Search results for: distribution temperature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11132

Search results for: distribution temperature

422 Ectopic Osteoinduction of Porous Composite Scaffolds Reinforced with Graphene Oxide and Hydroxyapatite Gradient Density

Authors: G. M. Vlasceanu, H. Iovu, E. Vasile, M. Ionita

Abstract:

Herein, the synthesis and characterization of chitosan-gelatin highly porous scaffold reinforced with graphene oxide, and hydroxyapatite (HAp), crosslinked with genipin was targeted. In tissue engineering, chitosan and gelatin are two of the most robust biopolymers with wide applicability due to intrinsic biocompatibility, biodegradability, low antigenicity properties, affordability, and ease of processing. HAp, per its exceptional activity in tuning cell-matrix interactions, is acknowledged for its capability of sustaining cellular proliferation by promoting bone-like native micro-media for cell adjustment. Genipin is regarded as a top class cross-linker, while graphene oxide (GO) is viewed as one of the most performant and versatile fillers. The composites with natural bone HAp/biopolymer ratio were obtained by cascading sonochemical treatments, followed by uncomplicated casting methods and by freeze-drying. Their structure was characterized by Fourier Transform Infrared Spectroscopy and X-ray Diffraction, while overall morphology was investigated by Scanning Electron Microscopy (SEM) and micro-Computer Tomography (µ-CT). Ensuing that, in vitro enzyme degradation was performed to detect the most promising compositions for the development of in vivo assays. Suitable GO dispersion was ascertained within the biopolymer mix as nanolayers specific signals lack in both FTIR and XRD spectra, and the specific spectral features of the polymers persisted with GO load enhancement. Overall, correlations between the GO induced material structuration, crystallinity variations, and chemical interaction of the compounds can be correlated with the physical features and bioactivity of each composite formulation. Moreover, the HAp distribution within follows an auspicious density gradient tuned for hybrid osseous/cartilage matter architectures, which were mirrored in the mice model tests. Hence, the synthesis route of a natural polymer blend/hydroxyapatite-graphene oxide composite material is anticipated to emerge as influential formulation in bone tissue engineering. Acknowledgement: This work was supported by the project 'Work-based learning systems using entrepreneurship grants for doctoral and post-doctoral students' (Sisteme de invatare bazate pe munca prin burse antreprenor pentru doctoranzi si postdoctoranzi) - SIMBA, SMIS code 124705 and by a grant of the National Authority for Scientific Research and Innovation, Operational Program Competitiveness Axis 1 - Section E, Program co-financed from European Regional Development Fund 'Investments for your future' under the project number 154/25.11.2016, P_37_221/2015. The nano-CT experiments were possible due to European Regional Development Fund through Competitiveness Operational Program 2014-2020, Priority axis 1, ID P_36_611, MySMIS code 107066, INOVABIOMED.

Keywords: biopolymer blend, ectopic osteoinduction, graphene oxide composite, hydroxyapatite

Procedia PDF Downloads 86
421 Aerofloral Studies and Allergenicity Potentials of Dominant Atmospheric Pollen Types at Some Locations in Northwestern Nigeria

Authors: Olugbenga S. Alebiosu, Olusola H. Adekanmbi, Oluwatoyin T. Ogundipe

Abstract:

Pollen and spores have been identified as major airborne bio-particles inducing respiratory disorders such as asthma, allergic rhinitis and atopic dermatitis among hypersensitive individuals. An aeropalynological study was conducted within a one year sampling period with a view to investigating the monthly depositional rate of atmospheric pollen and spores; influence of the immediate vegetation on airborne pollen distribution; allergenic potentials of dominant atmospheric pollen types at selected study locations in Bauchi and Taraba states, Northwestern Nigeria. A tauber-like pollen trap was employed in aerosampling with the sampler positioned at a height of 5 feet above the ground, followed by a monthly collection of the recipient solution for the sampling period. The collected samples were subjected to acetolysis treatment, examined microscopically with the identification of pollen grains and spores using reference materials and published photomicrographs. Plants within the surrounding vegetation were enumerated. Crude protein contents extracted from pollen types found to be commonly dominant at both study locations; Senna siamea, Terminalia cattapa, Panicum maximum and Zea mays were used to sensitize Musmusculus. Histopathological studies of bronchi and lung sections from certain dead M.musculus in the test groups was conducted. Blood samples were collected from the pre-orbital vein of M.musculus and processed for serological and haematological (differential and total white blood cell counts) studies. ELISA was used in determining the levels of serological parameters: IgE and cytokines (TNF-, IL-5, and IL-13). Statistical significance was observed in the correlation between the levels of serological and haematological parameters elicited by each test group, differences between the levels of serological and haematological parameters elicited by each test group and those of the control, as well as at varying sensitization periods. The results from this study revealed dominant airborne pollen types across the study locations; Syzygiumguineense, Tridaxprocumbens, Elaeisguineensis, Mimosa sp., Borreria sp., Terminalia sp., Senna sp. and Poaceae. Nephrolepis sp., Pteris sp. and a trilete fern also produced spores. This study also revealed that some of the airborne pollen types were produced by local plants at the study locations. Bronchi sections of M.musculus after first and second sensitizations, as well as lung section after first sensitization with Senna siamea, showed areas of necrosis. Statistical significance was recorded in the correlation between the levels of some serological and haematological parameters produced by each test group and those of the control, as well as at certain sensitization periods. The study revealed some candidate pollen allergens at the study locations allergy sufferers and also established a complexity of interaction between immune cells, IgE and cytokines at varied periods of mice sensitization and forming a paradigm of human immune response to different pollen allergens. However, it is expedient that further studies should be conducted on these candidate pollen allergens for their allergenicity potential in humans within their immediate environment.

Keywords: airborne, hypersensitive, mus musculus, pollen allergens, respiratory, tauber-like

Procedia PDF Downloads 112
420 Rheological Evaluation of a Mucoadhesive Precursor of Based-Poloxamer 407 or Polyethylenimine Liquid Crystal System for Buccal Administration

Authors: Jéssica Bernegossi, Lívia Nordi Dovigo, Marlus Chorilli

Abstract:

Mucoadhesive liquid crystalline systems are emerging how delivery systems for oral cavity. These systems are interesting since they facilitate the targeting of medicines and change the release enabling a reduction in the number of applications made by the patient. The buccal mucosa is permeable besides present a great blood supply and absence of first pass metabolism, it is a good route of administration. It was developed two systems liquid crystals utilizing as surfactant the ethyl alcohol ethoxylated and propoxylated (30%) as oil phase the oleic acid (60%), and the aqueous phase (10%) dispersion of polymer polyethylenimine (0.5%) or dispersion of polymer poloxamer 407 (16%), with the intention of applying the buccal mucosa. Initially, was performed for characterization of systems the conference by polarized light microscopy and rheological analysis. For the preparation of the systems the components described was added above in glass vials and shaken. Then, 30 and 100% artificial saliva were added to each prepared formulation so as to simulate the environment of the oral cavity. For the verification of the system structure, aliquots of the formulations were observed in glass slide and covered with a coverslip, examined in polarized light microscope (PLM) Axioskop - Zeizz® in 40x magnifier. The formulations were also evaluated for their rheological profile Rheometer TA Instruments®, which were obtained rheograms the selected systems employing fluency mode (flow) in temperature of 37ºC (98.6ºF). In PLM, it was observed that in formulations containing polyethylenimine and poloxamer 407 without the addition of artificial saliva was observed dark-field being indicative of microemulsion, this was also observed with the formulation that was increased with 30% of the artificial saliva. In the formulation that was increased with 100% simulated saliva was shown to be a system structure since it presented anisotropy with the presence of striae being indicative of hexagonal liquid crystalline mesophase system. Upon observation of rheograms, both systems without the addition of artificial saliva showed a Newtonian profile, after addition of 30% artificial saliva have been given a non-Newtonian behavior of the pseudoplastic-thixotropic type and after adding 100% of the saliva artificial proved plastic-thixotropic. Furthermore, it is clearly seen that the formulations containing poloxamer 407 have significantly larger (15-800 Pa) shear stress compared to those containing polyethyleneimine (5-50 Pa), indicating a greater plasticity of these. Thus, it is possible to observe that the addition of saliva was of interest to the system structure, starting from a microemulsion for a liquid crystal system, thereby also changing thereby its rheological behavior. The systems have promising characteristics as controlled release systems to the oral cavity, as it features good fluidity during its possible application and greater structuring of the system when it comes into contact with environmental saliva.

Keywords: liquid crystal system, poloxamer 407, polyethylenimine, rheology

Procedia PDF Downloads 429
419 Malaria Menace in Pregnancy; Hard to Ignore

Authors: Nautiyal Ruchira, Nautiyal Hemant, Chaudhury Devnanda, Bhargava Surbhi, Chauhan Nidhi

Abstract:

Introduction: South East Asian region contributes 2.5 million cases of malaria each year to the global burden of 300 to 500 million of which 76% is reported from India. Government of India launched a national program almost half a century ago, still malaria remains a major public health challenge. Pregnant women are more susceptible to severe malaria and its fetomaternal complications. Inadequate surveillance and under-reporting underestimates the problem. Aim: Present study aimed to analyze the clinical course and pattern of malaria during pregnancy and to study the feto-maternal outcome. Methodology: This is a prospective observational study carried out at Himalayan Institute of Medical Sciences – a tertiary care center in the sub-Himalayan state of Uttarakhand, Northern India. All the pregnant women with malaria and its complications were recruited in the study during 2009 to 2014 which included referred cases from the state of western Uttar Pradesh. A thorough history and clinical examination were carried out to assess maternal and fetal condition. Relevant investigations including haemogram, platelet count, LFT, RFT, and USG was done. Blood slides and rapid diagnostic tests were done to diagnose the type of malaria.The primary outcomes measured were the type of malaria infection, maternal complications associated with malaria, outcome of pregnancy and effect on the fetus. Results: 67 antenatal cases with malaria infection were studied. 71% patients were diagnosed with plasmodium vivax infection, 25% cases were plasmodium falciparum positive and in 3% cases mixed infection was found. 38(56%) patients were primigravida and 29(43%) were multiparous. Most of the patients had already received some treatment from their local doctors and presented with severe malaria with the complications. Thrombocytopenia was the commonest manifestation seen in 35(52%) patients, jaundice in 28%, severe anemia in 18%, and severe oligohydramnios in 10% and renal failure in 6% cases. Regarding pregnancy outcome there were 44 % preterm deliveries, 22% had IUFD and abortions in 6% cases.20% of newborn were low birth weight and 6% were IUGR. There was only one maternal death which occurred due to ARDS in falciparum malaria. Although Plasmodium vivax was the main parasite considering the severity of clinical presentation, all the patients received intensive care. As most of the patients had received chloroquine therapy hence they were treated with IV artesunate followed by oral artemesinin combination therapy. Other therapies in the form of packed RBC’s and platelet transfusions, dialysis and ventilator support were provided when required. Conclusion: Even in areas with annual parasite index (API) less than 2 like ours, malaria in pregnancy could be an alarming problem. Vivax malaria cannot be considered benign in pregnancy because of high incidence of morbidity. Prompt diagnosis and aggressive treatment can reduce morbidity and mortality significantly. Increased community level research, integrating ANC checkups with the distribution of insecticide-treated nets in areas of high endemicity, imparting education and awareness will strengthen the existing control strategies.

