Search results for: ecological networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4073

Search results for: ecological networks

3023 Unbalanced Distribution Optimal Power Flow to Minimize Losses with Distributed Photovoltaic Plants

Authors: Malinwo Estone Ayikpa

Abstract:

Electric power systems are likely to operate with minimum losses and voltage meeting international standards. This is made possible generally by control actions provide by automatic voltage regulators, capacitors and transformers with on-load tap changer (OLTC). With the development of photovoltaic (PV) systems technology, their integration on distribution networks has increased over the last years to the extent of replacing the above mentioned techniques. The conventional analysis and simulation tools used for electrical networks are no longer able to take into account control actions necessary for studying distributed PV generation impact. This paper presents an unbalanced optimal power flow (OPF) model that minimizes losses with association of active power generation and reactive power control of single-phase and three-phase PV systems. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. The unbalance OPF is formulated by current balance equations and solved by primal-dual interior point method. Several simulation cases have been carried out varying the size and location of PV systems and the results show a detailed view of the impact of PV distributed generation on distribution systems.

Keywords: distribution system, loss, photovoltaic generation, primal-dual interior point method

Procedia PDF Downloads 337
3022 Novel Adaptive Radial Basis Function Neural Networks Based Approach for Short-Term Load Forecasting of Jordanian Power Grid

Authors: Eyad Almaita

Abstract:

In this paper, a novel adaptive Radial Basis Function Neural Networks (RBFNN) algorithm is used to forecast the hour by hour electrical load demand in Jordan. A small and effective RBFNN model is used to forecast the hourly total load demand based on a small number of features. These features are; the load in the previous day, the load in the same day in the previous week, the temperature in the same hour, the hour number, the day number, and the day type. The proposed adaptive RBFNN model can enhance the reliability of the conventional RBFNN after embedding the network in the system. This is achieved by introducing an adaptive algorithm that allows the change of the weights of the RBFNN after the training process is completed, which will eliminates the need to retrain the RBFNN model again. The data used in this paper is real data measured by National Electrical Power co. (Jordan). The data for the period Jan./2012-April/2013 is used train the RBFNN models and the data for the period May/2013- Sep. /2013 is used to validate the models effectiveness.

Keywords: load forecasting, adaptive neural network, radial basis function, short-term, electricity consumption

Procedia PDF Downloads 352
3021 Approaches to Valuing Ecosystem Services in Agroecosystems From the Perspectives of Ecological Economics and Agroecology

Authors: Sandra Cecilia Bautista-Rodríguez, Vladimir Melgarejo

Abstract:

Climate change, loss of ecosystems, increasing poverty, increasing marginalization of rural communities and declining food security are global issues that require urgent attention. In this regard, a great deal of research has focused on how agroecosystems respond to these challenges as they provide ecosystem services (ES) that lead to higher levels of resilience, adaptation, productivity and self-sufficiency. Hence, the valuing of ecosystem services plays an important role in the decision-making process for the design and management of agroecosystems. This paper aims to define the link between ecosystem service valuation methods and ES value dimensions in agroecosystems from ecological economics and agroecology. The method used to identify valuation methodologies was a literature review in the fields of Agroecology and Ecological Economics, based on a strategy of information search and classification. The conceptual framework of the work is based on the multidimensionality of value, considering the social, ecological, political, technological and economic dimensions. Likewise, the valuation process requires consideration of the ecosystem function associated with ES, such as regulation, habitat, production and information functions. In this way, valuation methods for ES in agroecosystems can integrate more than one value dimension and at least one ecosystem function. The results allow correlating the ecosystem functions with the ecosystem services valued, and the specific tools or models used, the dimensions and valuation methods. The main methodologies identified are multi-criteria valuation (1), deliberative - consultative valuation (2), valuation based on system dynamics modeling (3), valuation through energy or biophysical balances (4), valuation through fuzzy logic modeling (5), valuation based on agent-based modeling (6). Amongst the main conclusions, it is highlighted that the system dynamics modeling approach has a high potential for development in valuation processes, due to its ability to integrate other methods, especially multi-criteria valuation and energy and biophysical balances, to describe through causal cycles the interrelationships between ecosystem services, the dimensions of value in agroecosystems, thus showing the relationships between the value of ecosystem services and the welfare of communities. As for methodological challenges, it is relevant to achieve the integration of tools and models provided by different methods, to incorporate the characteristics of a complex system such as the agroecosystem, which allows reducing the limitations in the processes of valuation of ES.

Keywords: ecological economics, agroecosystems, ecosystem services, valuation of ecosystem services

Procedia PDF Downloads 130
3020 A Neural Network Classifier for Estimation of the Degree of Infestation by Late Blight on Tomato Leaves

Authors: Gizelle K. Vianna, Gabriel V. Cunha, Gustavo S. Oliveira

Abstract:

Foliage diseases in plants can cause a reduction in both quality and quantity of agricultural production. Intelligent detection of plant diseases is an essential research topic as it may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. This work investigates ways to recognize the late blight disease from the analysis of tomato digital images, collected directly from the field. A pair of multilayer perceptron neural network analyzes the digital images, using data from both RGB and HSL color models, and classifies each image pixel. One neural network is responsible for the identification of healthy regions of the tomato leaf, while the other identifies the injured regions. The outputs of both networks are combined to generate the final classification of each pixel from the image and the pixel classes are used to repaint the original tomato images by using a color representation that highlights the injuries on the plant. The new images will have only green, red or black pixels, if they came from healthy or injured portions of the leaf, or from the background of the image, respectively. The system presented an accuracy of 97% in detection and estimation of the level of damage on the tomato leaves caused by late blight.

