Search results for: damage control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12775

Search results for: damage control

11725 Cysticidal Effect of Balanites Aegyptiaca and Moringa Oleifera on Bovine Cysticercosis with Monitoring to Dynamics of TNF-α

Authors: Omnia M.Kandil, Noha M. F. Hassan, Doaa Sedky, Hatem A. Shalaby, Heba M. Ashry, Nadia M. T. Abu El Ezz, Sahar M. Kandeel, Mohamed S. Abdelfattah Ying L, Ebtesam M. Al-Olayan

Abstract:

The cestode, Taenia saginata is a zoonotic tapeworm that it’s larval stage which known as Cysticercus bovis cause cyst formation in cattle’s organs such as heart, lung, liver, tongue, esophagus and diaphragm muscle, despite the infected cattle may show no clinical signs. In view of considerable interest in developing cysticidal drugs including those from medicinal plants, because of their consideration as eco-friendly and biodegradable as well as having multiple bioactive compounds that may translate to multiple mechanisms in killing the parasites. This study was achieved to evaluate, for the first time, the efficacy of methanolic extract of Balanites aegyptiaca fruits and Moringa oleifera seeds against metacestode larval stage of the cestode Taenia saginata in BALB/c mice compared with commonly used anthelmintic albendazole and assigning the level of tumor necrosis factor (TNF-α) to monitor immune and inflammatory response of experimentally infected animals. The results revealed a marked decrease in the numbers of cysticerci found in all treated mice groups and up to 88% reduction was achieved in the B. aegyptiaca treated group; higher than that was recorded in both M. oleifera (72.23%) and albendazole treated ones (80.56%). The cysts of the treated groups were smaller of the control one. Besides, the mean concentration of TNF-α following treatment with Balanites and Moringa extracts, was higher but not significant difference than that in the untreated infected control one (P<0.05), evidence for inflammation and cyst damage. It can be concluded that the in vivo efficacy of M. oleifera extract was comparable to a commercial anthelmintic, and the B. aegyptiaca extract was superior in the reduction of cysticerci numbers.

Keywords: Balanites aeggyptica, Moringa oleifera, cysticercosis, BALB/C mice

Procedia PDF Downloads 66
11724 Noncritical Phase-Matched Fourth Harmonic Generation of Converging Beam by Deuterated Potassium Dihydrogen Phosphate Crystal

Authors: Xiangxu Chai, Bin Feng, Ping Li, Deyan Zhu, Liquan Wang, Guanzhong Wang, Yukun Jing

Abstract:

In high power large-aperture laser systems, such as the inertial confinement fusion project, the Nd: glass laser (1053nm) is usually needed to be converted to ultraviolet (UV) light and the fourth harmonic generation (FHG) is one of the most favorite candidates to achieve UV light. Deuterated potassium dihydrogen phosphate (DKDP) crystal is an optimal choice for converting the Nd: glass radiation to the fourth harmonic laser by noncritical phase matching (NCPM). To reduce the damage probability of focusing lens, the DKDP crystal is suggested to be set before the focusing lens. And a converging beam enters the FHG crystal consequently. In this paper, we simulate the process of FHG in the scheme and the dependence of FHG efficiency on the lens’ F is derived. Besides, DKDP crystal with gradient deuterium is proposed to realize the NCPM FHG of the converging beam. At every position, the phase matching is achieved by adjusting the deuterium level, and the FHG efficiency increases as a result. The relation of the lens’ F with the deuterium gradient is investigated as well.

Keywords: fourth harmonic generation, laser induced damage, converging beam, DKDP crystal

Procedia PDF Downloads 230
11723 Flutter Control Analysis of an Aircraft Wing Using Carbon Nanotubes Reinforced Polymer

Authors: Timothee Gidenne, Xia Pinqi

Abstract:

In this paper, an investigation of the use of carbon nanotubes (CNTs) reinforced polymer as an actuator for an active flutter suppression to counter the flutter phenomena is conducted. The goal of this analysis is to establish a link between the behavior of the control surface and the actuators to demonstrate the veracity of using such a suppression system for the aeronautical field. A preliminary binary flutter model using simplified unsteady aerodynamics is developed to study the behavior of the wing while reaching the flutter speed and when the control system suppresses the flutter phenomena. The Timoshenko beam theory for bilayer materials is used to match the response of the control surface with the CNTs reinforced polymer (CNRP) actuators. According to Timoshenko theory, results show a good and realistic response for such a purpose. Even if the results are still preliminary, they show evidence of the potential use of CNRP for control surface actuation for the small-scale and lightweight system.

Keywords: actuators, aeroelastic, aeroservoelasticity, carbon nanotubes, flutter, flutter suppression

Procedia PDF Downloads 129
11722 Stability Analysis and Experimental Evaluation on Maxwell Model of Impedance Control

Authors: Le Fu, Rui Wu, Gang Feng Liu, Jie Zhao

Abstract:

Normally, impedance control methods are based on a model that connects a spring and damper in parallel. The series connection, namely the Maxwell model, has emerged as a counterpart and draw the attention of robotics researchers. In the theoretical analysis, it turns out that the two pattern are both equivalents to some extent, but notable differences of response characteristics exist, especially in the effect of damping viscosity. However, this novel impedance control design is lack of validation on realistic robot platforms. In this study, stability analysis and experimental evaluation are achieved using a 3-fingered Barrett® robotic hand BH8-282 endowed with tactile sensing, mounted on a torque-controlled lightweight and collaborative robot KUKA® LBR iiwa 14 R820. Object handover and incoming objects catching tasks are executed for validation and analysis. Experimental results show that the series connection pattern has much better performance in natural impact or shock absorption, which indicate promising applications in robots’ safe and physical interaction with humans and objects in various environments.