Keywords: severe malaria, pregnancy, plasmodium vivax, plasmodium falciparum

Procedia PDF Downloads 253
418 Reducing Road Traffic Accident: Rapid Evidence Synthesis for Low and Middle Income Countries

Authors: Tesfaye Dagne, Dagmawit Solomon, Firmaye Bogale, Yosef Gebreyohannes, Samson Mideksa, Mamuye Hadis, Desalegn Ararso, Ermias Woldie, Tsegaye Getachew, Sabit Ababor, Zelalem Kebede

Abstract:

Globally, road traffic accident (RTA) is causing millions of deaths and injuries every year. It is one of the leading causes of death among people of all age groups and the problem is worse among young reproductive age group. Moreover the problem is increasing with an increasing number of vehicles. The majority of the problem happen in low and middle income countries (LMIC), even if the number of vehicles in these countries is low compared to their population. So, the objective of this paper is to summarize the best available evidence on interventions that can reduce road traffic accidents in low and middle income countries (LMIC). Method: A rapid evidence synthesis approach adapted from the SURE Rapid Response Service was applied to search, appraise and summarize the best available evidence on effective intervention in reducing road traffic injury. To answer the question under review, we searched for relevant studies from databases including PubMed, the Cochrane Library, TRANSPORT, Health system evidence, Epistemonikos, and SUPPORT summary. The following key terms were used for searching: Road traffic accident, RTA, Injury, Reduc*, Prevent*, Minimiz*, “Low and middle-income country”, LMIC. We found 18 articles through a search of different databases mentioned above. After screening for the titles and abstracts of the articles, four of them which satisfy the inclusion criteria were included in the final review. Then we appraised and graded the methodological quality of systematic reviews that are deemed to be highly relevant using AMSTAR. Finding: The identified interventions to reduce road traffic accidents were legislation and enforcement, public awareness/education, speed control/ rumble strips, road improvement, mandatory motorcycle helmet, graduated driver license, street lighting. Legislation and Enforcement: Legislation focusing on mandatory motorcycle helmet usage, banning cellular phone usage when driving, seat belt laws, decreasing the legal blood alcohol content (BAC) level from 0.06 g/L to 0.02 g/L bring the best result where enforcement is there. Public Awareness/Education: focusing on seat belt use, child restraint use, educational training in health centers and schools/universities, and public awareness with media through the distribution of videos, posters/souvenirs, and pamphlets are effective in the short run. Speed Control: through traffic calming bumps, or speed bumps, rumbled strips are effective in reducing accidents and fatality. Mandatory Motorcycle Helmet: is associated with reduction in mortality. Graduated driver’s license (GDL): reduce road traffic injury by 19%. Street lighting: is a low-cost intervention which may reduce road traffic accidents.

Keywords: evidence synthesis, injury, rapid review, reducing, road traffic accident

Procedia PDF Downloads 136
417 Wealth-Based Inequalities in Child Health: A Micro-Level Analysis of Maharashtra State in India

Authors: V. Rekha, Rama Pal

Abstract:

The study examines the degree and magnitude of wealth-based inequalities in child health and its determinants in India. Despite making strides in economic growth, India has failed to secure a better nutritional status for all the children. The country currently faces the double burden of malnutrition as well as the problems of overweight and obesity. Child malnutrition, obesity, unsafe water, sanitation among others are identified as the risk factors for Non-Communicable Diseases (NCDs). Eliminating malnutrition in all its forms will catalyse improved health and economic outcomes. The assessment of the distributive dimension of child health across various segments of the population is essential for effective policy intervention. The study utilises the fourth round of District Level Health Survey for 2012-13 to analyse the inequalities among children in the age group 0-14 years in Maharashtra, a state in the western region of India with a population of 11.24 crores which constitutes 9.3 percent of the total population of India. The study considers the extent of health inequality by state, districts, sector, age-groups, and gender. The z-scores of four child health outcome variables are computed to assess the nutritional status of pre-school and school children using WHO reference. The descriptive statistics, concentration curves, concentration indices, correlation matrix, logistic regression have been used to analyse the data. The results indicate that magnitude of inequality is higher in Maharashtra and child health inequalities manifest primarily among the weaker sections of society. The concentration curves show that there exists a pro-poor inequality in child malnutrition measured by stunting, wasting, underweight, anaemia and a pro-rich overweight inequality. The inequalities in anaemia are observably lower due to the widespread prevalence. Rural areas exhibit a higher incidence of malnutrition, but greater inequality is observed in the urban areas. Overall, the wealth-based inequalities do not vary significantly between age groups. It appears that there is no gender discrimination at the state level. Further, rural-urban differentials in gender show that boys from the rural area and girls living in the urban region experience higher disparities in health. The relative distribution of undernutrition across districts in Maharashtra reveals that malnutrition is rampant and considerable heterogeneity also exists. A negative correlation is established between malnutrition prevalence and human development indicators. The findings of logistic regression analysis reveal that lower economic status of the household is associated with a higher probability of being malnourished. The study recognises household wealth, education of the parent, child gender, and household size as factors significantly related to malnutrition. The results suggest that among the supply-side variables, child-oriented government programmes might be beneficial in tackling nutrition deficit. In order to bridge the health inequality gap, the government needs to target the schemes better and should expand the coverage of services.

Keywords: child health, inequality, malnutrition, obesity

Procedia PDF Downloads 117
416 The Effect of Elapsed Time on the Cardiac Troponin-T Degradation and Its Utility as a Time Since Death Marker in Cases of Death Due to Burn

Authors: Sachil Kumar, Anoop K.Verma, Uma Shankar Singh

Abstract:

It’s extremely important to study postmortem interval in different causes of death since it assists in a great way in making an opinion on the exact cause of death following such incident often times. With diligent knowledge of the interval one could really say as an expert that the cause of death is not feigned hence there is a great need in evaluating such death to have been at the CRIME SCENE before performing an autopsy on such body. The approach described here is based on analyzing the degradation or proteolysis of a cardiac protein in cases of deaths due to burn as a marker of time since death. Cardiac tissue samples were collected from (n=6) medico-legal autopsies, (Department of Forensic Medicine and Toxicology), King George’s Medical University, Lucknow India, after informed consent from the relatives and studied post-mortem degradation by incubation of the cardiac tissue at room temperature (20±2 OC) for different time periods (~7.30, 18.20, 30.30, 41.20, 41.40, 54.30, 65.20, and 88.40 Hours). The cases included were the subjects of burn without any prior history of disease who died in the hospital and their exact time of death was known. The analysis involved extraction of the protein, separation by denaturing gel electrophoresis (SDS-PAGE) and visualization by Western blot using cTnT specific monoclonal antibodies. The area of the bands within a lane was quantified by scanning and digitizing the image using Gel Doc. As time postmortem progresses the intact cTnT band degrades to fragments that are easily detected by the monoclonal antibodies. A decreasing trend in the level of cTnT (% of intact) was found as the PM hours increased. A significant difference was observed between <15 h and other PM hours (p<0.01). Significant difference in cTnT level (% of intact) was also observed between 16-25 h and 56-65 h & >75 h (p<0.01). Western blot data clearly showed the intact protein at 42 kDa, three major (28 kDa, 30kDa, 10kDa) fragments, three additional minor fragments (12 kDa, 14kDa, and 15 kDa) and formation of low molecular weight fragments. Overall, both PMI and cardiac tissue of burned corpse had a statistically significant effect where the greatest amount of protein breakdown was observed within the first 41.40 Hrs and after it intact protein slowly disappears. If the percent intact cTnT is calculated from the total area integrated within a Western blot lane, then the percent intact cTnT shows a pseudo-first order relationship when plotted against the time postmortem. A strong significant positive correlation was found between cTnT and PM hours (r=0.87, p=0.0001). The regression analysis showed a good variability explained (R2=0.768) The post-mortem Troponin-T fragmentation observed in this study reveals a sequential, time-dependent process with the potential for use as a predictor of PMI in cases of burning.

Keywords: burn, degradation, postmortem interval, troponin-T

Procedia PDF Downloads 424
415 Educational Infrastructure a Barrier for Teaching and Learning Architecture

Authors: Alejandra Torres-Landa López

Abstract:

Introduction: Can architecture students be creative in spaces conformed by an educational infrastructure build with paradigms of the past?, this question and others related are answered in this paper as it presents the PhD research: An anthropic conflict in Mexican Higher Education Institutes, problems and challenges of the educational infrastructure in teaching and learning History of Architecture. This research was finished in 2013 and is one of the first studies conducted nationwide in Mexico that analysis the educational infrastructure impact in learning architecture; its objective was to identify which elements of the educational infrastructure of Mexican Higher Education Institutes where architects are formed, hinder or contribute to the teaching and learning of History of Architecture; how and why it happens. The methodology: A mixed methodology was used combining quantitative and qualitative analysis. Different resources and strategies for data collection were used, such as questionnaires for students and teachers, interviews to architecture research experts, direct observations in Architecture classes, among others; the data collected was analyses using SPSS and MAXQDA. The veracity of the quantitative data was supported by the Cronbach’s Alpha Coefficient, obtaining a 0.86, figure that gives the data enough support. All the above enabled to certify the anthropic conflict in which Mexican Universities are. Major findings of the study: Although some of findings were probably not unknown, they haven’t been systematized and analyzed with the depth to which it’s done in this research. So, it can be said, that the educational infrastructure of most of the Higher Education Institutes studied, is a barrier to the educational process, some of the reasons are: the little morphological variation of space, the inadequate control of lighting, noise, temperature, equipment and furniture, the poor or none accessibility for disable people; as well as the absence, obsolescence and / or insufficiency of information technologies are some of the issues that generate an anthropic conflict understanding it as the trouble that teachers and students have to relate between them, in order to achieve significant learning). It is clear that most of the educational infrastructure of Mexican Higher Education Institutes is anchored to paradigms of the past; it seems that they respond to the previous era of industrialization. The results confirm that the educational infrastructure of Mexican Higher Education Institutes where architects are formed, is perceived as a "closed container" of people and data; infrastructure that becomes a barrier to teaching and learning process. Conclusion: The research results show it's time to change the paradigm in which we conceive the educational infrastructure, it’s time to stop seen it just only as classrooms, workshops, laboratories and libraries, as it must be seen from a constructive, urban, architectural and human point of view, taking into account their different dimensions: physical, technological, documental, social, among others; so the educational infrastructure can become a set of elements that organize and create spaces where ideas and thoughts can be shared; to be a social catalyst where people can interact between each other and with the space itself.