Keywords: artificial neural networks, digital image processing, pattern recognition, phytosanitary

Procedia PDF Downloads 333
3019 Turbulent Channel Flow Synthesis using Generative Adversarial Networks

Authors: John M. Lyne, K. Andrea Scott

Abstract:

In fluid dynamics, direct numerical simulations (DNS) of turbulent flows require large amounts of nodes to appropriately resolve all scales of energy transfer. Due to the size of these databases, sharing these datasets amongst the academic community is a challenge. Recent work has been done to investigate the use of super-resolution to enable database sharing, where a low-resolution flow field is super-resolved to high resolutions using a neural network. Recently, Generative Adversarial Networks (GAN) have grown in popularity with impressive results in the generation of faces, landscapes, and more. This work investigates the generation of unique high-resolution channel flow velocity fields from a low-dimensional latent space using a GAN. The training objective of the GAN is to generate samples in which the distribution of the generated samplesis ideally indistinguishable from the distribution of the training data. In this study, the network is trained using samples drawn from a statistically stationary channel flow at a Reynolds number of 560. Results show that the turbulent statistics and energy spectra of the generated flow fields are within reasonable agreement with those of the DNS data, demonstrating that GANscan produce the intricate multi-scale phenomena of turbulence.

Keywords: computational fluid dynamics, channel flow, turbulence, generative adversarial network

Procedia PDF Downloads 210
3018 Landscape Pattern Evolution and Optimization Strategy in Wuhan Urban Development Zone, China

Authors: Feng Yue, Fei Dai

Abstract:

With the rapid development of urbanization process in China, its environmental protection pressure is severely tested. So, analyzing and optimizing the landscape pattern is an important measure to ease the pressure on the ecological environment. This paper takes Wuhan Urban Development Zone as the research object, and studies its landscape pattern evolution and quantitative optimization strategy. First, remote sensing image data from 1990 to 2015 were interpreted by using Erdas software. Next, the landscape pattern index of landscape level, class level, and patch level was studied based on Fragstats. Then five indicators of ecological environment based on National Environmental Protection Standard of China were selected to evaluate the impact of landscape pattern evolution on the ecological environment. Besides, the cost distance analysis of ArcGIS was applied to simulate wildlife migration thus indirectly measuring the improvement of ecological environment quality. The result shows that the area of land for construction increased 491%. But the bare land, sparse grassland, forest, farmland, water decreased 82%, 47%, 36%, 25% and 11% respectively. They were mainly converted into construction land. On landscape level, the change of landscape index all showed a downward trend. Number of patches (NP), Landscape shape index (LSI), Connection index (CONNECT), Shannon's diversity index (SHDI), Aggregation index (AI) separately decreased by 2778, 25.7, 0.042, 0.6, 29.2%, all of which indicated that the NP, the degree of aggregation and the landscape connectivity declined. On class level, the construction land and forest, CPLAND, TCA, AI and LSI ascended, but the Distribution Statistics Core Area (CORE_AM) decreased. As for farmland, water, sparse grassland, bare land, CPLAND, TCA and DIVISION, the Patch Density (PD) and LSI descended, yet the patch fragmentation and CORE_AM increased. On patch level, patch area, Patch perimeter, Shape index of water, farmland and bare land continued to decline. The three indexes of forest patches increased overall, sparse grassland decreased as a whole, and construction land increased. It is obvious that the urbanization greatly influenced the landscape evolution. Ecological diversity and landscape heterogeneity of ecological patches clearly dropped. The Habitat Quality Index continuously declined by 14%. Therefore, optimization strategy based on greenway network planning is raised for discussion. This paper contributes to the study of landscape pattern evolution in planning and design and to the research on spatial layout of urbanization.

Keywords: landscape pattern, optimization strategy, ArcGIS, Erdas, landscape metrics, landscape architecture

Procedia PDF Downloads 170
3017 Optimal Pressure Control and Burst Detection for Sustainable Water Management

Authors: G. K. Viswanadh, B. Rajasekhar, G. Venkata Ramana

Abstract:

Water distribution networks play a vital role in ensuring a reliable supply of clean water to urban areas. However, they face several challenges, including pressure control, pump speed optimization, and burst event detection. This paper combines insights from two studies to address these critical issues in Water distribution networks, focusing on the specific context of Kapra Municipality, India. The first part of this research concentrates on optimizing pressure control and pump speed in complex Water distribution networks. It utilizes the EPANET- MATLAB Toolkit to integrate EPANET functionalities into the MATLAB environment, offering a comprehensive approach to network analysis. By optimizing Pressure Reduce Valves (PRVs) and variable speed pumps (VSPs), this study achieves remarkable results. In the Benchmark Water Distribution System (WDS), the proposed PRV optimization algorithm reduces average leakage by 20.64%, surpassing the previous achievement of 16.07%. When applied to the South-Central and East zone WDS of Kapra Municipality, it identifies PRV locations that were previously missed by existing algorithms, resulting in average leakage reductions of 22.04% and 10.47%. These reductions translate to significant daily Water savings, enhancing Water supply reliability and reducing energy consumption. The second part of this research addresses the pressing issue of burst event detection and localization within the Water Distribution System. Burst events are a major contributor to Water losses and repair expenses. The study employs wireless sensor technology to monitor pressure and flow rate in real time, enabling the detection of pipeline abnormalities, particularly burst events. The methodology relies on transient analysis of pressure signals, utilizing Cumulative Sum and Wavelet analysis techniques to robustly identify burst occurrences. To enhance precision, burst event localization is achieved through meticulous analysis of time differentials in the arrival of negative pressure waveforms across distinct pressure sensing points, aided by nodal matrix analysis. To evaluate the effectiveness of this methodology, a PVC Water pipeline test bed is employed, demonstrating the algorithm's success in detecting pipeline burst events at flow rates of 2-3 l/s. Remarkably, the algorithm achieves a localization error of merely 3 meters, outperforming previously established algorithms. This research presents a significant advancement in efficient burst event detection and localization within Water pipelines, holding the potential to markedly curtail Water losses and the concomitant financial implications. In conclusion, this combined research addresses critical challenges in Water distribution networks, offering solutions for optimizing pressure control, pump speed, burst event detection, and localization. These findings contribute to the enhancement of Water Distribution System, resulting in improved Water supply reliability, reduced Water losses, and substantial cost savings. The integrated approach presented in this paper holds promise for municipalities and utilities seeking to improve the efficiency and sustainability of their Water distribution networks.

