted in the literature also deserve to be explicitly contemplated by researchers. This article proposes that the journals these researchers target should mandate ethical reflection for all presented works. Furthermore, results suggest offering awareness programs in the form of short educational sessions for researchers.Keywords: ethics, artificial intelligence, research, robotics
Procedia PDF Downloads 801041 Future Research on the Resilience of Tehran’s Urban Areas Against Pandemic Crises Horizon 2050
Authors: Farzaneh Sasanpour, Saeed Amini Varaki
Abstract:
Resilience is an important goal for cities as urban areas face an increasing range of challenges in the 21st century; therefore, according to the characteristics of risks, adopting an approach that responds to sensitive conditions in the risk management process is the resilience of cities. In the meantime, most of the resilience assessments have dealt with natural hazards and less attention has been paid to pandemics.In the covid-19 pandemic, the country of Iran and especially the metropolis of Tehran, was not immune from the crisis caused by its effects and consequences and faced many challenges. One of the methods that can increase the resilience of Tehran's metropolis against possible crises in the future is future studies. This research is practical in terms of type. The general pattern of the research will be descriptive-analytical and from the point of view that it is trying to communicate between the components and provide urban resilience indicators with pandemic crises and explain the scenarios, its future studies method is exploratory. In order to extract and determine the key factors and driving forces effective on the resilience of Tehran's urban areas against pandemic crises (Covid-19), the method of structural analysis of mutual effects and Micmac software was used. Therefore, the primary factors and variables affecting the resilience of Tehran's urban areas were set in 5 main factors, including physical-infrastructural (transportation, spatial and physical organization, streets and roads, multi-purpose development) with 39 variables based on mutual effects analysis. Finally, key factors and variables in five main areas, including managerial-institutional with five variables; Technology (intelligence) with 3 variables; economic with 2 variables; socio-cultural with 3 variables; and physical infrastructure, were categorized with 7 variables. These factors and variables have been used as key factors and effective driving forces on the resilience of Tehran's urban areas against pandemic crises (Covid-19), in explaining and developing scenarios. In order to develop the scenarios for the resilience of Tehran's urban areas against pandemic crises (Covid-19), intuitive logic, scenario planning as one of the future research methods and the Global Business Network (GBN) model were used. Finally, four scenarios have been drawn and selected with a creative method using the metaphor of weather conditions, which is indicative of the general outline of the conditions of the metropolis of Tehran in that situation. Therefore, the scenarios of Tehran metropolis were obtained in the form of four scenarios: 1- solar scenario (optimal governance and management leading in smart technology) 2- cloud scenario (optimal governance and management following in intelligent technology) 3- dark scenario (optimal governance and management Unfavorable leader in intelligence technology) 4- Storm scenario (unfavorable governance and management of follower in intelligence technology). The solar scenario shows the best situation and the stormy scenario shows the worst situation for the Tehran metropolis. According to the findings obtained in this research, city managers can, in order to achieve a better tomorrow for the metropolis of Tehran, in all the factors and components of urban resilience against pandemic crises by using future research methods, a coherent picture with the long-term horizon of 2050, from the path Provide urban resilience movement and platforms for upgrading and increasing the capacity to deal with the crisis. To create the necessary platforms for the realization, development and evolution of the urban areas of Tehran in a way that guarantees long-term balance and stability in all dimensions and levels.Keywords: future research, resilience, crisis, pandemic, covid-19, Tehran
Procedia PDF Downloads 671040 Exploring the Potential of Replika: An AI Chatbot for Mental Health Support
Authors: Nashwah Alnajjar
Abstract:
This research paper provides an overview of Replika, an AI chatbot application that uses natural language processing technology to engage in conversations with users. The app was developed to provide users with a virtual AI friend who can converse with them on various topics, including mental health. This study explores the experiences of Replika users using quantitative research methodology. A survey was conducted with 12 participants to collect data on their demographics, usage patterns, and experiences with the Replika app. The results showed that Replika has the potential to play a role in mental health support and well-being.Keywords: Replika, chatbot, mental health, artificial intelligence, natural language processing
Procedia PDF Downloads 861039 Toward Digital Maturity : Empowering Small Medium Enterprise in Sleman Yogyakarta Indonesia toward Sustainable Tourism and Creative Economy Development
Authors: Cornellia Ayu, Putrianti Herni, Saptoto Robertus
Abstract:
In the context of global tourism and creative economies, digital maturity has become a crucial factor for the sustainable development of small and medium enterprises (SMEs). This paper explores the journey toward digital maturity among SMEs in Sleman, Yogyakarta, Indonesia, focusing on their empowerment to foster sustainable tourism and creative economy growth. The study adopts a mixed-methods approach, integrating qualitative interviews with SME owners and quantitative surveys to assess their digital capabilities and readiness. Data were collected from a diverse sample of SMEs engaged in various sectors, including crafts and culinary services. Findings reveal significant gaps in digital literacy and infrastructure, impeding the full realization of digital benefits. However, targeted interventions, such as digital training programs and the provision of affordable technology, have shown promise in bridging these gaps. The study concludes that enhancing digital maturity among SMEs is vital for their competitiveness and sustainability in the modern economy. The insights gained can inform policymakers and stakeholders aiming to bolster the digital transformation of SMEs in similar contexts.Keywords: digital maturity, small medium enterprises, digital literacy, sustainable tourism, creative economy
Procedia PDF Downloads 491038 Financing from Customers for SMEs and Managing Financial Risks: The Role of Customer Relationships
Authors: Yongsheng Guo, Mengyu Lu
Abstract:
This study investigates how Chinese SMEs manage financial risks in financing from customers from the perspectives of ethics and national culture. A grounded theory approach is adopted to identify the causal conditions, actions/interactions, and consequences. 32 interviews were conducted, and systematic coding methods were used to identify themes and categories. This study found that Chinese ethical principles, including integrity, friendship, and reciprocity, and cultural traits, including collectivism, acquaintance society, and long-term orientation, provide conditions for financing from customers. The SMEs establish trust-based relationships with customers through personal communications and social networks and reduce financial risk through diversification, frequent operations, and enterprise reputations. Both customers and SMEs can get benefits like financial resources and customer experiences. This study creates a theoretical framework that connects the causal conditions, processes, and outcomes, providing a deeper understanding of financing from customers. A resource and process capability theory of SMEs and a customer capital and customer value model are proposed to connect accounting and finance concepts. Suggestions are proposed for the authorities as more guidance and regulations are needed for this informal finance.Keywords: CRM, culture, ethics, SME, risk management
Procedia PDF Downloads 441037 Modelling Soil Inherent Wind Erodibility Using Artifical Intellligent and Hybrid Techniques
Authors: Abbas Ahmadi, Bijan Raie, Mohammad Reza Neyshabouri, Mohammad Ali Ghorbani, Farrokh Asadzadeh
Abstract:
In recent years, vast areas of Urmia Lake in Dasht-e-Tabriz has dried up leading to saline sediments exposure on the surface lake coastal areas being highly susceptible to wind erosion. This study was conducted to investigate wind erosion and its relevance to soil physicochemical properties and also modeling of wind erodibility (WE) using artificial intelligence techniques. For this purpose, 96 soil samples were collected from 0-5 cm depth in 414000 hectares using stratified random sampling method. To measure the WE, all samples (<8 mm) were exposed to 5 different wind velocities (9.5, 11, 12.5, 14.1 and 15 m s-1 at the height of 20 cm) in wind tunnel and its relationship with soil physicochemical properties was evaluated. According to the results, WE varied within the range of 76.69-9.98 (g m-2 min-1)/(m s-1) with a mean of 10.21 and coefficient of variation of 94.5% showing a relatively high variation in the studied area. WE was significantly (P<0.01) affected by soil physical properties, including mean weight diameter, erodible fraction (secondary particles smaller than 0.85 mm) and percentage of the secondary particle size classes 2-4.75, 1.7-2 and 0.1-0.25 mm. Results showed that the mean weight diameter, erodible fraction and percentage of size class 0.1-0.25 mm demonstrated stronger relationship with WE (coefficients of determination were 0.69, 0.67 and 0.68, respectively). This study also compared efficiency of multiple linear regression (MLR), gene expression programming (GEP), artificial neural network (MLP), artificial neural network based on genetic algorithm (MLP-GA) and artificial neural network based on whale optimization algorithm (MLP-WOA) in predicting of soil wind erodibility in Dasht-e-Tabriz. Among 32 measured soil variable, percentages of fine sand, size classes of 1.7-2.0 and 0.1-0.25 mm (secondary particles) and organic carbon were selected as the model inputs by step-wise regression. Findings showed MLP-WOA as the most powerful artificial intelligence techniques (R2=0.87, NSE=0.87, ME=0.11 and RMSE=2.9) to predict soil wind erodibility in the study area; followed by MLP-GA, MLP, GEP and MLR and the difference between these methods were significant according to the MGN test. Based on the above finding MLP-WOA may be used as a promising method to predict soil wind erodibility in the study area.Keywords: wind erosion, erodible fraction, gene expression programming, artificial neural network
Procedia PDF Downloads 711036 Developing Digital Twins of Steel Hull Processes
Authors: V. Ložar, N. Hadžić, T. Opetuk, R. Keser
Abstract:
The development of digital twins strongly depends on efficient algorithms and their capability to mirror real-life processes. Nowadays, such efforts are required to establish factories of the future faced with new demands of custom-made production. The ship hull processes face these challenges too. Therefore, it is important to implement design and evaluation approaches based on production system engineering. In this study, the recently developed finite state method is employed to describe the stell hull process as a platform for the implementation of digital twinning technology. The application is justified by comparing the finite state method with the analytical approach. This method is employed to rebuild a model of a real shipyard ship hull process using a combination of serial and splitting lines. The key performance indicators such as the production rate, work in process, probability of starvation, and blockade are calculated and compared to the corresponding results obtained through a simulation approach using the software tool Enterprise dynamics. This study confirms that the finite state method is a suitable tool for digital twinning applications. The conclusion highlights the advantages and disadvantages of methods employed in this context.Keywords: digital twin, finite state method, production system engineering, shipyard