Keywords: educational infrastructure, impact of space in learning architecture outcomes, learning environments, teaching architecture, learning architecture

Procedia PDF Downloads 382
414 Rainwater Management: A Case Study of Residential Reconstruction of Cultural Heritage Buildings in Russia

Authors: V. Vsevolozhskaia

Abstract:

Since 1990, energy-efficient development concepts have constituted both a turning point in civil engineering and a challenge for an environmentally friendly future. Energy and water currently play an essential role in the sustainable economic growth of the world in general and Russia in particular: the efficiency of the water supply system is the second most important parameter for energy consumption according to the British assessment method, while the water-energy nexus has been identified as a focus for accelerating sustainable growth and developing effective, innovative solutions. The activities considered in this study were aimed at organizing and executing the renovation of the property in residential buildings located in St. Petersburg, specifically buildings with local or federal historical heritage status under the control of the St. Petersburg Committee for the State Inspection and Protection of Historic and Cultural Monuments (KGIOP) and UNESCO. Even after reconstruction, these buildings still fall into energy efficiency class D. Russian Government Resolution No. 87 on the structure and required content of project documentation contains a section entitled ‘Measures to ensure compliance with energy efficiency and equipment requirements for buildings, structures, and constructions with energy metering devices’. Mention is made of the need to install collectors and meters, which only calculate energy, neglecting the main purpose: to make buildings more energy-efficient, potentially even energy efficiency class A. The least-explored aspects of energy-efficient technology in the Russian Federation remain the water balance and the possibility of implementing rain and meltwater collection systems. These modern technologies are used exclusively for new buildings due to a lack of government directive to create project documentation during the planning of major renovations and reconstruction that would include the collection and reuse of rainwater. Energy-efficient technology for rain and meltwater collection is currently applied only to new buildings, even though research has proved that using rainwater is safe and offers a huge step forward in terms of eco-efficiency analysis and water innovation. Where conservation is mandatory, making changes to protected sites is prohibited. In most cases, the protected site is the cultural heritage building itself, including the main walls and roof. However, the installation of a second water supply system and collection of rainwater would not affect the protected building itself. Water efficiency in St. Petersburg is currently considered only from the point of view of the installation that regulates the flow of the pipeline shutoff valves. The development of technical guidelines for the use of grey- and/or rainwater to meet the needs of residential buildings during reconstruction or renovation is not yet complete. The ideas for water treatment, collection and distribution systems presented in this study should be taken into consideration during the reconstruction or renovation of residential cultural heritage buildings under the protection of KGIOP and UNESCO. The methodology applied also has the potential to be extended to other cultural heritage sites in northern countries and lands with an average annual rainfall of over 600 mm to cover average toilet-flush needs.

Keywords: cultural heritage, energy efficiency, renovation, rainwater collection, reconstruction, water management, water supply

Procedia PDF Downloads 73
413 Development of Method for Detecting Low Concentration of Organophosphate Pesticides in Vegetables Using near Infrared Spectroscopy

Authors: Atchara Sankom, Warapa Mahakarnchanakul, Ronnarit Rittiron, Tanaboon Sajjaanantakul, Thammasak Thongket

Abstract:

Vegetables are frequently contaminated with pesticides residues resulting in the most food safety concern among agricultural products. The objective of this work was to develop a method to detect the organophosphate (OP) pesticides residues in vegetables using Near Infrared (NIR) spectroscopy technique. Low concentration (ppm) of OP pesticides in vegetables were investigated. The experiment was divided into 2 sections. In the first section, Chinese kale spiked with different concentrations of chlorpyrifos pesticide residues (0.5-100 ppm) was chosen as the sample model to demonstrate the appropriate conditions of sample preparation, both for a solution or solid sample. The spiked samples were extracted with acetone. The sample extracts were applied as solution samples, while the solid samples were prepared by the dry-extract system for infrared (DESIR) technique. The DESIR technique was performed by embedding the solution sample on filter paper (GF/A) and then drying. The NIR spectra were measured with the transflectance mode over wavenumber regions of 12,500-4000 cm⁻¹. The QuEChERS method followed by gas chromatography-mass spectrometry (GC-MS) was performed as the standard method. The results from the first section showed that the DESIR technique with NIR spectroscopy demonstrated good accurate calibration result with R² of 0.93 and RMSEP of 8.23 ppm. However, in the case of solution samples, the prediction regarding the NIR-PLSR (partial least squares regression) equation showed poor performance (R² = 0.16 and RMSEP = 23.70 ppm). In the second section, the DESIR technique coupled with NIR spectroscopy was applied to the detection of OP pesticides in vegetables. Vegetables (Chinese kale, cabbage and hot chili) were spiked with OP pesticides (chlorpyrifos ethion and profenofos) at different concentrations ranging from 0.5 to 100 ppm. Solid samples were prepared (based on the DESIR technique), then samples were scanned by NIR spectrophotometer at ambient temperature (25+2°C). The NIR spectra were measured as in the first section. The NIR- PLSR showed the best calibration equation for detecting low concentrations of chlorpyrifos residues in vegetables (Chinese kale, cabbage and hot chili) according to the prediction set of R2 and RMSEP of 0.85-0.93 and 8.23-11.20 ppm, respectively. For ethion residues, the best calibration equation of NIR-PLSR showed good indexes of R² and RMSEP of 0.88-0.94 and 7.68-11.20 ppm, respectively. As well as the results for profenofos pesticide, the NIR-PLSR also showed the best calibration equation for detecting the profenofos residues in vegetables according to the good index of R² and RMSEP of 0.88-0.97 and 5.25-11.00 ppm, respectively. Moreover, the calibration equation developed in this work could rapidly predict the concentrations of OP pesticides residues (0.5-100 ppm) in vegetables, and there was no significant difference between NIR-predicted values and actual values (data from GC-MS) at a confidence interval of 95%. In this work, the proposed method using NIR spectroscopy involving the DESIR technique has proved to be an efficient method for the screening detection of OP pesticides residues at low concentrations, and thus increases the food safety potential of vegetables for domestic and export markets.

Keywords: NIR spectroscopy, organophosphate pesticide, vegetable, food safety

Procedia PDF Downloads 132
412 Convective Boiling of CO₂/R744 in Macro and Micro-Channels

Authors: Adonis Menezes, J. C. Passos

Abstract:

The current panorama of technology in heat transfer and the scarcity of information about the convective boiling of CO₂ and hydrocarbon in small diameter channels motivated the development of this work. Among non-halogenated refrigerants, CO₂/ R744 has distinct thermodynamic properties compared to other fluids. The R744 presents significant differences in operating pressures and temperatures, operating at higher values compared to other refrigerants, and this represents a challenge for the design of new evaporators, as the original systems must normally be resized to meet the specific characteristics of the R744, which creates the need for a new design and optimization criteria. To carry out the convective boiling tests of CO₂, an experimental apparatus capable of storing (m= 10kg) of saturated CO₂ at (T = -30 ° C) in an accumulator tank was used, later this fluid was pumped using a positive displacement pump with three pistons, and the outlet pressure was controlled and could reach up to (P = 110bar). This high-pressure saturated fluid passed through a Coriolis type flow meter, and the mass velocities varied between (G = 20 kg/m².s) up to (G = 1000 kg/m².s). After that, the fluid was sent to the first test section of circular cross-section in diameter (D = 4.57mm), where the inlet and outlet temperatures and pressures, were controlled and the heating was promoted by the Joule effect using a source of direct current with a maximum heat flow of (q = 100 kW/m²). The second test section used a cross-section with multi-channels (seven parallel channels) with a square cross-section of (D = 2mm) each; this second test section has also control of temperature and pressure at the inlet and outlet as well as for heating a direct current source was used, with a maximum heat flow of (q = 20 kW/m²). The fluid in a biphasic situation was directed to a parallel plate heat exchanger so that it returns to the liquid state, thus being able to return to the accumulator tank, continuing the cycle. The multi-channel test section has a viewing section; a high-speed CMOS camera was used for image acquisition, where it was possible to view the flow patterns. The experiments carried out and presented in this report were conducted in a rigorous manner, enabling the development of a database on the convective boiling of the R744 in macro and micro channels. The analysis prioritized the processes from the beginning of the convective boiling until the drying of the wall in a subcritical regime. The R744 resurfaces as an excellent alternative to chlorofluorocarbon refrigerants due to its negligible ODP (Ozone Depletion Potential) and GWP (Global Warming Potential) rates, among other advantages. The results found in the experimental tests were very promising for the use of CO₂ in micro-channels in convective boiling and served as a basis for determining the flow pattern map and correlation for determining the heat transfer coefficient in the convective boiling of CO₂.