Keywords: pressure reduce valve, complex networks, variable speed pump, wavelet transform, burst detection, CUSUM (Cumulative Sum), water pipeline monitoring

Procedia PDF Downloads 93
3016 Accounting for Downtime Effects in Resilience-Based Highway Network Restoration Scheduling

Authors: Zhenyu Zhang, Hsi-Hsien Wei

Abstract:

Highway networks play a vital role in post-disaster recovery for disaster-damaged areas. Damaged bridges in such networks can disrupt the recovery activities by impeding the transportation of people, cargo, and reconstruction resources. Therefore, rapid restoration of damaged bridges is of paramount importance to long-term disaster recovery. In the post-disaster recovery phase, the key to restoration scheduling for a highway network is prioritization of bridge-repair tasks. Resilience is widely used as a measure of the ability to recover with which a network can return to its pre-disaster level of functionality. In practice, highways will be temporarily blocked during the downtime of bridge restoration, leading to the decrease of highway-network functionality. The failure to take downtime effects into account can lead to overestimation of network resilience. Additionally, post-disaster recovery of highway networks is generally divided into emergency bridge repair (EBR) in the response phase and long-term bridge repair (LBR) in the recovery phase, and both of EBR and LBR are different in terms of restoration objectives, restoration duration, budget, etc. Distinguish these two phases are important to precisely quantify highway network resilience and generate suitable restoration schedules for highway networks in the recovery phase. To address the above issues, this study proposes a novel resilience quantification method for the optimization of long-term bridge repair schedules (LBRS) taking into account the impact of EBR activities and restoration downtime on a highway network’s functionality. A time-dependent integer program with recursive functions is formulated for optimally scheduling LBR activities. Moreover, since uncertainty always exists in the LBRS problem, this paper extends the optimization model from the deterministic case to the stochastic case. A hybrid genetic algorithm that integrates a heuristic approach into a traditional genetic algorithm to accelerate the evolution process is developed. The proposed methods are tested using data from the 2008 Wenchuan earthquake, based on a regional highway network in Sichuan, China, consisting of 168 highway bridges on 36 highways connecting 25 cities/towns. The results show that, in this case, neglecting the bridge restoration downtime can lead to approximately 15% overestimation of highway network resilience. Moreover, accounting for the impact of EBR on network functionality can help to generate a more specific and reasonable LBRS. The theoretical and practical values are as follows. First, the proposed network recovery curve contributes to comprehensive quantification of highway network resilience by accounting for the impact of both restoration downtime and EBR activities on the recovery curves. Moreover, this study can improve the highway network resilience from the organizational dimension by providing bridge managers with optimal LBR strategies.

Keywords: disaster management, highway network, long-term bridge repair schedule, resilience, restoration downtime

Procedia PDF Downloads 154
3015 Recommender Systems Using Ensemble Techniques

Authors: Yeonjeong Lee, Kyoung-jae Kim, Youngtae Kim

Abstract:

This study proposes a novel recommender system that uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user’s preference. The proposed model consists of two steps. In the first step, this study uses logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. Then, this study combines the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. In the second step, this study uses the market basket analysis to extract association rules for co-purchased products. Finally, the system selects customers who have high likelihood to purchase products in each product group and recommends proper products from same or different product groups to them through above two steps. We test the usability of the proposed system by using prototype and real-world transaction and profile data. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The results also show that the proposed system may be useful in real-world online shopping store.

Keywords: product recommender system, ensemble technique, association rules, decision tree, artificial neural networks

Procedia PDF Downloads 298
3014 Vision-Based Collision Avoidance for Unmanned Aerial Vehicles by Recurrent Neural Networks

Authors: Yao-Hong Tsai

Abstract:

Due to the sensor technology, video surveillance has become the main way for security control in every big city in the world. Surveillance is usually used by governments for intelligence gathering, the prevention of crime, the protection of a process, person, group or object, or the investigation of crime. Many surveillance systems based on computer vision technology have been developed in recent years. Moving target tracking is the most common task for Unmanned Aerial Vehicle (UAV) to find and track objects of interest in mobile aerial surveillance for civilian applications. The paper is focused on vision-based collision avoidance for UAVs by recurrent neural networks. First, images from cameras on UAV were fused based on deep convolutional neural network. Then, a recurrent neural network was constructed to obtain high-level image features for object tracking and extracting low-level image features for noise reducing. The system distributed the calculation of the whole system to local and cloud platform to efficiently perform object detection, tracking and collision avoidance based on multiple UAVs. The experiments on several challenging datasets showed that the proposed algorithm outperforms the state-of-the-art methods.