Keywords: impedance control, Maxwell model, force control, dexterous manipulation

Procedia PDF Downloads 498
11721 Adaptation Nature-Based Solutions: CBA of Woodlands for Flood Risk Management in the Aire Catchment, UK

Authors: Olivia R. Rendon

Abstract:

More than half of the world population lives in cities, in the UK, for example, 82% of the population was urban by 2013. Cities concentrate valuable and numerous infrastructure and sectors of the national economies. Cities are particularly vulnerable to climate change which will lead to higher damage costs in the future. There is thus a need to develop and invest in adaptation measures for cities to reduce the impact of flooding and other extreme weather events. Recent flood episodes present a significant and growing challenge to the UK and the estimated cost of urban flood damage is 270 million a year for England and Wales. This study aims to carry out cost-benefit analysis (CBA) of a nature-based approach for flood risk management in cities, focusing on the city of Leeds and the wider Aire catchment as a case study. Leeds was chosen as a case study due to its being one of the most flood vulnerable cities in the UK. In Leeds, over 4,500 properties are currently vulnerable to flooding and approximately £450 million of direct damage is estimated for a potential major flood from the River Aire. Leeds is also the second largest Metropolitan District in England with a projected population of 770,000 for 2014. So far the city council has mainly focused its flood risk management efforts on hard infrastructure solutions for the city centre. However, the wider Leeds district is at significant flood risk which could benefit from greener adaptation measures. This study presents estimates of a nature-based adaptation approach for flood risk management in Leeds. This land use management estimate is based on generating costings utilising primary and secondary data. This research contributes findings on the costs of different adaptation measures to flood risk management in a UK city, including the trade-offs and challenges of utilising nature-based solutions. Results also explore the potential implementation of the adaptation measures in the case study and the challenges of data collection and analysis for adaptation in flood risk management.

Keywords: green infrastructure, ecosystem services, woodland, adaptation, flood risk

Procedia PDF Downloads 288
11720 Beneficial Effect of Lupeol in Diabetes Induced Oxidative Damage

Authors: Rajnish Gupta, R. S. Gupta

Abstract:

Present research was aimed to investigate antidiabetic and antioxidant status of Lupeol in streptozotocin induced diabetes. Rats were divided into following groups mainly: control, diabetic, normal group as well as diabetic treated with Lupeol at 25 and 35 mg/kg b.wt./day for 21 days, diabetic group treated with glibenclamide. Tissue (pancreas, kidney and liver) as well as serum biochemical parameters were analysed for any abnormal behavior. Lupeol administration reduced diabetes onset with significant improvement in serum insulin level also strengthened by increase in β-Cell counts. A significant decrease was observed in serum glucose level. Furthermore, Lupeol treatment increased the antioxidant enzymes, glycolytic enzymes and also protein levels with a decrease in the level of thiobarbituric acid-reactive oxygen species and gluconeogenic enzymes. Present study proves that Lupeol administration significantly reinstated serum and tissue biochemical parameters and thus strengthening its antidiabetic potential.

Keywords: oxidative stress, pterostilbene, thiobarbituric acid, reactive oxygen species

Procedia PDF Downloads 471
11719 BRG1 and Ep300 as a Transcriptional Regulators of Breast Cancer Growth

Authors: Maciej Sobczak, Julita Pietrzak, Tomasz Płoszaj, Agnieszka Robaszkiewicz

Abstract:

Brg1, a member of SWI/SNF complex, plays a role in chromatin remodeling, therefore, regulates expression of many genes. Brg1 is an ATPase of SWI/SNF complex, thus its activity requires ATP. Through its bromodomain recognizes acetylated histone residues and evicts them, thus promoting transcriptionally active state of chromatin. One of the enzymes that is responsible for acetylation of histone residues is Ep300. It was previously shown in the literature that cooperation of Brg1 and Ep300 occurs at the promoter regions that have binding sites for E2F-family transcription factors as well as CpG islands. According to literature, approximately 20% of human cancer possess mutation in Brg1 or any other crucial SWI/SNF subunit. That phenomenon makes Brg1-Ep300 a very promising target for anti-cancer therapy. Therefore in our study, we investigated if physical interaction between Brg1 and Ep300 exists and what impact those two proteins have on key for breast cancer cells processes such as DNA damage repair and cell proliferation. Bioinformatical analysis pointed out, that genes involved in cell proliferation and DNA damage repair are overexpressed in MCF7 and MDA-MB-231 cells. Moreover, promoter regions of these genes are highly acetylated, which suggests high transcriptional activity of those sites. Notably, many of those gene possess within their promoters an E2F, Brg1 motives, as well as CpG islands and acetylated histones. Our data show that Brg1 physically interacts with Ep300, and together they regulate expression of genes involved in DNA damage repair and cell proliferation. Upon inhibiting Brg1 or Ep300, expression of vital for cancer cell survival genes such as CDK2/4, BRCA1/2, PCNA, and XRCC1 is decreased in MDA-MB-231 and MCF7 cells. Moreover, inhibition or silencing of either Brg1 or Ep300 leads to cell cycle arrest in G1. After inhibition of BRG1 or Ep300 on tested gene promoters, the repressor complex including Rb, HDAC1, and EZH2 is formed, which inhibits gene expression. These results highlight potentially significant target for targeted anticancer therapy to be introduced as a supportive therapy.

Keywords: brg1, ep300, breast cancer, epigenetics

Procedia PDF Downloads 183
11718 Automated Classification of Hypoxia from Fetal Heart Rate Using Advanced Data Models of Intrapartum Cardiotocography

Authors: Malarvizhi Selvaraj, Paul Fergus, Andy Shaw

Abstract:

Uterine contractions produced during labour have the potential to damage the foetus by diminishing the maternal blood flow to the placenta. In order to observe this phenomenon labour and delivery are routinely monitored using cardiotocography monitors. An obstetrician usually makes the diagnosis of foetus hypoxia by interpreting cardiotocography recordings. However, cardiotocography capture and interpretation is time-consuming and subjective, often lead to misclassification that causes damage to the foetus and unnecessary caesarean section. Both of these have a high impact on the foetus and the cost to the national healthcare services. Automatic detection of foetal heart rate may be an objective solution to help to reduce unnecessary medical interventions, as reported in several studies. This paper aim is to provide a system for better identification and interpretation of abnormalities of the fetal heart rate using RStudio. An open dataset of 552 Intrapartum recordings has been filtered with 0.034 Hz filters in an attempt to remove noise while keeping as much of the discriminative data as possible. Features were chosen following an extensive literature review, which concluded with FIGO features such as acceleration, deceleration, mean, variance and standard derivation. The five features were extracted from 552 recordings. Using these features, recordings will be classified either normal or abnormal. If the recording is abnormal, it has got more chances of hypoxia.