Keywords: convective boiling, CO₂/R744, macro-channels, micro-channels

Procedia PDF Downloads 120
411 Light, Restorativeness and Performance in the Workplace: A Pilot Study

Authors: D. Scarpanti, M. Brondino, M. Pasini

Abstract:

Background: the present study explores the role of light and restorativeness on work. According with the Attention Restoration Theory (ART) and a Model of Work Environment, the main idea is that some features of environment, i.e., lighting, influences the direct attention, and so, the performance. Restorativeness refers to the presence/absence level of all the characteristics of physical environment that help to regenerate direct attention. Specifically, lighting can affect level of fascination and attention in one hand; and in other hand promotes several biological functions via pineal gland. Different reviews on this topic show controversial results. In order to bring light on this topic, the hypotheses of this study are that lighting can affect the construct of restorativeness and, in the second time, the restorativeness can affect the performance. Method: the participants are 30 workers of a mechatronic company in the North Italy. Every subject answered to a questionnaire valuing their subjective perceptions of environment in a different way: some objective features of environment, like lighting, temperature and air quality; some subjective perceptions of this environment; finally, the participants answered about their perceived performance. The main attention is on the features of light and his components: visual comfort, general preferences and pleasantness; and the dimensions of the construct of restorativeness; fascination, coherence and being away. The construct of performance per se is conceptualized in three level: individual, team membership and organizational membership; and in three different components: proficiency, adaptability, and proactivity, for a total of 9 subcomponents. Findings: path analysis showed that some characteristics of lighting respectively affected the dimension of fascination; and, as expected, the dimension of fascination affected work performance. Conclusions: The present study is a first pilot step of a wide research. These first results can be summarized with the statement that lighting and restorativeness contribute to explain work performance variability: in details perceptions of visual comfort, satisfaction and pleasantness, and fascination respectively. Results related to fascination are particularly interesting because fascination is conceptualized as the opposite of the construct of direct attention. The main idea is, in order to regenerate attentional capacity, it’s necessary to provide a lacking of attention (fascination). The sample size did not permit to test simultaneously the role of the perceived characteristics of light to see how they differently contribute to predict fascination of the work environment. However, the results highlighted the important role that light could have in predicting restorativeness dimensions and probably with a larger sample we could find larger effects also on work performance. Furthermore, longitudinal data will contribute to better analyze the causal model along time. Applicative implications: the present pilot study highlights the relevant role of lighting and perceived restorativeness in the work environment and the importance to focus attention on light features and the restorative characteristics in the design of work environments.

Keywords: lighting, performance, restorativeness, workplace

Procedia PDF Downloads 133
410 Synthesis of Methanol through Photocatalytic Conversion of CO₂: A Green Chemistry Approach

Authors: Sankha Chakrabortty, Biswajit Ruj, Parimal Pal

Abstract:

Methanol is one of the most important chemical products and intermediates. It can be used as a solvent, intermediate or raw material for a number of higher valued products, fuels or additives. From the last one decay, the total global demand of methanol has increased drastically which forces the scientists to produce a large amount of methanol from a renewable source to meet the global demand with a sustainable way. Different types of non-renewable based raw materials have been used for the synthesis of methanol on a large scale which makes the process unsustainable. In this circumstances, photocatalytic conversion of CO₂ into methanol under solar/UV excitation becomes a viable approach to give a sustainable production approach which not only meets the environmental crisis by recycling CO₂ to fuels but also reduces CO₂ amount from the atmosphere. Development of such sustainable production approach for CO₂ conversion into methanol still remains a major challenge in the current research comparing with conventional energy expensive processes. In this backdrop, the development of environmentally friendly materials, like photocatalyst has taken a great perspective for methanol synthesis. Scientists in this field are always concerned about finding an improved photocatalyst to enhance the photocatalytic performance. Graphene-based hybrid and composite materials with improved properties could be a better nanomaterial for the selective conversion of CO₂ to methanol under visible light (solar energy) or UV light. The present invention relates to synthesis an improved heterogeneous graphene-based photocatalyst with improved catalytic activity and surface area. Graphene with enhanced surface area is used as coupled material of copper-loaded titanium oxide to improve the electron capture and transport properties which substantially increase the photoinduced charge transfer and extend the lifetime of photogenerated charge carriers. A fast reduction method through H₂ purging has been adopted to synthesis improved graphene whereas ultrasonication based sol-gel method has been applied for the preparation of graphene coupled copper loaded titanium oxide with some enhanced properties. Prepared photocatalysts were exhaustively characterized using different characterization techniques. Effects of catalyst dose, CO₂ flow rate, reaction temperature and stirring time on the efficacy of the system in terms of methanol yield and productivity have been studied in the present study. The study shown that the newly synthesized photocatalyst with an enhanced surface resulting in a sustained productivity and yield of methanol 0.14 g/Lh, and 0.04 g/gcat respectively, after 3 h of illumination under UV (250W) at an optimum catalyst dosage of 10 g/L having 1:2:3 (Graphene: TiO₂: Cu) weight ratio.

Keywords: renewable energy, CO₂ capture, photocatalytic conversion, methanol

Procedia PDF Downloads 89
409 Role of Indigenous Women in Securing Sustainable Livelihoods in Western Himalayan Region, India

Authors: Haresh Sharma, Jaimini Luharia

Abstract:

The ecology in the Western Himalayan region transforms with the change in altitude. This change is observed in terms of topography, species of flora and fauna and the quality of the soil. The current study focuses on women of indigenous communities of Pangi Valley, which is located in the state of Himachal Pradesh, India. The valley is bifurcated into three different areas –Saichu, Hudan Bhatori, and Sural Bhatori valleys. It is one of the most remote, rugged and difficult to access tribal regions of Chamba district. The altitude of the valley ranges from 2,000 m to 6,000 m above sea level. The Pangi valley is inhabited by ‘Pangwals’ and ‘Bhots’ tribes of the Himalayas who speak their local tribal language called’ Pangwali’. The valley is cut-off from the mainland due to heavy snow and lack of proper roads during peak winters. Due to difficult geographical location, the daily lives of the people are constantly challenged, and they are most of the times deprived of benefits targeted through government programs. However, the indigenous communities earn their livelihood through livestock and forest-based produce while some of them migrate to nearby places for better work. The current study involves snowball sampling methodology for data collection along with in-depth interviews of women members of Self-Help Groups and women farmers. The findings reveal that the lives of these indigenous communities largely depend on forest-based products. So, it creates all the more significance of enhancing, maintaining, and consuming natural resources sustainably. Under such circumstances, the women of the community play a significant role of guardians in conservation and protection of the forests. They are the custodians of traditional knowledge of environment conservation practices that have been followed for many years in the region. The present study also sought to establish a relationship between some of the development initiatives undertaken by the women in the valley that stimulate sustainable mountain economy and conservation practices. These initiatives include cultivation of products like hazelnut, ‘Gucchi’ rare quality mushroom, medicinal plants exclusively found in the region, thereby promoting long term sustainable conservation of agro-biodiversity of the Western Himalayan region. The measures taken by the community women are commendable as they ensure access and distribution of natural resources as well as manage them for future generations. Apart from this, the tribal women have actively formed Self-Help Groups promoting financial inclusion through various activities that augment ownership and accountability towards the overall development of the communities. But, the results also suggest that there’s not enough recognition given to women’s role in forests conservation practices due to several local socio-political reasons. There are not enough research studies done on communities of Pangi Valley due to inaccessibility created out of lack of proper roads and other resources. Also, there emerged a need to concretize indigenous and traditional knowledge of conservation practices followed by women in the community.

Keywords: forest conservation, indigenous community women, sustainable livelihoods, sustainable development, poverty alleviation, Western Himalayas

Procedia PDF Downloads 100
408 The Highly Dispersed WO3-x Photocatalyst over the Confinement Effect of Mesoporous SBA-15 Molecular Sieves for Photocatalytic Nitrogen Reduction

Authors: Xiaoling Ren, Guidong Yang

Abstract:

As one of the largest industrial synthetic chemicals in the world, ammonia has the advantages of high energy density, easy liquefaction, and easy transportation, which is widely used in agriculture, chemical industry, energy storage, and other fields. The industrial Haber-Bosch method process for ammonia synthesis is generally conducted under severe conditions. It is essential to develop a green, sustainable strategy for ammonia production to meet the growing demand. In this direction, photocatalytic nitrogen reduction has huge advantages over the traditional, well-established Haber-Bosch process, such as the utilization of natural sun light as the energy source and significantly lower pressure and temperature to affect the reaction process. However, the high activation energy of nitrogen and the low efficiency of photo-generated electron-hole separation in the photocatalyst result in low ammonia production yield. Many researchers focus on improving the catalyst. In addition to modifying the catalyst, improving the dispersion of the catalyst and making full use of active sites are also means to improve the overall catalytic activity. Few studies have been carried out on this, which is the aim of this work. In this work, by making full use of the nitrogen activation ability of WO3-x with defective sites, small size WO3-x photocatalyst with high dispersibility was constructed, while the growth of WO3-x was restricted by using a high specific surface area mesoporous SBA-15 molecular sieve with the regular pore structure as a template. The morphology of pure SBA-15 and WO3-x/SBA-15 was characterized byscanning electron microscopy (SEM). Compared with pure SBA-15, some small particles can be found in the WO3-x/SBA-15 material, which means that WO3-x grows into small particles under the limitation of SBA-15, which is conducive to the exposure of catalytically active sites. To elucidate the chemical nature of the material, the X-ray diffraction (XRD) analysis was conducted. The observed diffraction pattern inWO3-xis in good agreement with that of the JCPDS file no.71-2450. Compared with WO3-x, no new peaks appeared in WO3-x/SBA-15.It can be concluded that WO3-x/SBA-15 was synthesized successfully. In order to provide more active sites, the mass content of WO3-x was optimized. Then the photocatalytic nitrogen reduction performances of above samples were performed with methanol as a hole scavenger. The results show that the overall ammonia production performance of WO3-x/SBA-15 is improved than pure bulk WO3-x. The above results prove that making full use of active sites is also a means to improve overall catalytic activity.This work provides material basis for the design of high-efficiency photocatalytic nitrogen reduction catalysts.