Keywords: unmanned aerial vehicle, object tracking, deep learning, collision avoidance

Procedia PDF Downloads 168
3013 Autonomous Vehicle Detection and Classification in High Resolution Satellite Imagery

Authors: Ali J. Ghandour, Houssam A. Krayem, Abedelkarim A. Jezzini

Abstract:

High-resolution satellite images and remote sensing can provide global information in a fast way compared to traditional methods of data collection. Under such high resolution, a road is not a thin line anymore. Objects such as cars and trees are easily identifiable. Automatic vehicles enumeration can be considered one of the most important applications in traffic management. In this paper, autonomous vehicle detection and classification approach in highway environment is proposed. This approach consists mainly of three stages: (i) first, a set of preprocessing operations are applied including soil, vegetation, water suppression. (ii) Then, road networks detection and delineation is implemented using built-up area index, followed by several morphological operations. This step plays an important role in increasing the overall detection accuracy since vehicles candidates are objects contained within the road networks only. (iii) Multi-level Otsu segmentation is implemented in the last stage, resulting in vehicle detection and classification, where detected vehicles are classified into cars and trucks. Accuracy assessment analysis is conducted over different study areas to show the great efficiency of the proposed method, especially in highway environment.

Keywords: remote sensing, object identification, vehicle and road extraction, vehicle and road features-based classification

Procedia PDF Downloads 235
3012 Prediction of Temperature Distribution during Drilling Process Using Artificial Neural Network

Authors: Ali Reza Tahavvor, Saeed Hosseini, Nazli Jowkar, Afshin Karimzadeh Fard

Abstract:

Experimental & numeral study of temperature distribution during milling process, is important in milling quality and tools life aspects. In the present study the milling cross-section temperature is determined by using Artificial Neural Networks (ANN) according to the temperature of certain points of the work piece and the points specifications and the milling rotational speed of the blade. In the present work, at first three-dimensional model of the work piece is provided and then by using the Computational Heat Transfer (CHT) simulations, temperature in different nods of the work piece are specified in steady-state conditions. Results obtained from CHT are used for training and testing the ANN approach. Using reverse engineering and setting the desired x, y, z and the milling rotational speed of the blade as input data to the network, the milling surface temperature determined by neural network is presented as output data. The desired points temperature for different milling blade rotational speed are obtained experimentally and by extrapolation method for the milling surface temperature is obtained and a comparison is performed among the soft programming ANN, CHT results and experimental data and it is observed that ANN soft programming code can be used more efficiently to determine the temperature in a milling process.

Keywords: artificial neural networks, milling process, rotational speed, temperature

Procedia PDF Downloads 412
3011 An Energy Holes Avoidance Routing Protocol for Underwater Wireless Sensor Networks

Authors: A. Khan, H. Mahmood

Abstract:

In Underwater Wireless Sensor Networks (UWSNs), sensor nodes close to water surface (final destination) are often preferred for selection as forwarders. However, their frequent selection makes them depleted of their limited battery power. In consequence, these nodes die during early stage of network operation and create energy holes where forwarders are not available for packets forwarding. These holes severely affect network throughput. As a result, system performance significantly degrades. In this paper, a routing protocol is proposed to avoid energy holes during packets forwarding. The proposed protocol does not require the conventional position information (localization) of holes to avoid them. Localization is cumbersome; energy is inefficient and difficult to achieve in underwater environment where sensor nodes change their positions with water currents. Forwarders with the lowest water pressure level and the maximum number of neighbors are preferred to forward packets. These two parameters together minimize packet drop by following the paths where maximum forwarders are available. To avoid interference along the paths with the maximum forwarders, a packet holding time is defined for each forwarder. Simulation results reveal superior performance of the proposed scheme than the counterpart technique.

Keywords: energy holes, interference, routing, underwater

Procedia PDF Downloads 413
3010 Economic and Ecological Implications in Agricultural Production Within the Strong and Weak Sustainability Framework

Authors: Mauricio Quintero Angel, Andrés A. Duque Nivia, Carlos H. Fajardo Toro

Abstract:

This paper analyzes two approaches of sustainability, the weak and strong, considering a case of study of oil palm production for an industry of biodegradable detergent. In this case, a company demand the oil palm as the active element for washing and through its trademark aims to supply 10% of the Colombian market of washing powders. Under each approach the economic and ecological implications of the palm oil production and especially the implications for crop management are described. The crop production under the weak sustainability implies plantations, intensive use of agrochemicals and the inclusion of new areas of cultivation as the market grows. Under the strong sustainability the production system is limited by the productive vocation of the ecosystem, so that new approaches and creativity for making viable the nature conservancy and the business development are require.

Keywords: agriculture, environmental impacts, oil palm, strong sustainability, weak sustainability

Procedia PDF Downloads 434
3009 Methods for Restricting Unwanted Access on the Networks Using Firewall

Authors: Bhagwant Singh, Sikander Singh Cheema

Abstract:

This paper examines firewall mechanisms routinely implemented for network security in depth. A firewall can't protect you against all the hazards of unauthorized networks. Consequently, many kinds of infrastructure are employed to establish a secure network. Firewall strategies have already been the subject of significant analysis. This study's primary purpose is to avoid unnecessary connections by combining the capability of the firewall with the use of additional firewall mechanisms, which include packet filtering and NAT, VPNs, and backdoor solutions. There are insufficient studies on firewall potential and combined approaches, but there aren't many. The research team's goal is to build a safe network by integrating firewall strength and firewall methods. The study's findings indicate that the recommended concept can form a reliable network. This study examines the characteristics of network security and the primary danger, synthesizes existing domestic and foreign firewall technologies, and discusses the theories, benefits, and disadvantages of different firewalls. Through synthesis and comparison of various techniques, as well as an in-depth examination of the primary factors that affect firewall effectiveness, this study investigated firewall technology's current application in computer network security, then introduced a new technique named "tight coupling firewall." Eventually, the article discusses the current state of firewall technology as well as the direction in which it is developing.