Procedia PDF Downloads 991035 Social Entrepreneurship and Inclusive Growth
Authors: Sudheer Gupta
Abstract:
Approximately 4 billion citizens of the world live on the equivalent of less than $8 a day. This segment constitutes a $5 trillion global market that remains under-served. Multinational corporations have historically tended to focus their innovation efforts on the upper segments of the economic pyramid. The academic literature has also been dominated by theories and frameworks of innovation that are valid when applied to the developed markets and consumer segments, but fail to adequately account for the challenges and realities of new product and service creation for the poor. Theories of entrepreneurship developed in the context of developed markets similarly ignore the challenges and realities of operating in developing economies that can be characterized by missing institutions, missing markets, information and infrastructural challenges, and resource constraints. Social entrepreneurs working in such contexts develop solutions differently. In this talk, we summarize lessons learnt from a long-term research project that involves data collection from a broad range of social entrepreneurs in developing countries working towards solutions to alleviate poverty, and grounded theory-building efforts. We aim to develop a better understanding of consumers, producers, and other stakeholder involvement, thus laying the foundation to build a robust theory of innovation and entrepreneurship for the poor.Keywords: poverty alleviation, social enterprise, social innovation, development
Procedia PDF Downloads 3991034 The Use of Artificial Intelligence in the Context of a Space Traffic Management System: Legal Aspects
Authors: George Kyriakopoulos, Photini Pazartzis, Anthi Koskina, Crystalie Bourcha
Abstract:
The need for securing safe access to and return from outer space, as well as ensuring the viability of outer space operations, maintains vivid the debate over the promotion of organization of space traffic through a Space Traffic Management System (STM). The proliferation of outer space activities in recent years as well as the dynamic emergence of the private sector has gradually resulted in a diverse universe of actors operating in outer space. The said developments created an increased adverse impact on outer space sustainability as the case of the growing number of space debris clearly demonstrates. The above landscape sustains considerable threats to outer space environment and its operators that need to be addressed by a combination of scientific-technological measures and regulatory interventions. In this context, recourse to recent technological advancements and, in particular, to Artificial Intelligence (AI) and machine learning systems, could achieve exponential results in promoting space traffic management with respect to collision avoidance as well as launch and re-entry procedures/phases. New technologies can support the prospects of a successful space traffic management system at an international scale by enabling, inter alia, timely, accurate and analytical processing of large data sets and rapid decision-making, more precise space debris identification and tracking and overall minimization of collision risks and reduction of operational costs. What is more, a significant part of space activities (i.e. launch and/or re-entry phase) takes place in airspace rather than in outer space, hence the overall discussion also involves the highly developed, both technically and legally, international (and national) Air Traffic Management System (ATM). Nonetheless, from a regulatory perspective, the use of AI for the purposes of space traffic management puts forward implications that merit particular attention. Key issues in this regard include the delimitation of AI-based activities as space activities, the designation of the applicable legal regime (international space or air law, national law), the assessment of the nature and extent of international legal obligations regarding space traffic coordination, as well as the appropriate liability regime applicable to AI-based technologies when operating for space traffic coordination, taking into particular consideration the dense regulatory developments at EU level. In addition, the prospects of institutionalizing international cooperation and promoting an international governance system, together with the challenges of establishment of a comprehensive international STM regime are revisited in the light of intervention of AI technologies. This paper aims at examining regulatory implications advanced by the use of AI technology in the context of space traffic management operations and its key correlating concepts (SSA, space debris mitigation) drawing in particular on international and regional considerations in the field of STM (e.g. UNCOPUOS, International Academy of Astronautics, European Space Agency, among other actors), the promising advancements of the EU approach to AI regulation and, last but not least, national approaches regarding the use of AI in the context of space traffic management, in toto. Acknowledgment: The present work was co-funded by the European Union and Greek national funds through the Operational Program "Human Resources Development, Education and Lifelong Learning " (NSRF 2014-2020), under the call "Supporting Researchers with an Emphasis on Young Researchers – Cycle B" (MIS: 5048145).Keywords: artificial intelligence, space traffic management, space situational awareness, space debris
Procedia PDF Downloads 258