Keywords: ammonia, photocatalytic, nitrogen reduction, WO3-x, high dispersibility

Procedia PDF Downloads 132
407 Acrylamide Concentration in Cakes with Different Caloric Sweeteners

Authors: L. García, N. Cobas, M. López

Abstract:

Acrylamide, a probable carcinogen, is formed in high-temperature processed food (>120ºC) when the free amino acid asparagine reacts with reducing sugars, mainly glucose and fructose. Cane juices' repeated heating would potentially form acrylamide during brown sugar production. This study aims to determine if using panela in yogurt cake preparation increases acrylamide formation. A secondary aim is to analyze the acrylamide concentration in four cake confections with different caloric sweetener ingredients: beet sugar (BS), cane sugar (CS), panela (P), and a panela and chocolate mix (PC). The doughs were obtained by combining ingredients in a planetary mixer. A model system made up of flour (25%), caloric sweeteners (25 %), eggs (23%), yogurt (15.7%), sunflower oil (9.4%), and brewer's yeast (2 %) was applied to BS, CS and P cakes. The ingredients of PC cakes varied: flour (21.5 %), panela chocolate (21.5 %), eggs (25.9 %), yogurt (18 %), sunflower oil (10.8 %), and brewer’s yeast (2.3 %). The preparations were baked for 45' at 180 ºC. Moisture was estimated by AOAC. Protein was determined by the Kjeldahl method. Ash percentage was calculated by weight loss after pyrolysis (≈ 600 °C). Fat content was measured using liquid-solid extraction in hydrolyzed raw ingredients and final confections. Carbohydrates were determined by difference and total sugars by the Luff-Schoorl method, based on the iodometric determination of copper ions. Finally, acrylamide content was determined by LC-MS by the isocratic system (phase A: 97.5 % water with 0.1% formic acid; phase B: 2.5 % methanol), using a standard internal procedure. Statistical analysis was performed using SPSS v.23. One-way variance analysis determined differences between acrylamide content and compositional analysis, with caloric sweeteners as fixed effect. Significance levels were determined by applying Duncan's t-test (p<0.05). P cakes showed a lower energy value than the other baked products; sugar content was similar to BS and CS, with 6.1 % mean crude protein. Acrylamide content in caloric sweeteners was similar to previously reported values. However, P and PC showed significantly higher concentrations, probably explained by the applied procedure. Acrylamide formation depends on both reducing sugars and asparagine concentration and availability. Beet sugar samples did not present acrylamide concentrations within the detection and quantification limit. However, the highest acrylamide content was measured in the BS. This may be due to the higher concentration of reducing sugars and asparagine in other raw ingredients. The cakes made with panela, cane sugar, or panela with chocolate did not differ in acrylamide content. The lack of asparagine measures constitutes a limitation. Cakes made with panela showed lower acrylamide formation than products elaborated with beet or cane sugar.

Keywords: beet sugar, cane sugar, panela, yogurt cake

Procedia PDF Downloads 44
406 Features of Composites Application in Shipbuilding

Authors: Valerii Levshakov, Olga Fedorova

Abstract:

Specific features of ship structures, made from composites, i.e. simultaneous shaping of material and structure, large sizes, complicated outlines and tapered thickness have defined leading role of technology, integrating test results from material science, designing and structural analysis. Main procedures of composite shipbuilding are contact molding, vacuum molding and winding. Now, the most demanded composite shipbuilding technology is the manufacture of structures from fiberglass and multilayer hybrid composites by means of vacuum molding. This technology enables the manufacture of products with improved strength properties (in comparison with contact molding), reduction of production duration, weight and secures better environmental conditions in production area. Mechanized winding is applied for the manufacture of parts, shaped as rotary bodies – i.e. parts of ship, oil and other pipelines, deep-submergence vehicles hulls, bottles, reservoirs and other structures. This procedure involves processing of reinforcing fiberglass, carbon and polyaramide fibers. Polyaramide fibers have tensile strength of 5000 MPa, elastic modulus value of 130 MPa and rigidity of the same can be compared with rigidity of fiberglass, however, the weight of polyaramide fiber is 30% less than weight of fiberglass. The same enables to the manufacture different structures, including that, using both – fiberglass and organic composites. Organic composites are widely used for the manufacture of parts with size and weight limitations. High price of polyaramide fiber restricts the use of organic composites. Perspective area of winding technology development is the manufacture of carbon fiber shafts and couplings for ships. JSC ‘Shipbuilding & Shiprepair Technology Center’ (JSC SSTC) developed technology of dielectric uncouplers for cryogenic lines, cooled by gaseous or liquid cryogenic agents (helium, nitrogen, etc.) for temperature range 4.2-300 K and pressure up to 30 MPa – the same is used for separating components of electro physical equipment with different electrical potentials. Dielectric uncouplers were developed, the manufactured and tested in accordance with International Thermonuclear Experimental Reactor (ITER) Technical specification. Spiral uncouplers withstand operating voltage of 30 kV, direct-flow uncoupler – 4 kV. Application of spiral channel instead of rectilinear enables increasing of breakdown potential and reduction of uncouplers sizes. 95 uncouplers were successfully the manufactured and tested. At the present time, Russian the manufacturers of ship composite structures have started absorption of technology of manufacturing the same using automated prepreg laminating; this technology enables the manufacture of structures with improved operational specifications.

Keywords: fiberglass, infusion, polymeric composites, winding

Procedia PDF Downloads 213
405 Luminescent Properties of Plastic Scintillator with Large Area Photonic Crystal Prepared by a Combination of Nanoimprint Lithography and Atomic Layer Deposition

Authors: Jinlu Ruan, Liang Chen, Bo Liu, Xiaoping Ouyang, Zhichao Zhu, Zhongbing Zhang, Shiyi He, Mengxuan Xu

Abstract:

Plastic scintillators play an important role in the measurement of a mixed neutron/gamma pulsed radiation, neutron radiography and pulse shape discrimination technology. In some research, these luminescent properties are necessary that photons produced by the interactions between a plastic scintillator and radiations can be detected as much as possible by the photoelectric detectors and more photons can be emitted from the scintillators along a specific direction where detectors are located. Unfortunately, a majority of these photons produced are trapped in the plastic scintillators due to the total internal reflection (TIR), because there is a significant light-trapping effect when the incident angle of internal scintillation light is larger than the critical angle. Some of these photons trapped in the scintillator may be absorbed by the scintillator itself and the others are emitted from the edges of the scintillator. This makes the light extraction of plastic scintillators very low. Moreover, only a small portion of the photons emitted from the scintillator easily can be detected by detectors effectively, because the distribution of the emission directions of this portion of photons exhibits approximate Lambertian angular profile following a cosine emission law. Therefore, enhancing the light extraction efficiency and adjusting the emission angular profile become the keys for improving the number of photons detected by the detectors. In recent years, photonic crystal structures have been covered on inorganic scintillators to enhance the light extraction efficiency and adjust the angular profile of scintillation light successfully. However, that, preparation methods of photonic crystals will deteriorate performance of plastic scintillators and even destroy the plastic scintillators, makes the investigation on preparation methods of photonic crystals for plastic scintillators and luminescent properties of plastic scintillators with photonic crystal structures inadequate. Although we have successfully made photonic crystal structures covered on the surface of plastic scintillators by a modified self-assembly technique and achieved a great enhance of light extraction efficiency without evident angular-dependence for the angular profile of scintillation light, the preparation of photonic crystal structures with large area (the diameter is larger than 6cm) and perfect periodic structure is still difficult. In this paper, large area photonic crystals on the surface of scintillators were prepared by nanoimprint lithography firstly, and then a conformal layer with material of high refractive index on the surface of photonic crystal by atomic layer deposition technique in order to enhance the stability of photonic crystal structures and increase the number of leaky modes for improving the light extraction efficiency. The luminescent properties of the plastic scintillator with photonic crystals prepared by the mentioned method are compared with those of the plastic scintillator without photonic crystal. The results indicate that the number of photons detected by detectors is increased by the enhanced light extraction efficiency and the angular profile of scintillation light exhibits evident angular-dependence for the scintillator with photonic crystals. The mentioned preparation of photonic crystals is beneficial to scintillation detection applications and lays an important technique foundation for the plastic scintillators to meet special requirements under different application backgrounds.

Keywords: angular profile, atomic layer deposition, light extraction efficiency, plastic scintillator, photonic crystal

Procedia PDF Downloads 170
404 Examination of Corrosion Durability Related to Installed Environments of Steel Bridges

Authors: Jin-Hee Ahn, Seok-Hyeon Jeon, Young-Bin Lee, Min-Gyun Ha, Yu-Chan Hong

Abstract:

Corrosion durability of steel bridges can be generally affected by atmospheric environments of bridge installation, since corrosion problem is related to environmental factors such as humidity, temperature, airborne salt, chemical components as SO₂, chlorides, etc. Thus, atmospheric environment condition should be measured to estimate corrosion condition of steel bridges as well as measurement of actual corrosion damage of structural members of steel bridge. Even in the same atmospheric environment, the corrosion environment may be different depending on the installation direction of structural members. In this study, therefore, atmospheric corrosion monitoring was conducted using atmospheric corrosion monitoring sensor, hygrometer, thermometer and airborne salt collection device to examine the corrosion durability of steel bridges. As a target steel bridge for corrosion durability monitoring, a cable-stayed bridge with truss steel members was selected. This cable-stayed bridge was located on the coast to connect the islands with the islands. Especially, atmospheric corrosion monitoring was carried out depending on structural direction of a cable-stayed bridge with truss type girders since it consists of structural members with various directions. For atmospheric corrosion monitoring, daily average electricity (corrosion current) was measured at each monitoring members to evaluate corrosion environments and corrosion level depending on structural members with various direction which have different corrosion environment in the same installed area. To compare corrosion durability connected with monitoring data depending on corrosion monitoring members, monitoring steel plate was additionally installed in same monitoring members. Monitoring steel plates of carbon steel was fabricated with dimension of 60mm width and 3mm thickness. And its surface was cleaned for removing rust on the surface by blasting, and its weight was measured before its installation on each structural members. After a 3 month exposure period on real atmospheric corrosion environment at bridge, surface condition of atmospheric corrosion monitoring sensors and monitoring steel plates were observed for corrosion damage. When severe deterioration of atmospheric corrosion monitoring sensors or corrosion damage of monitoring steel plates were found, they were replaced or collected. From 3month exposure tests in the actual steel bridge with various structural member with various direction, the rust on the surface of monitoring steel plate was found, and the difference in the corrosion rate was found depending on the direction of structural member from their visual inspection. And daily average electricity (corrosion current) was changed depending on the direction of structural member. However, it is difficult to identify the relative differences in corrosion durability of steel structural members using short-term monitoring results. After long exposure tests in this corrosion environments, it can be clearly evaluated the difference in corrosion durability depending on installed conditions of steel bridges. Acknowledgements: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03028755).