Keywords: firewall strategies, firewall potential, packet filtering, NAT, VPN, proxy services, firewall techniques

Procedia PDF Downloads 108
3008 Farmers’ Perception and Response to Climate Change Across Agro-ecological Zones in Conflict-Ridden Communities in Cameroon

Authors: Lotsmart Fonjong

Abstract:

The livelihood of rural communities in the West African state of Cameroon, which is largely dictated by natural forces (rainfall, temperatures, and soil), is today threatened by climate change and armed conflict. This paper investigates the extent to which rural communities are aware of climate change, how their perceptions of changes across different agro-ecological zones have impacted farming practices, output, and lifestyles, on the one hand, and the extent to which local armed conflicts are confounding their efforts and adaptation abilities. The paper is based on a survey conducted among small farmers in selected localities within the forest and savanna ecological zones of the conflict-ridden Northwest and Southwest Cameroon. Attention is paid to farmers’ gender, scale, and type of farming. Farmers’ perception of/and response to climate change are analysed alongside local rainfall and temperature data and mobilization for climate justice. Findings highlight the fact that farmers’ perception generally corroborates local climatic data. Climatic instability has negatively affected farmers’ output, food prices, standards of living, and food security. However, the vulnerability of the population varies across ecological zones, gender, and crop types. While these factors also account for differences in local response and adaptation to climate change, ongoing armed conflicts in these regions have further complicated opportunities for climate-driven agricultural innovations, inputs, and exchange of information among farmers. This situation underlines how poor communities, as victims, are forced into many complex problems outsider their making. It is therefore important to mainstream farmers’ perceptions and differences into policy strategies that consider both climate change and Anglophone conflict as national security concerns foe sustainable development in Cameroon.

Keywords: adaptation policies, climate change, conflict, small farmers, cameroon

Procedia PDF Downloads 163
3007 Traffic Analysis and Prediction Using Closed-Circuit Television Systems

Authors: Aragorn Joaquin Pineda Dela Cruz

Abstract:

Road traffic congestion is continually deteriorating in Hong Kong. The largest contributing factor is the increase in vehicle fleet size, resulting in higher competition over the utilisation of road space. This study proposes a project that can process closed-circuit television images and videos to provide real-time traffic detection and prediction capabilities. Specifically, a deep-learning model involving computer vision techniques for video and image-based vehicle counting, then a separate model to detect and predict traffic congestion levels based on said data. State-of-the-art object detection models such as You Only Look Once and Faster Region-based Convolutional Neural Networks are tested and compared on closed-circuit television data from various major roads in Hong Kong. It is then used for training in long short-term memory networks to be able to predict traffic conditions in the near future, in an effort to provide more precise and quicker overviews of current and future traffic conditions relative to current solutions such as navigation apps.

Keywords: intelligent transportation system, vehicle detection, traffic analysis, deep learning, machine learning, computer vision, traffic prediction

Procedia PDF Downloads 106
3006 Existential Affordances and Psychopathology: A Gibsonian Analysis of Dissociative Identity Disorder

Authors: S. Alina Wang

Abstract:

A Gibsonian approach is used to understand the existential dimensions of the human ecological niche. Then, this existential-Gibsonian framework is applied to rethinking Hacking’s historical analysis of multiple personality disorder. This research culminates in a generalized account of psychiatric illness from an enactivist lens. In conclusion, reflections on the implications of this account on approaches to psychiatric treatment are mentioned. J.J. Gibson’s theory of affordances centered on affordances of sensorimotor varieties, which guide basic behaviors relative to organisms’ vital needs and physiological capacities (1979). Later theorists, notably Neisser (1988) and Rietveld (2014), expanded on the theory of affordances to account for uniquely human activities relative to the emotional, intersubjective, cultural, and narrative aspects of the human ecological niche. This research shows that these affordances are structured by what Haugeland (1998) calls existential commitments, which draws on Heidegger’s notion of dasein (1927) and Merleau-Ponty’s account of existential freedom (1945). These commitments organize the existential affordances that fill an individual’s environment and guide their thoughts, emotions, and behaviors. This system of a priori existential commitments and a posteriori affordances is called existential enactivism. For humans, affordances do not only elicit motor responses and appear as objects with instrumental significance. Affordances also, and possibly primarily, determine so-called affective and cognitive activities and structure the wide range of kinds (e.g., instrumental, aesthetic, ethical) of significances of objects found in the world. Then existential enactivism is applied to understanding the psychiatric phenomenon of multiple personality disorder (precursor of the current diagnosis of dissociative identity disorder). A reinterpretation of Hacking’s (1998) insights into the history of this particular disorder and his generalizations on the constructed nature of most psychiatric illness is taken on. Enactivist approaches sensitive to existential phenomenology can provide a deeper understanding of these matters. Conceptualizing psychiatric illness as strictly a disorder in the head (whether parsed as a disorder of brain chemicals or meaning-making capacities encoded in psychological modules) is incomplete. Rather, psychiatric illness must also be understood as a disorder in the world, or in the interconnected networks of existential affordances that regulate one’s emotional, intersubjective, and narrative capacities. All of this suggests that an adequate account of psychiatric illness must involve (1) the affordances that are the sources of existential hindrance, (2) the existential commitments structuring these affordances, and (3) the conditions of these existential commitments. Approaches to treatment of psychiatric illness would be more effective by centering on the interruption of normalized behaviors corresponding to affordances targeted as sources of hindrance, the development of new existential commitments, and the practice of new behaviors that erect affordances relative to these reformed commitments.