Keywords: cardiotocography, foetus, intrapartum, hypoxia

Procedia PDF Downloads 216
11717 Towards the Management of Cybersecurity Threats in Organisations

Authors: O. A. Ajigini, E. N. Mwim

Abstract:

Cybersecurity is the protection of computers, programs, networks, and data from attack, damage, unauthorised, unintended access, change, or destruction. Organisations collect, process and store their confidential and sensitive information on computers and transmit this data across networks to other computers. Moreover, the advent of internet technologies has led to various cyberattacks resulting in dangerous consequences for organisations. Therefore, with the increase in the volume and sophistication of cyberattacks, there is a need to develop models and make recommendations for the management of cybersecurity threats in organisations. This paper reports on various threats that cause malicious damage to organisations in cyberspace and provides measures on how these threats can be eliminated or reduced. The paper explores various aspects of protection measures against cybersecurity threats such as handling of sensitive data, network security, protection of information assets and cybersecurity awareness. The paper posits a model and recommendations on how to manage cybersecurity threats in organisations effectively. The model and the recommendations can then be utilised by organisations to manage the threats affecting their cyberspace. The paper provides valuable information to assist organisations in managing their cybersecurity threats and hence protect their computers, programs, networks and data in cyberspace. The paper aims to assist organisations to protect their information assets and data from cyberthreats as part of the contributions toward community engagement.

Keywords: confidential information, cyberattacks, cybersecurity, cyberspace, sensitive information

Procedia PDF Downloads 259
11716 Maximizing the Aerodynamic Performance of Wind and Water Turbines by Utilizing Advanced Flow Control Techniques

Authors: Edwin Javier Cortes, Surupa Shaw

Abstract:

In recent years, there has been a growing emphasis on enhancing the efficiency and performance of wind and water turbines to meet the increasing demand for sustainable energy sources. One promising approach is the utilization of advanced flow control techniques to optimize aerodynamic performance. This paper explores the application of advanced flow control techniques in both wind and water turbines, aiming to maximize their efficiency and output. By manipulating the flow of air or water around the turbine blades, these techniques offer the potential to improve energy capture, reduce drag, and minimize turbulence-induced losses. The paper will review various flow control strategies, including passive and active techniques such as vortex generators, boundary layer suction, and plasma actuators. It will examine their effectiveness in optimizing turbine performance under different operating conditions and environmental factors. Furthermore, the paper will discuss the challenges and opportunities associated with implementing these techniques in practical turbine designs. It will consider factors such as cost-effectiveness, reliability, and scalability, as well as the potential impact on overall turbine efficiency and lifecycle. Through a comprehensive analysis of existing research and case studies, this paper aims to provide insights into the potential benefits and limitations of advanced flow control techniques for wind and water turbines. It will also highlight areas for future research and development, with the ultimate goal of advancing the state-of-the-art in turbine technology and accelerating the transition towards a more sustainable energy future.

Keywords: flow control, efficiency, passive control, active control

Procedia PDF Downloads 70
11715 Identification and Force Control of a Two Chambers Pneumatic Soft Actuator

Authors: Najib K. Dankadai, Ahmad 'Athif Mohd Faudzi, Khairuddin Osman, Muhammad Rusydi Muhammad Razif, IIi Najaa Aimi Mohd Nordin

Abstract:

Researches in soft actuators are now growing rapidly because of their adequacy to be applied in sectors like medical, agriculture, biological and welfare. This paper presents system identification (SI) and control of the force generated by a two chambers pneumatic soft actuator (PSA). A force mathematical model for the actuator was identified experimentally using data acquisition card and MATLAB SI toolbox. Two control techniques; a predictive functional control (PFC) and conventional proportional integral and derivative (PID) schemes are proposed and compared based on the identified model for the soft actuator flexible mechanism. Results of this study showed that both of the proposed controllers ensure accurate tracking when the closed loop system was tested with the step, sinusoidal and multi step reference input through MATLAB simulation although the PFC provides a better response than the PID.

Keywords: predictive functional control (PFC), proportional integral and derivative (PID), soft actuator, system identification

Procedia PDF Downloads 325
11714 Modeling and Optimal Control of Pneumonia Disease with Cost Effective Strategies

Authors: Getachew Tilahun, Oluwole Makinde, David Malonza

Abstract:

We propose and analyze a non-linear mathematical model for the transmission dynamics of pneumonia disease in a population of varying size. The deterministic compartmental model is studied using stability theory of differential equations. The effective reproduction number is obtained and also the local and global asymptotically stability conditions for the disease free and as well as for the endemic equilibria are established. The model exhibit a backward bifurcation and the sensitivity indices of the basic reproduction number to the key parameters are determined. Using Pontryagin’s maximum principle, the optimal control problem is formulated with three control strategies; namely disease prevention through education, treatment and screening. The cost effectiveness analysis of the adopted control strategies revealed that the combination of prevention and treatment is the most cost effective intervention strategies to combat the pneumonia pandemic. Numerical simulation is performed and pertinent results are displayed graphically.

Keywords: cost effectiveness analysis, optimal control, pneumonia dynamics, stability analysis, numerical simulation

Procedia PDF Downloads 327
11713 Efficient Neural and Fuzzy Models for the Identification of Dynamical Systems

Authors: Aouiche Abdelaziz, Soudani Mouhamed Salah, Aouiche El Moundhe

Abstract:

The present paper addresses the utilization of Artificial Neural Networks (ANNs) and Fuzzy Inference Systems (FISs) for the identification and control of dynamical systems with some degree of uncertainty. Because ANNs and FISs have an inherent ability to approximate functions and to adapt to changes in input and parameters, they can be used to control systems too complex for linear controllers. In this work, we show how ANNs and FISs can be put in order to form nets that can learn from external data. In sequence, it is presented structures of inputs that can be used along with ANNs and FISs to model non-linear systems. Four systems were used to test the identification and control of the structures proposed. The results show the ANNs and FISs (Back Propagation Algorithm) used were efficient in modeling and controlling the non-linear plants.