Keywords: corrosion, atmospheric environments, steel bridge, monitoring

Procedia PDF Downloads 331
403 On the Possibility of Real Time Characterisation of Ambient Toxicity Using Multi-Wavelength Photoacoustic Instrument

Authors: Tibor Ajtai, Máté Pintér, Noémi Utry, Gergely Kiss-Albert, Andrea Palágyi, László Manczinger, Csaba Vágvölgyi, Gábor Szabó, Zoltán Bozóki

Abstract:

According to the best knowledge of the authors, here we experimentally demonstrate first, a quantified correlation between the real-time measured optical feature of the ambient and the off-line measured toxicity data. Finally, using these correlations we are presenting a novel methodology for real time characterisation of ambient toxicity based on the multi wavelength aerosol phase photoacoustic measurement. Ambient carbonaceous particulate matter is one of the most intensively studied atmospheric constituent in climate science nowadays. Beyond their climatic impact, atmospheric soot also plays an important role as an air pollutant that harms human health. Moreover, according to the latest scientific assessments ambient soot is the second most important anthropogenic emission source, while in health aspect its being one of the most harmful atmospheric constituents as well. Despite of its importance, generally accepted standard methodology for the quantitative determination of ambient toxicology is not available yet. Dominantly, ambient toxicology measurement is based on the posterior analysis of filter accumulated aerosol with limited time resolution. Most of the toxicological studies are based on operational definitions using different measurement protocols therefore the comprehensive analysis of the existing data set is really limited in many cases. The situation is further complicated by the fact that even during its relatively short residence time the physicochemical features of the aerosol can be masked significantly by the actual ambient factors. Therefore, decreasing the time resolution of the existing methodology and developing real-time methodology for air quality monitoring are really actual issues in the air pollution research. During the last decades many experimental studies have verified that there is a relation between the chemical composition and the absorption feature quantified by Absorption Angström Exponent (AAE) of the carbonaceous particulate matter. Although the scientific community are in the common platform that the PhotoAcoustic Spectroscopy (PAS) is the only methodology that can measure the light absorption by aerosol with accurate and reliable way so far, the multi-wavelength PAS which are able to selectively characterise the wavelength dependency of absorption has become only available in the last decade. In this study, the first results of the intensive measurement campaign focusing the physicochemical and toxicological characterisation of ambient particulate matter are presented. Here we demonstrate the complete microphysical characterisation of winter time urban ambient including optical absorption and scattering as well as size distribution using our recently developed state of the art multi-wavelength photoacoustic instrument (4λ-PAS), integrating nephelometer (Aurora 3000) as well as single mobility particle sizer and optical particle counter (SMPS+C). Beyond this on-line characterisation of the ambient, we also demonstrate the results of the eco-, cyto- and genotoxicity measurements of ambient aerosol based on the posterior analysis of filter accumulated aerosol with 6h time resolution. We demonstrate a diurnal variation of toxicities and AAE data deduced directly from the multi-wavelength absorption measurement results.

Keywords: photoacoustic spectroscopy, absorption Angström exponent, toxicity, Ames-test

Procedia PDF Downloads 279
402 Imaging Spectrum of Central Nervous System Tuberculosis on Magnetic Resonance Imaging: Correlation with Clinical and Microbiological Results

Authors: Vasundhara Arora, Anupam Jhobta, Suresh Thakur, Sanjiv Sharma

Abstract:

Aims and Objectives: Intracranial tuberculosis (TB) is one of the most devastating manifestations of TB and a challenging public health issue of considerable importance and magnitude world over. This study elaborates on the imaging spectrum of neurotuberculosis on magnetic resonance imaging (MRI) in 29 clinically suspected cases from a tertiary care hospital. Materials and Methods: The prospective hospital based evaluation of MR imaging features of neuro-tuberculosis in 29 clinically suspected cases was carried out in Department of Radio-diagnosis, Indira Gandhi Medical Hospital from July 2017 to August 2018. MR Images were obtained on a 1.5 T Magnetom Avanto machine and were analyzed to identify any abnormal meningeal enhancement or parenchymal lesions. Microbiological and Biochemical CSF analysis was performed in radio-logically suspected cases and the results were compared with the imaging data. Clinical follow up of the patients started on anti-tuberculous treatment was done to evaluate the response to treatment and clinical outcome. Results: Age range of patients in the study was between 1 year to 73 years. The mean age of presentation was 11.5 years. No significant difference in the distribution of cerebral tuberculosis was noted among the two genders. Imaging findings of neuro-tuberculosis obtained were varied and non specific ranging from lepto-meningeal enhancement, cerebritis to space occupying lesions such as tuberculomas and tubercular abscesses. Complications presenting as hydrocephalus (n= 7) and infarcts (n=9) was noted in few of these patients. 29 patients showed radiological suspicion of CNS tuberculosis with meningitis alone observed in 11 cases, tuberculomas alone were observed in 4 cases, meningitis with parenchymal tuberculomas in 11 cases. Tubercular abscess and cerebritis were observed in one case each. Tuberculous arachnoiditis was noted in one patient. Gene expert positivity was obtained in 11 out of 29 radiologically suspected patients; none of the patients showed culture positivity. Meningeal form of the disease alone showed higher positivity rate of gene Xpert (n=5) followed by combination of meningeal and parenchymal forms of disease (n=4). The parenchymal manifestation of disease alone showed least positivity rates (n= 3) with gene xpert testing. All 29 patients were started on anti tubercular treatment based on radiological suspicion of the disease with clinical improvement observed in 27 treated patients. Conclusions: In our study, higher incidence of neuro- tuberculosis was noted in paediatric population with predominance of the meningeal form of the disease. Gene Xpert positivity obtained was low due to paucibacillary nature of cerebrospinal fluid (CSF) with even lower positivity of CSF samples in parenchymal form of the manifestation. MRI showed high accuracy in detecting CNS lesions in neuro-tuberculosis. Hence, it can be concluded that MRI plays a crucial role in the diagnosis because of its inherent sensitivity and specificity and is an indispensible imaging modality. It caters to the need of early diagnosis owing to poor sensitivity of microbiological tests more so in the parenchymal manifestation of the disease.

Keywords: neurotuberculosis, tubercular abscess, tuberculoma, tuberculous meningitis

Procedia PDF Downloads 143
401 Assessment of Surface Water Quality near Landfill Sites Using a Water Pollution Index

Authors: Alejandro Cittadino, David Allende

Abstract:

Landfilling of municipal solid waste is a common waste management practice in Argentina as in many parts of the world. There is extensive scientific literature on the potential negative effects of landfill leachates on the environment, so it’s necessary to be rigorous with the control and monitoring systems. Due to the specific municipal solid waste composition in Argentina, local landfill leachates contain large amounts of organic matter (biodegradable, but also refractory to biodegradation), as well as ammonia-nitrogen, small trace of some heavy metals, and inorganic salts. In order to investigate the surface water quality in the Reconquista river adjacent to the Norte III landfill, water samples both upstream and downstream the dumpsite are quarterly collected and analyzed for 43 parameters including organic matter, heavy metals, and inorganic salts, as required by the local standards. The objective of this study is to apply a water quality index that considers the leachate characteristics in order to determine the quality status of the watercourse through the landfill. The water pollution index method has been widely used in water quality assessments, particularly rivers, and it has played an increasingly important role in water resource management, since it provides a number simple enough for the public to understand, that states the overall water quality at a certain location and time. The chosen water quality index (ICA) is based on the values of six parameters: dissolved oxygen (in mg/l and percent saturation), temperature, biochemical oxygen demand (BOD5), ammonia-nitrogen and chloride (Cl-) concentration. The index 'ICA' was determined both upstream and downstream the Reconquista river, being the rating scale between 0 (very poor water quality) and 10 (excellent water quality). The monitoring results indicated that the water quality was unaffected by possible leachate runoff since the index scores upstream and downstream were ranked in the same category, although in general, most of the samples were classified as having poor water quality according to the index’s scale. The annual averaged ICA index scores (computed quarterly) were 4.9, 3.9, 4.4 and 5.0 upstream and 3.9, 5.0, 5.1 and 5.0 downstream the river during the study period between 2014 and 2017. Additionally, the water quality seemed to exhibit distinct seasonal variations, probably due to annual precipitation patterns in the study area. The ICA water quality index appears to be appropriate to evaluate landfill impacts since it accounts mainly for organic pollution and inorganic salts and the absence of heavy metals in the local leachate composition, however, the inclusion of other parameters could be more decisive in discerning the affected stream reaches from the landfill activities. A future work may consider adding to the index other parameters like total organic carbon (TOC) and total suspended solids (TSS) since they are present in the leachate in high concentrations.

Keywords: landfill, leachate, surface water, water quality index

Procedia PDF Downloads 124
400 Performance Improvement of a Single-Flash Geothermal Power Plant Design in Iran: Combining with Gas Turbines and CHP Systems

Authors: Morteza Sharifhasan, Davoud Hosseini, Mohammad. R. Salimpour

Abstract:

The geothermal energy is considered as a worldwide important renewable energy in recent years due to rising environmental pollution concerns. Low- and medium-grade geothermal heat (< 200 ºC) is commonly employed for space heating and in domestic hot water supply. However, there is also much interest in converting the abundant low- and medium-grade geothermal heat into electrical power. The Iranian Ministry of Power - through the Iran Renewable Energy Organization (SUNA) – is going to build the first Geothermal Power Plant (GPP) in Iran in the Sabalan area in the Northwest of Iran. This project is a 5.5 MWe single flash steam condensing power plant. The efficiency of GPPs is low due to the relatively low pressure and temperature of the saturated steam. In addition to GPPs, Gas Turbines (GTs) are also known by their relatively low efficiency. The Iran ministry of Power is trying to increase the efficiency of these GTs by adding bottoming steam cycles to the GT to form what is known as combined gas/steam cycle. One of the most effective methods for increasing the efficiency is combined heat and power (CHP). This paper investigates the feasibility of superheating the saturated steam that enters the steam turbine of the Sabalan GPP (SGPP-1) to improve the energy efficiency and power output of the GPP. This purpose is achieved by combining the GPP with two 3.5 MWe GTs. In this method, the hot gases leaving GTs are utilized through a superheater similar to that used in the heat recovery steam generator of combined gas/steam cycle. Moreover, brine separated in the separator, hot gases leaving GTs and superheater are used for the supply of domestic hot water (in this paper, the cycle combined of GTs and CHP systems is named the modified SGPP-1) . In this research, based on the Heat Balance presented in the basic design documents of the SGPP-1, mathematical/numerical model of the power plant are developed together with the mentioned GTs and CHP systems. Based on the required hot water, the amount of hot gasses needed to pass through CHP section directly can be adjusted. For example, during summer when hot water is less required, the hot gases leaving both GTs pass through the superheater and CHP systems respectively. On the contrary, in order to supply the required hot water during the winter, the hot gases of one of the GTs enter the CHP section directly, without passing through the super heater section. The results show that there is an increase in thermal efficiency up to 40% through using the modified SGPP-1. Since the gross efficiency of SGPP-1 is 9.6%, the achieved increase in thermal efficiency is significant. The power output of SGPP-1 is increased up to 40% in summer (from 5.5MW to 7.7 MW) while the GTs power output remains almost unchanged. Meanwhile, the combined-cycle power output increases from the power output of the two separate plants of 12.5 MW [5.5+ (2×3.5)] to the combined-cycle power output of 14.7 [7.7+(2×3.5)]. This output is more than 17% above the output of the two separate plants. The modified SGPP-1 is capable of producing 215 T/Hr hot water ( 90 ºC ) for domestic use in the winter months.