Keywords: affordance, enaction, phenomenology, psychiatry, psychopathology

Procedia PDF Downloads 141
3005 Traditional Knowledge on Living Fences in Andean Linear Plantations

Authors: German Marino Rivera

Abstract:

Linear plantations are a common practice in several countries as living fences (LF) delimiting agroecosystems. They are composed of multipurpose perennial woods that provide assets, protection, and supply services. However, not much is known in some traditional communities like the Andean region, including the species composition and the social and ecological benefits of the species used. In the High Andean Colombian region, LF seems to be very typical and diverse. This study aimed to analyze the traditional knowledge about LF systems, including the species composition and their uses in rural communities of Alto Casanare, Colombia. Field measurements, interviews, guided tours, and species sampling were carried out in order to describe traditional practices and the species used in the LF systems. The use values were estimated through the Coefficient of Importance of the Species (CIS). A total of 26 farms engage in LF practices, covering an area of 9283.3 m. In these systems, 30 species were identified, belonging to 23 families. Alnus acuminata was the specie with the highest CIS. The species presented multipurpose uses for both economic and ecological purposes. The transmission of knowledge (TEK) about the used species is very heterogeneous among the farmers. Many species used were not documented, with reciprocal gaps between the literature and traditional species uses. Exchanging this information would increase the species' versatility, the socioeconomic aspects of these communities, increases the agrobiodiversity and ecological services provided by LF. The description of the TEK on LF provides a better understanding of the relationship of these communities with the natural resources, pointing out creative approaches to achieve local environment conservation in these agroecosystems and promoting socioeconomic development.

Keywords: ethnobotany, living fences, traditional communities, agroecology

Procedia PDF Downloads 98
3004 Traditional Uses of Medicinal Plants in Albania: Historical and Theoretical Considerations

Authors: Ani Bajrami

Abstract:

The birth of traditional medicine is related to plant diversity in a region, and the knowledge regarding them has been used and culturally transmitted over generations by members of a certain society. In this context, Traditional Ecological Knowledge (TEK) concerning the use of plants for medicinal purposes had survival value and was adaptive for people living in different habitats around the world. Albanian flora has a high considerably number of medicinal plants, and they have been extensively used albeit expressed in folk medicinal knowledge and practices. Over the past decades, a number of ethnobotanical studies and extensive fieldwork has been conducted in Albania both by local and foreign scientists. In addition, ethnobotany is experiencing a theoretical and conceptual diversification. This article is a historical review of ethnobotanical studies conducted in Albania after the Second World War and provides theoretical considerations on how these studies should be conducted in the future.

Keywords: medicinal plants, traditional ecological knowledge, historical ethnobotany, theory, albania

Procedia PDF Downloads 178
3003 A Comparative Asessment of Some Algorithms for Modeling and Forecasting Horizontal Displacement of Ialy Dam, Vietnam

Authors: Kien-Trinh Thi Bui, Cuong Manh Nguyen

Abstract:

In order to simulate and reproduce the operational characteristics of a dam visually, it is necessary to capture the displacement at different measurement points and analyze the observed movement data promptly to forecast the dam safety. The accuracy of forecasts is further improved by applying machine learning methods to data analysis progress. In this study, the horizontal displacement monitoring data of the Ialy hydroelectric dam was applied to machine learning algorithms: Gaussian processes, multi-layer perceptron neural networks, and the M5-rules algorithm for modelling and forecasting of horizontal displacement of the Ialy hydropower dam (Vietnam), respectively, for analysing. The database which used in this research was built by collecting time series of data from 2006 to 2021 and divided into two parts: training dataset and validating dataset. The final results show all three algorithms have high performance for both training and model validation, but the MLPs is the best model. The usability of them are further investigated by comparison with a benchmark models created by multi-linear regression. The result show the performance which obtained from all the GP model, the MLPs model and the M5-Rules model are much better, therefore these three models should be used to analyze and predict the horizontal displacement of the dam.

Keywords: Gaussian processes, horizontal displacement, hydropower dam, Ialy dam, M5-Rules, multi-layer perception neural networks

Procedia PDF Downloads 219
3002 Physical Habitat Simulation and Comparison within a Lerma River Reach, with Respect to the Same but Modified Reach, to Create a Linear Park

Authors: Garcia-Rodriguez Ezequiel, Luis A. Ochoa-Franco, Adrian I. Cervantes-Servin

Abstract:

In this work, the Ictalurus punctatus species estimated available physical habitat is compared with the estimated physical habitat for the same but modified river reach, with the aim of creating a linear park, along a length of 5 500 m. To determine the effect of ecological park construction, on physical habitat of the Lerma river stretch of study, first, the available habitat for the Ictalurus punctatus species was estimated through the simulation of the physical habitat, by using surveying, hydraulics, and habitat information gotten at the river reach in its actual situation. Second, it was estimated the available habitat for the above species, upon the simulation of the physical habitat through the proposed modification for the ecological park creation. Third, it is presented a comparison between both scenarios in terms of available habitat estimated for Ictalurus punctatus species, concluding that in cases of adult and spawning life stages, changes in the channel to create an ecological park would produce a considerable loss of potentially usable habitat (PUH), while in the case of the juvenile life stage PUH remains virtually unchanged, and in the case of life stage fry the PUH would increase due to the presence of velocities and depths of lesser magnitude, due to the presence of minor flow rates and lower volume of the wet channel. It is expected that habitat modification for linear park construction may produce the lack of Ictalurus punktatus species conservation at the river reach of the study.