Keywords: non-linear systems, fuzzy set Models, neural network, control law

Procedia PDF Downloads 212
11712 Hydrogeomatic System for the Economic Evaluation of Damage by Flooding in Mexico

Authors: Alondra Balbuena Medina, Carlos Diaz Delgado, Aleida Yadira Vilchis Fránces

Abstract:

In Mexico, each year news is disseminated about the ravages of floods, such as the total loss of housing, damage to the fields; the increase of the costs of the food, derived from the losses of the harvests, coupled with health problems such as skin infection, etc. In addition to social problems such as delinquency, damage in education institutions and the population in general. The flooding is a consequence of heavy rains, tropical storms and or hurricanes that generate excess water in drainage systems that exceed its capacity. In urban areas, heavy rains can be one of the main factors in causing flooding, in addition to excessive precipitation, dam breakage, and human activities, for example, excessive garbage in the strainers. In agricultural areas, these can hardly achieve large areas of cultivation. It should be mentioned that for both areas, one of the significant impacts of floods is that they can permanently affect the livelihoods of many families, cause damage, for example in their workplaces such as farmlands, commercial or industry areas and where services are provided. In recent years, Information and Communication Technologies (ICT) have had an accelerated development, being reflected in the growth and the exponential evolution of the innovation giving; as a result, the daily generation of new technologies, updates, and applications. Innovation in the development of Information Technology applications has impacted on all areas of human activity. They influence all the orders of life of individuals, reconfiguring the way of perceiving and analyzing the world such as, for instance, interrelating with people as individuals and as a society, in the economic, political, social, cultural, educational, environmental, etc. Therefore the present work describes the creation of a system of calculation of flood costs for housing areas, retail establishments and agricultural areas from the Mexican Republic, based on the use and application of geotechnical tools being able to be useful for the benefit of the sectors of public, education and private. To generate analysis of hydrometereologic affections and with the obtained results to realize the Geoinformatics tool was constructed from two different points of view: the geoinformatic (design and development of GIS software) and the methodology of flood damage validation in order to integrate a tool that provides the user the monetary estimate of the effects caused by the floods. With information from the period 2000-2014, the functionality of the application was corroborated. For the years 2000 to 2009 only the analysis of the agricultural and housing areas was carried out, incorporating for the commercial establishment's information of the period 2010 - 2014. The method proposed for the resolution of this research project is a fundamental contribution to society, in addition to the tool itself. Therefore, it can be summarized that the problems that are in the physical-geographical environment, conceiving them from the point of view of the spatial analysis, allow to offer different alternatives of solution and also to open up slopes towards academia and research.

Keywords: floods, technological innovation, monetary estimation, spatial analysis

Procedia PDF Downloads 224
11711 Joint Space Hybrid Force/Position Control of 6-DoF Robot Manipulator Using Neural Network

Authors: Habtemariam Alemu

Abstract:

It has been known that the performance of position and force control is highly affected by both robot dynamic and environment stiffness uncertainties. In this paper, joint space hybrid force and position control strategy with self-selecting matrix using artificial neural network compensator is proposed. The objective of the work is to improve controller robustness by applying a neural network technique in order to compensate the effect of uncertainties in the robot model. Simulation results for a 6 degree of freedom (6-DoF) manipulator and different types of environments showed the effectiveness of the suggested approach. 6-DoF Puma 560 family robot manipulator is chosen as industrial robot and its efficient dynamic model is designed using Matlab/SimMechanics library.

Keywords: robot manipulator, force/position control, artificial neural network, Matlab/Simulink

Procedia PDF Downloads 517
11710 A Numerical Study on Semi-Active Control of a Bridge Deck under Seismic Excitation

Authors: A. Yanik, U. Aldemir

Abstract:

This study investigates the benefits of implementing the semi-active devices in relation to passive viscous damping in the context of seismically isolated bridge structures. Since the intrinsically nonlinear nature of semi-active devices prevents the direct evaluation of Laplace transforms, frequency response functions are compiled from the computed time history response to sinusoidal and pulse-like seismic excitation. A simple semi-active control policy is used in regard to passive linear viscous damping and an optimal non-causal semi-active control strategy. The control strategy requires optimization. Euler-Lagrange equations are solved numerically during this procedure. The optimal closed-loop performance is evaluated for an idealized controllable dash-pot. A simplified single-degree-of-freedom model of an isolated bridge is used as numerical example. Two bridge cases are investigated. These cases are; bridge deck without the isolation bearing and bridge deck with the isolation bearing. To compare the performances of the passive and semi-active control cases, frequency dependent acceleration, velocity and displacement response transmissibility ratios Ta(w), Tv(w), and Td(w) are defined. To fully investigate the behavior of the structure subjected to the sinusoidal and pulse type excitations, different damping levels are considered. Numerical results showed that, under the effect of external excitation, bridge deck with semi-active control showed better structural performance than the passive bridge deck case.

Keywords: bridge structures, passive control, seismic, semi-active control, viscous damping

Procedia PDF Downloads 242
11709 Damage Tolerance of Composites Containing Hybrid, Carbon-Innegra, Fibre Reinforcements

Authors: Armin Solemanifar, Arthur Wilkinson, Kinjalkumar Patel

Abstract:

Carbon fibre (CF) - polymer laminate composites have very low densities (approximately 40% lower than aluminium), high strength and high stiffness but in terms of toughness properties they often require modifications. For example, adding rubbers or thermoplastics toughening agents are common ways of improving the interlaminar fracture toughness of initially brittle thermoset composite matrices. The main aim of this project was to toughen CF-epoxy resin laminate composites using hybrid CF-fabrics incorporating Innegra™ a commercial highly-oriented polypropylene (PP) fibre, in which more than 90% of its crystal orientation is parallel to the fibre axis. In this study, the damage tolerance of hybrid (carbon-Innegra, CI) composites was investigated. Laminate composites were produced by resin-infusion using: pure CF fabric; fabrics with different ratios of commingled CI, and two different types of pure Innegra fabrics (Innegra 1 and Innegra 2). Dynamic mechanical thermal analysis (DMTA) was used to measure the glass transition temperature (Tg) of the composite matrix and values of flexural storage modulus versus temperature. Mechanical testing included drop-weight impact, compression-after-impact (CAI), and interlaminar (short-beam) shear strength (ILSS). Ultrasonic C-Scan imaging was used to determine the impact damage area and scanning electron microscopy (SEM) to observe the fracture mechanisms that occur during failure of the composites. For all composites, 8 layers of fabrics were used with a quasi-isotropic sequence of [-45°, 0°, +45°, 90°]s. DMTA showed the Tg of all composites to be approximately same (123 ±3°C) and that flexural storage modulus (before the onset of Tg) was the highest for the pure CF composite while the lowest were for the Innegra 1 and 2 composites. Short-beam shear strength of the commingled composites was higher than other composites, while for Innegra 1 and 2 composites only inelastic deformation failure was observed during the short-beam test. During impact, the Innegra 1 composite withstood up to 40 J without any perforation while for the CF perforation occurred at 10 J. The rate of reduction in compression strength upon increasing the impact energy was lowest for the Innegra 1 and 2 composites, while CF showed the highest rate. On the other hand, the compressive strength of the CF composite was highest of all the composites at all impacted energy levels. The predominant failure modes for Innegra composites observed in cross-sections of fractured specimens were fibre pull-out, micro-buckling, and fibre plastic deformation; while fibre breakage and matrix delamination were a major failure observed in the commingled composites due to the more brittle behaviour of CF. Thus, Innegra fibres toughened the CF composites but only at the expense of reducing compressive strength.

Keywords: hybrid composite, thermoplastic fibre, compression strength, damage tolerance

Procedia PDF Downloads 295
11708 Impact of Transgenic Adipose Derived Stem Cells in the Healing of Spinal Cord Injury of Dogs

Authors: Imdad Ullah Khan, Yongseok Yoon, Kyeung Uk Choi, Kwang Rae Jo, Namyul Kim, Eunbee Lee, Wan Hee Kim, Oh-Kyeong Kweon

Abstract:

The primary spinal cord injury (SCI) causes mechanical damage to the neurons and blood vessels. It leads to secondary SCI, which activates multiple pathological pathways, which expand neuronal damage at the injury site. It is characterized by vascular disruption, ischemia, excitotoxicity, oxidation, inflammation, and apoptotic cell death. It causes nerve demyelination and disruption of axons, which perpetuate a loss of impulse conduction through the injured spinal cord. It also leads to the production of myelin inhibitory molecules, which with a concomitant formation of an astroglial scar, impede axonal regeneration. The pivotal role regarding the neuronal necrosis is played by oxidation and inflammation. During an early stage of spinal cord injury, there occurs an abundant expression of reactive oxygen species (ROS) due to defective mitochondrial metabolism and abundant migration of phagocytes (macrophages, neutrophils). ROS cause lipid peroxidation of the cell membrane, and cell death. Abundant migration of neutrophils, macrophages, and lymphocytes collectively produce pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1beta (IL-1β), matrix metalloproteinase, superoxide dismutase, and myeloperoxidases which synergize neuronal apoptosis. Therefore, it is crucial to control inflammation and oxidation injury to minimize the nerve cell death during secondary spinal cord injury. Therefore, in response to oxidation and inflammation, heme oxygenase-1 (HO-1) is induced by the resident cells to ameliorate the milieu. In the meanwhile, neurotrophic factors are induced to promote neuroregeneration. However, it seems that anti-stress enzyme (HO-1) and neurotrophic factor (BDNF) do not significantly combat the pathological events during secondary spinal cord injury. Therefore, optimum healing can be induced if anti-inflammatory and neurotrophic factors are administered in a higher amount through an exogenous source. During the first experiment, the inflammation and neuroregeneration were selectively targeted. HO-1 expressing MSCs (HO-1 MSCs) and BDNF expressing MSCs (BDNF MSC) were co-transplanted in one group (combination group) of dogs with subacute spinal cord injury to selectively control the expression of inflammatory cytokines by HO-1 and induce neuroregeneration by BDNF. We compared the combination group with the HO-1 MSCs group, BDNF MSCs group, and GFP MSCs group. We found that the combination group showed significant improvement in functional recovery. It showed increased expression of neural markers and growth-associated proteins (GAP-43) than in other groups, which depicts enhanced neuroregeneration/neural sparing due to reduced expression of pro-inflammatory cytokines such as TNF-alpha, IL-6 and COX-2; and increased expression of anti-inflammatory markers such as IL-10 and HO-1. Histopathological study revealed reduced intra-parenchymal fibrosis in the injured spinal cord segment in the combination group than in other groups. Thus it was concluded that selectively targeting the inflammation and neuronal growth with the combined use of HO-1 MSCs and BDNF MSCs more favorably promote healing of the SCI. HO-1 MSCs play a role in controlling the inflammation, which favors the BDNF induced neuroregeneration at the injured spinal cord segment of dogs.

Keywords: HO-1 MSCs, BDNF MSCs, neuroregeneration, inflammation, anti-inflammation, spinal cord injury, dogs

Procedia PDF Downloads 118
11707 Experimental and Numerical Study of Ultra-High-Performance Fiber-Reinforced Concrete Column Subjected to Axial and Eccentric Loads

Authors: Chengfeng Fang, Mohamed Ali Sadakkathulla, Abdul Sheikh

Abstract:

Ultra-high-performance fiber reinforced concrete (UHPFRC) is a specially formulated cement-based composite characterized with an ultra-high compressive strength (fc = 240 MPa) and a low water-cement ratio (W/B= 0.2). With such material characteristics, UHPFRC is favored for the design and constructions of structures required high structural performance and slender geometries. Unlike conventional concrete, the structural performance of members manufactured with UHPFRC has not yet been fully studied, particularly, for UHPFRC columns with high slenderness. In this study, the behaviors of slender UHPFRC columns under concentric or eccentric load will be investigated both experimentally and numerically. Four slender UHPFRC columns were tested under eccentric loads with eccentricities, of 0 mm, 35 mm, 50 mm, and 85 mm, respectively, and one UHPFRC beam was tested under four-point bending. Finite element (FE) analysis was conducted with concrete damage plasticity (CDP) modulus to simulating the load-middle height or middle span deflection relationships and damage patterns of all UHPFRC members. Simulated results were compared against the experimental results and observation to gain the confidence of FE model, and this model was further extended to conduct parametric studies, which aim to investigate the effects of slenderness regarding failure modes and load-moment interaction relationships. Experimental results showed that the load bearing capacities of the slender columns reduced with an increase in eccentricity. Comparisons between load-middle height and middle span deflection relationships as well as damage patterns of all UHPFRC members obtained both experimentally and numerically demonstrated high accuracy of the FE simulations. Based on the available FE model, the following parametric study indicated that a further increase in the slenderness of column resulted in significant decreases in the load-bearing capacities, ductility index, and flexural bending capacities.