Keywords: combined cycle, chp, efficiency, gas turbine, geothermal power plant, gas turbine, power output

Procedia PDF Downloads 292
399 Bio-Oil Compounds Sorption Enhanced Steam Reforming

Authors: Esther Acha, Jose Cambra, De Chen

Abstract:

Hydrogen is considered an important energy vector for the 21st century. Nowadays there are some difficulties for hydrogen economy implantation, and one of them is the high purity required for hydrogen. This energy vector is still being mainly produced from fuels, from wich hydrogen is produced as a component of a mixture containing other gases, such as CO, CO2 and H2O. A forthcoming sustainable pathway for hydrogen is steam-reforming of bio-oils derived from biomass, e.g. via fast pyrolysis. Bio-oils are a mixture of acids, alcohols, aldehydes, esters, ketones, sugars phenols, guaiacols, syringols, furans, multi-functional compounds and also up to a 30 wt% of water. The sorption enhanced steam reforming (SESR) process is attracting a great deal of attention due to the fact that it combines both hydrogen production and CO2 separation. In the SESR process, carbon dioxide is captured by an in situ sorbent, which shifts the reversible reforming and water gas shift reactions to the product side, beyond their conventional thermodynamic limits, giving rise to a higher hydrogen production and lower cost. The hydrogen containing mixture has been obtained from the SESR of bio-oil type compounds. Different types of catalysts have been tested. All of them contain Ni at around a 30 wt %. Two samples have been prepared with the wet impregnation technique over conventional (gamma alumina) and non-conventional (olivine) supports. And a third catalysts has been prepared over a hydrotalcite-like material (HT). The employed sorbent is a commercial dolomite. The activity tests were performed in a bench-scale plant (PID Eng&Tech), using a stainless steel fixed bed reactor. The catalysts were reduced in situ in the reactor, before the activity tests. The effluent stream was cooled down, thus condensed liquid was collected and weighed, and the gas phase was analysed online by a microGC. The hydrogen yield, and process behavior was analysed without the sorbent (the traditional SR where a second purification step will be needed but that operates in steady state) and the SESR (where the purification step could be avoided but that operates in batch state). The influence of the support type and preparation method will be observed in the produced hydrogen yield. Additionally, the stability of the catalysts is critical, due to the fact that in SESR process sorption-desorption steps are required. The produced hydrogen yield and hydrogen purity has to be high and also stable, even after several sorption-desorption cycles. The prepared catalysts were characterized employing different techniques to determine the physicochemical properties of the fresh-reduced and used (after the activity tests) materials. The characterization results, together with the activity results show the influence of the catalysts preparation method, calcination temperature, or can even explain the observed yield and conversion.

Keywords: CO2 sorbent, enhanced steam reforming, hydrogen

Procedia PDF Downloads 555
398 Natural Mexican Zeolite Modified with Iron to Remove Arsenic Ions from Water Sources

Authors: Maritza Estela Garay-Rodriguez, Mirella Gutierrez-Arzaluz, Miguel Torres-Rodriguez, Violeta Mugica-Alvarez

Abstract:

Arsenic is an element present in the earth's crust and is dispersed in the environment through natural processes and some anthropogenic activities. Naturally released into the environment through the weathering and erosion of sulphides mineral, some activities such as mining, the use of pesticides or wood preservatives potentially increase the concentration of arsenic in air, water, and soil. The natural arsenic release of a geological material is a threat to the world's drinking water sources. In aqueous phase is found in inorganic form, as arsenate and arsenite mainly, the contamination of groundwater by salts of this element originates what is known as endemic regional hydroarsenicism. The International Agency for Research on Cancer (IARC) categorizes the inorganic As within group I, as a substance with proven carcinogenic action for humans. It has been found the presence of As in groundwater in several countries such as Argentina, Mexico, Bangladesh, Canada and the United States. Regarding the concentration of arsenic in drinking water according to the World Health Organization (WHO) and the Environmental Protection Agency (EPA) establish maximum concentrations of 10 μg L⁻¹. In Mexico, in some states as Hidalgo, Morelos and Michoacán concentrations of arsenic have been found in bodies of water around 1000 μg L⁻¹, a concentration that is well above what is allowed by Mexican regulations with the NOM-127- SSA1-1994 that establishes a limit of 25 μg L⁻¹. Given this problem in Mexico, this research proposes the use of a natural Mexican zeolite (clinoptilolite type) native to the district of Etla in the central valley region of Oaxaca, as an adsorbent for the removal of arsenic. The zeolite was subjected to a conditioning with iron oxide by the precipitation-impregnation method with 0.5 M iron nitrate solution, in order to increase the natural adsorption capacity of this material. The removal of arsenic was carried out in a column with a fixed bed of conditioned zeolite, since it combines the advantages of a conventional filter with those of a natural adsorbent medium, providing a continuous treatment, of low cost and relatively easy to operate, for its implementation in marginalized areas. The zeolite was characterized by XRD, SEM/EDS, and FTIR before and after the arsenic adsorption tests, the results showed that the modification methods used are adequate to prepare adsorbent materials since it does not modify its structure, the results showed that with a particle size of 1.18 mm, an initial concentration of As (V) ions of 1 ppm, a pH of 7 and at room temperature, a removal of 98.7% was obtained with an adsorption capacity of 260 μg As g⁻¹ zeolite. The results obtained indicated that the conditioned zeolite is favorable for the elimination of arsenate in water containing up to 1000 μg As L⁻¹ and could be suitable for removing arsenate from pits of water.

Keywords: adsorption, arsenic, iron conditioning, natural zeolite

Procedia PDF Downloads 146
397 Passive Greenhouse Systems in Poland

Authors: Magdalena Grudzińska

Abstract:

Passive systems allow solar radiation to be converted into thermal energy thanks to appropriate building construction. Greenhouse systems are particularly worth attention, due to the low costs of their realization and strong architectural appeal. The paper discusses the energy effects of using passive greenhouse systems, such as glazed balconies, in an example residential building. The research was carried out for five localities in Poland, belonging to climatic zones different in terms of external air temperature and insolation: Koszalin, Poznań, Lublin, Białystok and Zakopane The analysed apartment had a floor area of approximately 74 m² Three thermal zones were distinguished in the flat - the balcony, the room adjacent to it, and the remaining space, for which various internal conditions were defined. Calculations of the energy demand were made using the dynamic simulation program, based on the control volume method. The climatic data were represented by Typical Meteorological Years, prepared on the basis of source data collected from 1971 to 2000. In each locality, the introduction of a passive greenhouse system led to a lower demand for heating in the apartment, and the shortening of the heating season. The smallest effectiveness of passive solar energy systems was noted in Białystok. Demand for heating was reduced there by 14.5% and the heating season remained the longest, due to low temperatures of external air and small sums of solar radiation intensity. In Zakopane, energy savings came to 21% and the heating season was reduced to 107 days, thanks to the greatest insolation during winter. The introduction of greenhouse systems caused an increase in cooling demand in the warmer part of the year, but total energy demand declined in each of the discussed places. However, potential energy savings are smaller if the building's annual life cycle is taken into consideration, and amount from 5.6% up to 14%. Koszalin and Zakopane are localities in which the greenhouse system allows the best energy results to be achieved. It should be emphasized that favourable conditions for introducing greenhouse systems are connected with different climatic conditions. In the seaside area (Koszalin) they result from high temperatures in the heating season and the smallest insolation in the summer period, while in the mountainous area (Zakopane) they result from high insolation in the winter and low temperatures in the summer. In the region of middle and middle-eastern Poland active systems (such as solar energy collectors or photovoltaic panels) could be more beneficial, due to high insolation during summer. It is assessed that passive systems do not eliminate the need for traditional heating in Poland. They can, however, substantially contribute to lower use of non-renewable fuels and the shortening of the heating season. The calculations showed diversification in the effectiveness of greenhouse systems resulting from climatic conditions, and allowed to identify areas which are the most suitable for the passive use of solar radiation.

Keywords: solar energy, passive greenhouse systems, glazed balconies, climatic conditions

Procedia PDF Downloads 346
396 Carbonyl Iron Particles Modified with Pyrrole-Based Polymer and Electric and Magnetic Performance of Their Composites

Authors: Miroslav Mrlik, Marketa Ilcikova, Martin Cvek, Josef Osicka, Michal Sedlacik, Vladimir Pavlinek, Jaroslav Mosnacek

Abstract:

Magnetorheological elastomers (MREs) are a unique type of materials consisting of two components, magnetic filler, and elastomeric matrix. Their properties can be tailored upon application of an external magnetic field strength. In this case, the change of the viscoelastic properties (viscoelastic moduli, complex viscosity) are influenced by two crucial factors. The first one is magnetic performance of the particles and the second one is off-state stiffness of the elastomeric matrix. The former factor strongly depends on the intended applications; however general rule is that higher magnetic performance of the particles provides higher MR performance of the MRE. Since magnetic particles possess low stability properties against temperature and acidic environment, several methods how to improve these drawbacks have been developed. In the most cases, the preparation of the core-shell structures was employed as a suitable method for preservation of the magnetic particles against thermal and chemical oxidations. However, if the shell material is not single-layer substance, but polymer material, the magnetic performance is significantly suppressed, due to the in situ polymerization technique, when it is very difficult to control the polymerization rate and the polymer shell is too thick. The second factor is the off-state stiffness of the elastomeric matrix. Since the MR effectivity is calculated as the relative value of the elastic modulus upon magnetic field application divided by elastic modulus in the absence of the external field, also the tuneability of the cross-linking reaction is highly desired. Therefore, this study is focused on the controllable modification of magnetic particles using a novel monomeric system based on 2-(1H-pyrrol-1-yl)ethyl methacrylate. In this case, the short polymer chains of different chain lengths and low polydispersity index will be prepared, and thus tailorable stability properties can be achieved. Since the relatively thin polymer chains will be grafted on the surface of magnetic particles, their magnetic performance will be affected only slightly. Furthermore, also the cross-linking density will be affected, due to the presence of the short polymer chains. From the application point of view, such MREs can be utilized for, magneto-resistors, piezoresistors or pressure sensors especially, when the conducting shell on the magnetic particles will be created. Therefore, the selection of the pyrrole-based monomer is very crucial and controllably thin layer of conducting polymer can be prepared. Finally, such composite particle consisting of magnetic core and conducting shell dispersed in elastomeric matrix can find also the utilization in shielding application of electromagnetic waves.