Keywords: Habitat modification, Ictalurus punctatus, Lerma, river, linear park

Procedia PDF Downloads 479
3001 Optrix: Energy Aware Cross Layer Routing Using Convex Optimization in Wireless Sensor Networks

Authors: Ali Shareef, Aliha Shareef, Yifeng Zhu

Abstract:

Energy minimization is of great importance in wireless sensor networks in extending the battery lifetime. One of the key activities of nodes in a WSN is communication and the routing of their data to a centralized base-station or sink. Routing using the shortest path to the sink is not the best solution since it will cause nodes along this path to fail prematurely. We propose a cross-layer energy efficient routing protocol Optrix that utilizes a convex formulation to maximize the lifetime of the network as a whole. We further propose, Optrix-BW, a novel convex formulation with bandwidth constraint that allows the channel conditions to be accounted for in routing. By considering this key channel parameter we demonstrate that Optrix-BW is capable of congestion control. Optrix is implemented in TinyOS, and we demonstrate that a relatively large topology of 40 nodes can converge to within 91% of the optimal routing solution. We describe the pitfalls and issues related with utilizing a continuous form technique such as convex optimization with discrete packet based communication systems as found in WSNs. We propose a routing controller mechanism that allows for this transformation. We compare Optrix against the Collection Tree Protocol (CTP) and we found that Optrix performs better in terms of convergence to an optimal routing solution, for load balancing and network lifetime maximization than CTP.

Keywords: wireless sensor network, Energy Efficient Routing

Procedia PDF Downloads 395
3000 Characterising Indigenous Chicken (Gallus gallus domesticus) Ecotypes of Tigray, Ethiopia: A Combined Approach Using Ecological Niche Modelling and Phenotypic Distribution Modelling

Authors: Gebreslassie Gebru, Gurja Belay, Minister Birhanie, Mulalem Zenebe, Tadelle Dessie, Adriana Vallejo-Trujillo, Olivier Hanotte

Abstract:

Livestock must adapt to changing environmental conditions, which can result in either phenotypic plasticity or irreversible phenotypic change. In this study, we combine Ecological Niche Modelling (ENM) and Phenotypic Distribution Modelling (PDM) to provide a comprehensive framework for understanding the ecological and phenotypic characteristics of indigenous chicken (Gallus gallus domesticus) ecotypes. This approach helped us to classify these ecotypes, differentiate their phenotypic traits, and identify associations between environmental variables and adaptive traits. We measured 297 adult indigenous chickens from various agro-ecologies, including 208 females and 89 males. A subset of the 22 measured traits was selected using stepwise selection, resulting in seven traits for each sex. Using ENM, we identified four agro-ecologies potentially harbouring distinct phenotypes of indigenous Tigray chickens. However, PDM classified these chickens into three phenotypical ecotypes. Chickens grouped in ecotype-1 and ecotype-3 exhibited superior adaptive traits compared to those in ecotype-2, with significant variance observed. This high variance suggests a broader range of trait expression within these ecotypes, indicating greater adaptation capacity and potentially more diverse genetic characteristics. Several environmental variables, such as soil clay content, forest cover, and mean temperature of the wettest quarter, were strongly associated with most phenotypic traits. This suggests that these environmental factors play a role in shaping the observed phenotypic variations. By integrating ENM and PDM, this study enhances our understanding of indigenous chickens' ecological and phenotypic diversity. It also provides valuable insights into their conservation and management in response to environmental changes.

Keywords: adaptive traits, agro-ecology, appendage, climate, environment, imagej, morphology, phenotypic variation

Procedia PDF Downloads 44
2999 Independent Village Planning Based Eco Village and Save Energy in Region of Maritime Tourism

Authors: Muhamad Rasyid Angkotasan

Abstract:

Eco-village is an ecosystem where the countryside or urban communities that are inside trying to integrate the social environment with low impact way of life to achieve this, they integrate the various aspects of ecological design, agriculture permanent, ecological building and the alternative energy. Eco-village in question is eco-village conducted on of marine tourism areas, where natural resources are very good, without ignoring the global issue of climate change. Desperately needed a source of energy, which can support the fulfillment of energy needs in a sustainable. Fulfillment of energy sources that offer is the use or application of environmentally friendly technologies of usage is still very low in Indonesia, the technology namely the Ocean Thermal Energy Conversion (OTEC), OTEC is expected to be a source of the alternative energy, which can support the goal of eco-village of the region's of marine tourism.

Keywords: eco village, saving energy, ocean thermal energy conversion, environmental engineering

Procedia PDF Downloads 460
2998 Aggregation Scheduling Algorithms in Wireless Sensor Networks

Authors: Min Kyung An

Abstract:

In Wireless Sensor Networks which consist of tiny wireless sensor nodes with limited battery power, one of the most fundamental applications is data aggregation which collects nearby environmental conditions and aggregates the data to a designated destination, called a sink node. Important issues concerning the data aggregation are time efficiency and energy consumption due to its limited energy, and therefore, the related problem, named Minimum Latency Aggregation Scheduling (MLAS), has been the focus of many researchers. Its objective is to compute the minimum latency schedule, that is, to compute a schedule with the minimum number of timeslots, such that the sink node can receive the aggregated data from all the other nodes without any collision or interference. For the problem, the two interference models, the graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR), have been adopted with different power models, uniform-power and non-uniform power (with power control or without power control), and different antenna models, omni-directional antenna and directional antenna models. In this survey article, as the problem has proven to be NP-hard, we present and compare several state-of-the-art approximation algorithms in various models on the basis of latency as its performance measure.