Keywords: eccentric loads, ductility index, RC column, slenderness, UHPFRC

Procedia PDF Downloads 130
11706 Fuzzy Logic Based Sliding Mode Controller for a New Soft Switching Boost Converter

Authors: Azam Salimi, Majid Delshad

Abstract:

This paper presents a modified design of a sliding mode controller based on fuzzy logic for a New ZVThigh step up DC-DC Converter . Here a proportional - integral (PI)-type current mode control is employed and a sliding mode controller is designed utilizing fuzzy algorithm. Sliding mode controller guarantees robustness against all variations and fuzzy logic helps to reduce chattering phenomenon due to sliding controller, in that way efficiency increases and error, voltage and current ripples decreases. The proposed system is simulated using MATLAB / SIMULINK. This model is tested under variations of input and reference voltages and it was found that in comparison with conventional sliding mode controllers they perform better.

Keywords: switching mode power supplies, DC-DC converters, sliding mode control, robustness, fuzzy control, current mode control, non-linear behavior

Procedia PDF Downloads 539
11705 Features of Calculating Structures for Frequent Weak Earthquakes

Authors: M. S. Belashov, A. V. Benin, Lin Hong, Sh. Sh. Nazarova, O. B. Sabirova, A. M. Uzdin, Lin Hong

Abstract:

The features of calculating structures for the action of weak earthquakes are analyzed. Earthquakes with a recurrence of 30 years and 50 years are considered. In the first case, the structure is to operate normally without damage after the earthquake. In the second case, damages are allowed that do not affect the possibility of the structure operation. Three issues are emphasized: setting elastic and damping characteristics of reinforced concrete, formalization of limit states, and combinations of loads. The dependence of damping on the reinforcement coefficient is estimated. When evaluating limit states, in addition to calculations for crack resistance and strength, a human factor, i.e., the possibility of panic among people, was considered. To avoid it, it is proposed to limit a floor-by-floor speed level in certain octave ranges. Proposals have been developed for estimating the coefficients of the combination of various loads with the seismic one. As an example, coefficients of combinations of seismic and ice loads are estimated. It is shown that for strong actions, the combination coefficients for different regions turn out to be close, while for weak actions, they may differ.

Keywords: weak earthquake, frequent earthquake, damage, limit state, reinforcement, crack resistance, strength resistance, a floor-by-floor velocity, combination coefficients

Procedia PDF Downloads 88
11704 Sustainable Biostimulant and Bioprotective Compound for the Control of Fungal Diseases in Agricultural Crops

Authors: Geisa Lima Mesquita Zambrosi, Maisa Ciampi Guillardi, Flávia Rodrigues Patrício, Oliveiro Guerreiro Filho

Abstract:

Certified agricultural products are important components of the food industry. However, certifiers have been expanding the list of restricted or prohibited pesticides, limiting the options of products for phytosanitary control of plant diseases, but without offering alternatives to the farmers. Soybean and coffee leaf rust, brown eye spots, and Phoma leaf spots are the main fungal diseases that pose a serious threat to soybean and coffee cultivation worldwide. In conventional farming systems, these diseases are controlled by using synthetic fungicides, which, in addition to intensifying the occurrence of fungal resistance, are highly toxic to the environment, farmers, and consumers. In organic, agroecological, or regenerative farming systems, product options for plant protection are limited, being available only copper-based compounds, and biodefensivesornon-standard homemade products. Therefore, there is a growing demand for effective bioprotectors with low environmental impact for adoption in more sustainable agricultural systems. Then, to contribute to covering such a gap, we have developed a compound based on plant extracts and metallic elements for foliar application. This product has both biostimulant and bioprotective action, which promotes sustainable disease control, increases productivity as well as reduces damage to the environment. The product's components have complementary mechanisms that promote protection against the disease by directly acting on the pathogens and activating the plant's natural defense system. The protective ability of the product against three coffee diseases (coffee leaf rust, brown eye spot, and Phoma leaf spot) and against soybean rust disease was evaluated, in addition to its ability to promote plant growth. Our goal is to offer an effective alternative to control the main coffee fungal diseases and soybean fungal diseases, with a biostimulant effect and low toxicity. The proposed product can also be part of the integrated management of coffee and soybean diseases in conventional farming associated with chemical and biological pesticides, offering the market a sustainable coffee and soybean with high added value and low residue content. Experiments were carried out under controlled conditions to evaluate the effectiveness of the product in controlling rust, phoma, and cercosporiosis in comparison to control-inoculated plants that did not receive the product. The in vitro and in vivo effects of the product on the pathogen were evaluated using light microscopy and scanning electron microscopy, respectively. The fungistatic action of the product was demonstrated by a reduction of 85% and 95% in spore germination and disease symptoms severity on the leaves of coffee plants, respectively. The formulation had both a protective effect, acting to prevent infection by coffee leaf rust, and a curative effect, reducing the rust symptoms after its establishment.

Keywords: plant disease, natural fungicide, plant health, sustainability, alternative disease management

Procedia PDF Downloads 42
11703 Taraxacum Officinale (Dandelion) and Its Phytochemical Approach to Malignant Diseases

Authors: Angel Champion

Abstract:

Chemotherapy and radiation use an acidified approach to induce apoptosis, which only kills mature cancer cells while resulting in gene and cell damage with significant levels of toxicity in tumor-affected tissues and organs. The acid approach, where the cells exterminated are not differentiated, induces the disappearance of white blood cells from the blood. This increases susceptibility to infection in severe forms of cancer spread. However, chemotherapy and radiation cannot kill cancer stem cells that metastasize, being the leading cause of 98% of cancer fatalities. With over 12 million new cancer cases symptomatic each year, including common malignancies such as Hepatocellular Carcinoma (HCC), this study aims to assess the bioactive constituents and phytochemical composition of Taraxacum Officinale (Dandelion). This analysis enables pharmaceutical quality and potency to be applied to studies on cancer cell proliferation and apoptosis. A phytochemical screening is carried out to identify the antioxidant components of Dandelion root, stem, and flower extract. The constituents tested for are phlorotannins, carbohydrates, glycosides, saponins, flavonoids, alkaloids, sterols, triterpenes, and anthraquinone glycosides. To conserve the existing phenolic compounds, a portion of the constituent tests will be examined with an acid, alcohol, or aqueous solvent. As a result, the qualitative and quantitative variations within the Dandelion extract that measure uniform effective potency are vital to the conformity for producing medicinal products. These medicines will be constructed with a consistent, uniform composition that physicians can use to control and effectively eradicate malignant diseases safely. Taraxacum Officinale's phytochemical composition comprises a highly-graded potency due to present bioactive contents that will essentially drive out malignant disease within the human body. Its high potency rate is powerful enough to eliminate both mature cancer cells and cancer stem cells without the cell and gene damage induced by chemotherapy and radiation. Correspondingly, the high margins of cancer mortality on a global scale are mitigated. This remarkable contribution to modern therapeutics will essentially optimize the margins of natural products and their derivatives, which account for 50% of pharmaceuticals in modern therapeutics, while preventing the adverse effects of radiation and chemotherapy drugs.

Keywords: antioxidant, apoptosis, metastasize, phytochemical, proliferation, potency

Procedia PDF Downloads 74
11702 In Vitro Assessment of the Genotoxicity of Composite Obtained by Mixture of Natural Rubber and Leather Residues for Textile Application

Authors: Dalita G. S. M. Cavalcante, Elton A. P. dos Reis, Andressa S. Gomes, Caroline S. Danna, Leandra Ernest Kerche-Silva, Eidi Yoshihara, Aldo E. Job

Abstract:

In order to minimize environmental impacts, a composite was developed from mixture of leather shavings (LE) with natural rubber (NR), which patent is already deposited. The new material created can be used in applications such as floors e heels for shoes. Besides these applications, the aim is to use this new material for the production of products for the textile industry, such as boots, gloves and bags. But the question arises, as to biocompatibility of this new material. This is justified because the structure of the leather shavings has chrome. The trivalent chromium is usually not toxic, but the hexavalent chromium can be highly toxic and genotoxic for living beings, causing damage to the DNA molecule and contributing to the formation of cancer. Based on this, the objective of this study is evaluate the possible genotoxic effects of the new composite, using as system - test two cell lines (MRC-5 and CHO-K1) by comet assay. For this, the production of the composite was performed in three proportions: for every 100 grams of NR was added 40 (E40), 50 (E50) or 60 (E60) grams of LE. The latex was collected from the rubber tree (Hevea brasiliensis). For vulcanization of the NR, activators and accelerators were used. The two cell lines were exposed to the new composite in its three proportions using elution method, that is, cells exposed to liquid extracts obtained from the composite for 24 hours. For obtaining the liquid extract, each sample of the composite was crushed into pieces and mixed with an extraction solution. The quantification of total chromium and hexavalent chromium in the extracts were performed by Optical Emission Spectrometry by Inductively Coupled Plasma (ICP-OES). The levels of DNA damage in cells exposed to both extracts were monitored by alkaline version of the comet assay. The results of the quantification of metals in ICP-OES indicated the presence of total chromium in different extracts, but were not detected presence of hexavalent chromium in any extract. Through the comet assay were not found DNA damage of the CHO-K1 cells exposed to both extracts. As for MRC-5, was found a significant increase in DNA damage in cells exposed to E50 and E60. Based on the above data, it can be asserted that the extracts obtained from the composite were highly genotoxic for MRC-5 cells. These biological responses do not appear to be related to chromium metal, since there was a predominance of trivalent chromium in the extracts, indicating that during the production process of the new composite, there was no formation of hexavalent chromium. In conclusion it can infer that the leather shavings containing chromium can be reused, thereby reducing the environmental impacts of this waste. Already on the composite indicates to its incorporation in applications that do not aim at direct contact with the human skin, and it is suggested the chain of composite production be studied, in an attempt to make it biocompatible so that it may be safely used by the textile industry.

Keywords: cell line, chrome, genotoxicity, leather, natural rubber

Procedia PDF Downloads 196
11701 Email Based Global Automation with Raspberry Pi and Control Circuit Module: Development of Smart Home Application

Authors: Lochan Basyal

Abstract:

Global Automation is an emerging technology of today’s era and is based on Internet of Things (IoT). Global automation deals with the controlling of electrical appliances throughout the world. The fabrication of this system has been carried out with interfacing an electrical control system module to Raspberry Pi. An electrical control system module includes a relay driver mechanism through which appliances are controlled automatically in respective condition. In this research project, one email ID has been assigned to Raspberry Pi, and the users from different location having different email ID can mail to Raspberry Pi on assigned email address “[email protected]” with subject heading “Device Control” with predefined command on compose email line. Also, a notification regarding current working condition of this system has been updated on respective user email ID. This approach is an innovative way of implementing smart automation system through which a user can control their electrical appliances like light, fan, television, refrigerator, etc. in their home with the use of email facility. The development of this project helps to enhance the concept of smart home application as well as industrial automation.

Keywords: control circuit, e-mail, global automation, internet of things, IOT, Raspberry Pi

Procedia PDF Downloads 167
11700 Regional Flood Frequency Analysis in Narmada Basin: A Case Study

Authors: Ankit Shah, R. K. Shrivastava

Abstract:

Flood and drought are two main features of hydrology which affect the human life. Floods are natural disasters which cause millions of rupees’ worth of damage each year in India and the whole world. Flood causes destruction in form of life and property. An accurate estimate of the flood damage potential is a key element to an effective, nationwide flood damage abatement program. Also, the increase in demand of water due to increase in population, industrial and agricultural growth, has let us know that though being a renewable resource it cannot be taken for granted. We have to optimize the use of water according to circumstances and conditions and need to harness it which can be done by construction of hydraulic structures. For their safe and proper functioning of hydraulic structures, we need to predict the flood magnitude and its impact. Hydraulic structures play a key role in harnessing and optimization of flood water which in turn results in safe and maximum use of water available. Mainly hydraulic structures are constructed on ungauged sites. There are two methods by which we can estimate flood viz. generation of Unit Hydrographs and Flood Frequency Analysis. In this study, Regional Flood Frequency Analysis has been employed. There are many methods for estimating the ‘Regional Flood Frequency Analysis’ viz. Index Flood Method. National Environmental and Research Council (NERC Methods), Multiple Regression Method, etc. However, none of the methods can be considered universal for every situation and location. The Narmada basin is located in Central India. It is drained by most of the tributaries, most of which are ungauged. Therefore it is very difficult to estimate flood on these tributaries and in the main river. As mentioned above Artificial Neural Network (ANN)s and Multiple Regression Method is used for determination of Regional flood Frequency. The annual peak flood data of 20 sites gauging sites of Narmada Basin is used in the present study to determine the Regional Flood relationships. Homogeneity of the considered sites is determined by using the Index Flood Method. Flood relationships obtained by both the methods are compared with each other, and it is found that ANN is more reliable than Multiple Regression Method for the present study area.

Keywords: artificial neural network, index flood method, multi layer perceptrons, multiple regression, Narmada basin, regional flood frequency

Procedia PDF Downloads 419
11699 Earthquake Vulnerability and Repair Cost Estimation of Masonry Buildings in the Old City Center of Annaba, Algeria

Authors: Allaeddine Athmani, Abdelhacine Gouasmia, Tiago Ferreira, Romeu Vicente

Abstract:

The seismic risk mitigation from the perspective of the old buildings stock is truly essential in Algerian urban areas, particularly those located in seismic prone regions, such as Annaba city, and which the old buildings present high levels of degradation associated with no seismic strengthening and/or rehabilitation concerns. In this sense, the present paper approaches the issue of the seismic vulnerability assessment of old masonry building stocks through the adaptation of a simplified methodology developed for a European context area similar to that of Annaba city, Algeria. Therefore, this method is used for the first level of seismic vulnerability assessment of the masonry buildings stock of the old city center of Annaba. This methodology is based on a vulnerability index that is suitable for the evaluation of damage and for the creation of large-scale loss scenarios. Over 380 buildings were evaluated in accordance with the referred methodology and the results obtained were then integrated into a Geographical Information System (GIS) tool. Such results can be used by the Annaba city council for supporting management decisions, based on a global view of the site under analysis, which led to more accurate and faster decisions for the risk mitigation strategies and rehabilitation plans.

Keywords: Damage scenarios, masonry buildings, old city center, seismic vulnerability, vulnerability index

Procedia PDF Downloads 451
11698 The Impact of Intelligent Control Systems on Biomedical Engineering and Research

Authors: Melkamu Tadesse Getachew

Abstract:

Intelligent control systems have revolutionized biomedical engineering, advancing research and enhancing medical practice. This review paper examines the impact of intelligent control on various aspects of biomedical engineering. It analyzes how these systems enhance precision and accuracy in biomedical instrumentation, improving diagnostics, monitoring, and treatment. Integration challenges are addressed, and potential solutions are proposed. The paper also investigates the optimization of drug delivery systems through intelligent control. It explores how intelligent systems contribute to precise dosing, targeted drug release, and personalized medicine. Challenges related to controlled drug release and patient variability are discussed, along with potential avenues for overcoming them. The comparison of algorithms used in intelligent control systems in biomedical control is also reviewed. The implications of intelligent control in computational and systems biology are explored, showcasing how these systems enable enhanced analysis and prediction of complex biological processes. Challenges such as interpretability, human-machine interaction, and machine reliability are examined, along with potential solutions. Intelligent control in biomedical engineering also plays a crucial role in risk management during surgical operations. This section demonstrates how intelligent systems improve patient safety and surgical outcomes when integrated into surgical robots, augmented reality, and preoperative planning. The challenges associated with these implementations and potential solutions are discussed in detail. In summary, this review paper comprehensively explores the widespread impact of intelligent control on biomedical engineering, showing the future of human health issues promising. It discusses application areas, challenges, and potential solutions, highlighting the transformative potential of these systems in advancing research and improving medical practice.

Keywords: Intelligent control systems, biomedical instrumentation, drug delivery systems, robotic surgical instruments, Computational monitoring and modeling

Procedia PDF Downloads 44
11697 Analytical Approach to Study the Uncertainties Related to the Behavior of Structures Submitted to Differential Settlement

Authors: Elio El Kahi, Michel Khouri, Olivier Deck, Pierre Rahme, Rasool Mehdizadeh

Abstract:

Recent developments in civil engineering create multiple interaction problems between the soil and the structure. One of the major problems is the impact of ground movements on buildings. Consequently, managing risks associated with these movements, requires a determination of the different influencing factors and a specific knowledge of their variability/uncertainty. The main purpose of this research is to study the behavior of structures submitted to differential settlement, in order to assess their vulnerability, taking into consideration the different sources of uncertainties. Analytical approach is applied to investigate on one hand the influence of these uncertainties that are related to the soil, and on the other hand the structure stiffness variation with the presence of openings and the movement transmitted between them as related to the origin and shape of the free-field movement. Results reveal the effect of taking these uncertainties into consideration, and specify the dominant and most significant parameters that control the ground movement associated with the Soil-Structure Interaction (SSI) phenomenon.

Keywords: analytical approach, building, damage, differential settlement, soil-structure interaction, uncertainties

Procedia PDF Downloads 235
11696 Frequency Controller Design for Distributed Generation by Load Shedding: Multi-Agent Systems Approach

Authors: M. R. Vaezi, R. Ghasemi, A. Akramizadeh

Abstract:

Frequency stability of microgrids under islanded operation attracts particular attention recently. A new cooperative frequency control strategy based on centralized multi-agent system (CMAS) is proposed in this study. On this strategy, agents sent data and furthermore each component has its own to center operating decisions (MGCC). After deciding on the information, they are returned. Frequency control strategies include primary and secondary frequency control and disposal of multi-stage load in which this study will also provide a method and algorithm for load shedding. This could also be a big problem for the performance of micro-grid in times of disaster. The simulation results show the promising performance of the proposed structure of the controller based on multi agent systems.

Keywords: frequency control, islanded microgrid, multi-agent system, load shedding

Procedia PDF Downloads 463