Keywords: atom transfer radical polymerization, core-shell, particle modification, electromagnetic waves shielding

Procedia PDF Downloads 186
395 Conservation Challenges of Fish and Fisheries in Lake Tana, Ethiopia

Authors: Shewit Kidane, Abebe Getahun, Wassie Anteneh, Admassu Demeke, Peter Goethals

Abstract:

We have reviewed major findings of scientific studies on Lake Tana fish resources and their threats. The aim was to provide summarized information for all concerned bodies and international readers to get full and comprehensive picture about the lake’s fish resource and conservation problems. The Lake Tana watershed comprise 28 fish species, of which 21 are endemic. Moreover, Lake Tana is the one among the top 250 lake regions of global importance for biodiversity and it is world recognized migratory birds wintering site. Lake Tana together with its adjacent wetlands provide directly and indirectly a livelihood for more than 500,000 people. However, owing to anthropogenic activities, the lake ecosystem as well as fish and attributes of the fisheries sector are severely degraded. Fish species in Lake Tana are suffering due to illegal fishing, damming, habitat/breeding ground degradation, wastewater disposal, introduction of exotic species, and lack of implementing fisheries regulations. Currently, more than 98% of fishers in Lake Tana are using the most destructive monofilament. Indeed, dams, irrigation schemes and hydropower are constructed in response to the emerging development need only. Mitigation techniques such as construction of fish ladders for the migratory fishes are the most forgotten. In addition, water resource developers are likely unaware of both the importance of the fisheries and the impact of dam construction on fish. As a result, the biodiversity issue is often missed. Besides, Lake Tana wetlands, which play vital role to sustain biodiversity, are not wisely utilised in the sense of the Ramsar Convention’s definition. Wetlands are considered as unhealthy and hence wetland conversion for the purpose of recession agriculture is still seen as advanced mode of development. As a result, many wetlands in the lake watershed are shrinking drastically over time and Cyprus papyrus, one of the characteristic features of Lake Tana, has dramatically declined in its distribution with some local extinction. Furthermore, the recently introduced water hyacinth (Eichhornia crassipes) is creating immense problems on the lake ecosystem. Moreover, currently, 1.56 million tons of sediment have deposited into the lake each year and wastes from the industries and residents are directly discharged into the lake without treatment. Recently, sign of eutrophication is revealed in Lake Tana and most coarsely, the incidence of cyanobacteria genus Microcystis was reported from the Bahir Dar Gulf of Lake Tana. Thus, the direct dependency of the communities on the lake water for drinking as well as to wash their body and clothes and its fisheries make the problem worst. Indeed, since it is home to many endemic migratory fish, such kind of unregulated developmental activities could be detrimental to their stocks. This can be best illustrated by the drastic stock reduction (>75% in biomass) of the world unique Labeobarbus species. So, unless proper management is put in place, the anthropogenic impacts can jeopardize the aquatic ecosystems. Therefore, in order to sustainably use the aquatic resources and fulfil the needs of the local people, every developmental activity and resource utilization should be carried out adhering to the available policies.

Keywords: anthropogenic impacts, dams, endemic fish, wetland degradation

Procedia PDF Downloads 217
394 Effect of Maturation on the Characteristics and Physicochemical Properties of Banana and Its Starch

Authors: Chien-Chun Huang, P. W. Yuan

Abstract:

Banana is one of the important fruits which constitute a valuable source of energy, vitamins and minerals and an important food component throughout the world. The fruit ripening and maturity standards vary from country to country depending on the expected shelf life of market. During ripening there are changes in appearance, texture and chemical composition of banana. The changes of component of banana during ethylene-induced ripening are categorized as nutritive values and commercial utilization. The objectives of this study were to investigate the changes of chemical composition and physicochemical properties of banana during ethylene-induced ripening. Green bananas were harvested and ripened by ethylene gas at low temperature (15℃) for seven stages. At each stage, banana was sliced and freeze-dried for banana flour preparation. The changes of total starch, resistant starch, chemical compositions, physicochemical properties, activity of amylase, polyphenolic oxidase (PPO) and phenylalanine ammonia lyase (PAL) of banana were analyzed each stage during ripening. The banana starch was isolated and analyzed for gelatinization properties, pasting properties and microscopic appearance each stage of ripening. The results indicated that the highest total starch and resistant starch content of green banana were 76.2% and 34.6%, respectively at the harvest stage. Both total starch and resistant starch content were significantly declined to 25.3% and 8.8%, respectively at the seventh stage. Soluble sugars content of banana increased from 1.21% at harvest stage to 37.72% at seventh stage during ethylene-induced ripening. Swelling power of banana flour decreased with the progress of ripening stage, but solubility increased. These results strongly related with the decreases of starch content of banana flour during ethylene-induced ripening. Both water insoluble and alcohol insoluble solids of banana flour decreased with the progress of ripening stage. Both activity of PPO and PAL increased, but the total free phenolics content decreased, with the increases of ripening stages. As ripening stage extended, the gelatinization enthalpy of banana starch significantly decreased from 15.31 J/g at the harvest stage to 10.55 J/g at the seventh stage. The peak viscosity and setback increased with the progress of ripening stages in the pasting properties of banana starch. The highest final viscosity, 5701 RVU, of banana starch slurry was found at the seventh stage. The scanning electron micrograph of banana starch showed the shapes of banana starch appeared to be round and elongated forms, ranging in 10-50 μm at the harvest stage. As the banana closed to ripe status, some parallel striations were observed on the surface of banana starch granular which could be caused by enzyme reaction during ripening. These results inferred that the highest resistant starch was found in the green banana could be considered as a potential application of healthy foods. The changes of chemical composition and physicochemical properties of banana could be caused by the hydrolysis of enzymes during the ethylene-induced ripening treatment.

Keywords: maturation of banana, appearance, texture, soluble sugars, resistant starch, enzyme activities, physicochemical properties of banana starch

Procedia PDF Downloads 287
393 PARP1 Links Transcription of a Subset of RBL2-Dependent Genes with Cell Cycle Progression

Authors: Ewelina Wisnik, Zsolt Regdon, Kinga Chmielewska, Laszlo Virag, Agnieszka Robaszkiewicz

Abstract:

Apart from protecting genome, PARP1 has been documented to regulate many intracellular processes inter alia gene transcription by physically interacting with chromatin bound proteins and by their ADP-ribosylation. Our recent findings indicate that expression of PARP1 decreases during the differentiation of human CD34+ hematopoietic stem cells to monocytes as a consequence of differentiation-associated cell growth arrest and formation of E2F4-RBL2-HDAC1-SWI/SNF repressive complex at the promoter of this gene. Since the RBL2 complexes repress genes in a E2F-dependent manner and are widespread in the genome in G0 arrested cells, we asked (a) if RBL2 directly contributes to defining monocyte phenotype and function by targeting gene promoters and (b) if RBL2 controls gene transcription indirectly by repressing PARP1. For identification of genes controlled by RBL2 and/or PARP1,we used primer libraries for surface receptors and TLR signaling mediators, genes were silenced by siRNA or shRNA, analysis of gene promoter occupation by selected proteins was carried out by ChIP-qPCR, while statistical analysis in GraphPad Prism 5 and STATISTICA, ChIP-Seq data were analysed in Galaxy 2.5.0.0. On the list of 28 genes regulated by RBL2, we identified only four solely repressed by RBL2-E2F4-HDAC1-BRM complex. Surprisingly, 24 out of 28 emerged genes controlled by RBL2 were co-regulated by PARP1 in six different manners. In one mode of RBL2/PARP1 co-operation, represented by MAP2K6 and MAPK3, PARP1 was found to associate with gene promoters upon RBL2 silencing, which was previously shown to restore PARP1 expression in monocytes. PARP1 effect on gene transcription was observed only in the presence of active EP300, which acetylated gene promoters and activated transcription. Further analysis revealed that PARP1 binding to MA2K6 and MAPK3 promoters enabled recruitment of EP300 in monocytes, while in proliferating cancer cell lines, which actively transcribe PARP1, this protein maintained EP300 at the promoters of MA2K6 and MAPK3. Genome-wide analysis revealed a similar distribution of PARP1 and EP300 around transcription start sites and the co-occupancy of some gene promoters by PARP1 and EP300 in cancer cells. Here, we described a new RBL2/PARP1/EP300 axis which controls gene transcription regardless of the cell type. In this model cell, cycle-dependent transcription of PARP1 regulates expression of some genes repressed by RBL2 upon cell cycle limitation. Thus, RBL2 may indirectly regulate transcription of some genes by controlling the expression of EP300-recruiting PARP1. Acknowledgement: This work was financed by Polish National Science Centre grants nr DEC-2013/11/D/NZ2/00033 and DEC-2015/19/N/NZ2/01735. L.V. is funded by the National Research, Development and Innovation Office grants GINOP-2.3.2-15-2016-00020 TUMORDNS, GINOP-2.3.2-15-2016-00048-STAYALIVE and OTKA K112336. AR is supported by Polish Ministry of Science and Higher Education 776/STYP/11/2016.

Keywords: retinoblastoma transcriptional co-repressor like 2 (RBL2), poly(ADP-ribose) polymerase 1 (PARP1), E1A binding protein p300 (EP300), monocytes

Procedia PDF Downloads 180