Keywords: data aggregation, convergecast, gathering, approximation, interference, omni-directional, directional

Procedia PDF Downloads 234
2997 Hybrid Localization Schemes for Wireless Sensor Networks

Authors: Fatima Babar, Majid I. Khan, Malik Najmus Saqib, Muhammad Tahir

Abstract:

This article provides range based improvements over a well-known single-hop range free localization scheme, Approximate Point in Triangulation (APIT) by proposing an energy efficient Barycentric coordinate based Point-In-Triangulation (PIT) test along with PIT based trilateration. These improvements result in energy efficiency, reduced localization error and improved localization coverage compared to APIT and its variants. Moreover, we propose to embed Received signal strength indication (RSSI) based distance estimation in DV-Hop which is a multi-hop localization scheme. The proposed localization algorithm achieves energy efficiency and reduced localization error compared to DV-Hop and its available improvements. Furthermore, a hybrid multi-hop localization scheme is also proposed that utilize Barycentric coordinate based PIT test and both range based (Received signal strength indicator) and range free (hop count) techniques for distance estimation. Our experimental results provide evidence that proposed hybrid multi-hop localization scheme results in two to five times reduction in the localization error compare to DV-Hop and its variants, at reduced energy requirements.

Keywords: Localization, Trilateration, Triangulation, Wireless Sensor Networks

Procedia PDF Downloads 473
2996 Wind Power Forecasting Using Echo State Networks Optimized by Big Bang-Big Crunch Algorithm

Authors: Amir Hossein Hejazi, Nima Amjady

Abstract:

In recent years, due to environmental issues traditional energy sources had been replaced by renewable ones. Wind energy as the fastest growing renewable energy shares a considerable percent of energy in power electricity markets. With this fast growth of wind energy worldwide, owners and operators of wind farms, transmission system operators, and energy traders need reliable and secure forecasts of wind energy production. In this paper, a new forecasting strategy is proposed for short-term wind power prediction based on Echo State Networks (ESN). The forecast engine utilizes state-of-the-art training process including dynamical reservoir with high capability to learn complex dynamics of wind power or wind vector signals. The study becomes more interesting by incorporating prediction of wind direction into forecast strategy. The Big Bang-Big Crunch (BB-BC) evolutionary optimization algorithm is adopted for adjusting free parameters of ESN-based forecaster. The proposed method is tested by real-world hourly data to show the efficiency of the forecasting engine for prediction of both wind vector and wind power output of aggregated wind power production.

Keywords: wind power forecasting, echo state network, big bang-big crunch, evolutionary optimization algorithm

Procedia PDF Downloads 577
2995 Multi-Scale Control Model for Network Group Behavior

Authors: Fuyuan Ma, Ying Wang, Xin Wang

Abstract:

Social networks have become breeding grounds for the rapid spread of rumors and malicious information, posing threats to societal stability and causing significant public harm. Existing research focuses on simulating the spread of information and its impact on users through propagation dynamics and applies methods such as greedy approximation strategies to approximate the optimal control solution at the global scale. However, the greedy strategy at the global scale may fall into locally optimal solutions, and the approximate simulation of information spread may accumulate more errors. Therefore, we propose a multi-scale control model for network group behavior, introducing individual and group scales on top of the greedy strategy’s global scale. At the individual scale, we calculate the propagation influence of nodes based on their structural attributes to alleviate the issue of local optimality. At the group scale, we conduct precise propagation simulations to avoid introducing cumulative errors from approximate calculations without increasing computational costs. Experimental results on three real-world datasets demonstrate the effectiveness of our proposed multi-scale model in controlling network group behavior.

Keywords: influence blocking maximization, competitive linear threshold model, social networks, network group behavior

Procedia PDF Downloads 25
2994 Ecosystem Services and Excess Water Management: Analysis of Ecosystem Services in Areas Exposed to Excess Water Inundation

Authors: Dalma Varga, Nora Hubayne H.

Abstract:

Nowadays, among the measures taken to offset the consequences of climate change, water resources management is one of the key tools, which can include excess water management. As a result of climate change’s effects and as a result of the frequent inappropriate landuse, more and more areas are affected by the excess water inundation. Hungary is located in the deepest part of the Pannonian Basin, which is exposed to water damage – especially lowland areas that are endangered by floods or excess waters. The periodical presence of excess water creates specific habitats in a given area, which have ecological, functional, and aesthetic values. Excess water inundation affects approximately 74% of Hungary’s lowland areas, of which about 46% is also under nature protection (such as national parks, protected landscape areas, nature conservation areas, Natura 2000 sites, etc.). These data prove that areas exposed to excess water inundation – which are predominantly characterized by agricultural land uses – have an important ecological role. Other research works have confirmed the presence of numerous rare and endangered plant species in drainage canals, on grasslands exposed to excess water, and on special agricultural fields with mud vegetation. The goal of this research is to define and analyze ecosystem services of areas exposed to excess water inundation. In addition to this, it is also important to determine the quantified indicators of these areas’ natural and landscape values besides the presence of protected species and the naturalness of habitats, so all in all, to analyze the various nature protections related to excess water. As a result, a practice-orientated assessment method has been developed that provides the ecological water demand, assimilates to ecological and habitat aspects, contributes to adaptive excess water management, and last but not least, increases or maintains the share of the green infrastructure network. In this way, it also contributes to reduce and mitigate the negative effects of climate change.

Keywords: ecosystem services, landscape architecture, excess water management, green infrastructure planning

Procedia PDF Downloads 321