Search results for: processing individual
6749 Optimizing Telehealth Internet of Things Integration: A Sustainable Approach through Fog and Cloud Computing Platforms for Energy Efficiency
Authors: Yunyong Guo, Sudhakar Ganti, Bryan Guo
Abstract:
The swift proliferation of telehealth Internet of Things (IoT) devices has sparked concerns regarding energy consumption and the need for streamlined data processing. This paper presents an energy-efficient model that integrates telehealth IoT devices into a platform based on fog and cloud computing. This integrated system provides a sustainable and robust solution to address the challenges. Our model strategically utilizes fog computing as a localized data processing layer and leverages cloud computing for resource-intensive tasks, resulting in a significant reduction in overall energy consumption. The incorporation of adaptive energy-saving strategies further enhances the efficiency of our approach. Simulation analysis validates the effectiveness of our model in improving energy efficiency for telehealth IoT systems, particularly when integrated with localized fog nodes and both private and public cloud infrastructures. Subsequent research endeavors will concentrate on refining the energy-saving model, exploring additional functional enhancements, and assessing its broader applicability across various healthcare and industry sectors.Keywords: energy-efficient, fog computing, IoT, telehealth
Procedia PDF Downloads 766748 Towards the Need of Resilient Design and Its Assessment in South China
Authors: Alan Lai, Wilson Yik
Abstract:
With rapid urbanization, there has been a dramatic increase in global urban population in Asia and over half of population in Asia will live in urban regions in the near future. Facing with increasing exposure to climate-related stresses and shocks, most of the Asian cities will very likely to experience more frequent heat waves and flooding with rising sea levels, particularly the coastal cities will grapple for intense typhoons and storm surges. These climate changes have severe impacts in urban areas at the costs of infrastructure and population, for example, human health, wellbeing and high risks of dengue fever, malaria and diarrheal disease. With the increasing prominence of adaptation to climate changes, there have been changes in corresponding policies. Smaller cities have greater potentials for integrating the concept of resilience into their infrastructure as well as keeping pace with their rapid growths in population. It is therefore important to explore the potentials of Asian cities adapting to climate change and the opportunities of building climate resilience in urban planning and building design. Furthermore, previous studies have mainly attempted at exploiting the potential of resilience on a macro-level within urban planning rather than that on micro-level within the context of individual building. The resilience of individual building as a research field has not yet been much explored. Nonetheless, recent studies define that the resilience of an individual building is the one which is able to respond to physical damage and recover from such damage in a quickly and cost-effectively manner, while maintain its primary functions. There is also a need to develop an assessment tool to evaluate the resilience on building scale which is still largely uninvestigated as it should be regarded as a basic function of a building. Due to the lack of literature reporting metric for assessing building resilience with sustainability, the research will be designed as a case study to provide insight into the issue. The aim of this research project is to encourage and assist in developing neighborhood climate resilience design strategies for Hong Kong so as to bridge the gap between difference scales and that between theory and practice.Keywords: resilience cities, building resilience, resilient buildings and infrastructure, climate resilience, hot and humid southeast area, high-density cities
Procedia PDF Downloads 1636747 Joint Physical Custody after Divorce and Child Well-Being
Authors: Katarzyna Kamińska
Abstract:
Joint physical custody means that both parents after divorce or separation have the right and responsibility to take care of the child on the daily basis. In a joint physical custody arrangement, the child spends substantial, but not necessarily equal, time with both parents. Joint physical custody can be symmetric care arrangement or not. However, it is accepted in the jurisprudence that the best interests of the child is served when the child spends at least 35% of the time during a two-week period with each parent. Joint physical custody, also known as joint, dual, or shared residence, is a challenge in contemporary family law. It has its supporters and opponents. On the one hand, joint physical custody is beneficial because it provides children with frequent and continuous contact with a mother and father after their divorce or separation. On the other hand, it isn’t good for children to be shuttled back and forth between two residences. Children need a home base. The conclusion is therefore that joint physical custody can’t be seen as a panacea for all post-divorce or post-separation parenting cases and the court shouldn’t automatically make such a determination. The possibility to award this arrangement requires the court to carefully weigh the pros and cons of each individual case. It is difficult to say that joint physical custody is better than single physical custody in any case. It depends on the circumstances and needs of each family. It appears that an individual approach is going to be much better as opposed to a one-size-fits-all idea.Keywords: joint physical custody, shared residence, dual residence, the best interests of the child
Procedia PDF Downloads 956746 Relationship Between Brain Entropy Patterns Estimated by Resting State fMRI and Child Behaviour
Authors: Sonia Boscenco, Zihan Wang, Euclides José de Mendoça Filho, João Paulo Hoppe, Irina Pokhvisneva, Geoffrey B.C. Hall, Michael J. Meaney, Patricia Pelufo Silveira
Abstract:
Entropy can be described as a measure of the number of states of a system, and when used in the context of physiological time-based signals, it serves as a measure of complexity. In functional connectivity data, entropy can account for the moment-to-moment variability that is neglected in traditional functional magnetic resonance imaging (fMRI) analyses. While brain fMRI resting state entropy has been associated with some pathological conditions like schizophrenia, no investigations have explored the association between brain entropy measures and individual differences in child behavior in healthy children. We describe a novel exploratory approach to evaluate brain fMRI resting state data in two child cohorts, and MAVAN (N=54, 4.5 years, 48% males) and GUSTO (N = 206, 4.5 years, 48% males) and its associations to child behavior, that can be used in future research in the context of child exposures and long-term health. Following rs-fMRI data pre-processing and Shannon entropy calculation across 32 network regions of interest to acquire 496 unique functional connections, partial correlation coefficient analysis adjusted for sex was performed to identify associations between entropy data and Strengths and Difficulties questionnaire in MAVAN and Child Behavior Checklist domains in GUSTO. Significance was set at p < 0.01, and we found eight significant associations in GUSTO. Negative associations were found between two frontoparietal regions and cerebellar posterior and oppositional defiant problems, (r = -0.212, p = 0.006) and (r = -0.200, p = 0.009). Positive associations were identified between somatic complaints and four default mode connections: salience insula (r = 0.202, p < 0.01), dorsal attention intraparietal sulcus (r = 0.231, p = 0.003), language inferior frontal gyrus (r = 0.207, p = 0.008) and language posterior superior temporal gyrus (r = 0.210, p = 0.008). Positive associations were also found between insula and frontoparietal connection and attention deficit / hyperactivity problems (r = 0.200, p < 0.01), and insula – default mode connection and pervasive developmental problems (r = 0.210, p = 0.007). In MAVAN, ten significant associations were identified. Two positive associations were found = with prosocial scores: the salience prefrontal cortex and dorsal attention connection (r = 0.474, p = 0.005) and the salience supramarginal gyrus and dorsal attention intraparietal sulcus (r = 0.447, p = 0.008). The insula and prefrontal connection were negatively associated with peer problems (r = -0.437, p < 0.01). Conduct problems were negatively associated with six separate connections, the left salience insula and right salience insula (r = -0.449, p = 0.008), left salience insula and right salience supramarginal gyrus (r = -0.512, p = 0.002), the default mode and visual network (r = -0.444, p = 0.009), dorsal attention and language network (r = -0.490, p = 0.003), and default mode and posterior parietal cortex (r = -0.546, p = 0.001). Entropy measures of resting state functional connectivity can be used to identify individual differences in brain function that are correlated with variation in behavioral problems in healthy children. Further studies applying this marker into the context of environmental exposures are warranted.Keywords: child behaviour, functional connectivity, imaging, Shannon entropy
Procedia PDF Downloads 2026745 Application Methodology for the Generation of 3D Thermal Models Using UAV Photogrammety and Dual Sensors for Mining/Industrial Facilities Inspection
Authors: Javier Sedano-Cibrián, Julio Manuel de Luis-Ruiz, Rubén Pérez-Álvarez, Raúl Pereda-García, Beatriz Malagón-Picón
Abstract:
Structural inspection activities are necessary to ensure the correct functioning of infrastructures. Unmanned Aerial Vehicle (UAV) techniques have become more popular than traditional techniques. Specifically, UAV Photogrammetry allows time and cost savings. The development of this technology has permitted the use of low-cost thermal sensors in UAVs. The representation of 3D thermal models with this type of equipment is in continuous evolution. The direct processing of thermal images usually leads to errors and inaccurate results. A methodology is proposed for the generation of 3D thermal models using dual sensors, which involves the application of visible Red-Blue-Green (RGB) and thermal images in parallel. Hence, the RGB images are used as the basis for the generation of the model geometry, and the thermal images are the source of the surface temperature information that is projected onto the model. Mining/industrial facilities representations that are obtained can be used for inspection activities.Keywords: aerial thermography, data processing, drone, low-cost, point cloud
Procedia PDF Downloads 1436744 Traffic Safety and Risk Assessment Model by Analysis of Questionnaire Survey: A Case Study of S. G. Highway, Ahmedabad, India
Authors: Abhijitsinh Gohil, Kaushal Wadhvaniya, Kuldipsinh Jadeja
Abstract:
Road Safety is a multi-sectoral and multi-dimensional issue. An effective model can assess the risk associated with highway safety. A questionnaire survey is very essential to identify the events or activities which are causing unsafe condition for traffic on an urban highway. A questionnaire of standard questions including vehicular, human and infrastructure characteristics can be made. Responses from the age wise group of road users can be taken on field. Each question or an event holds a specific risk weightage, which contributes in creating an inappropriate and unsafe flow of traffic. The probability of occurrence of an event can be calculated from the data collected from the road users. Finally, the risk score can be calculated by considering the risk factor and the probability of occurrence of individual event and addition of all risk score for the individual event will give the total risk score of a particular road. Standards for risk score can be made and total risk score can be compared with the standards. Thus road can be categorized based on risk associated and traffic safety on it. With this model, one can assess the need for traffic safety improvement on a given road, and qualitative data can be analysed.Keywords: probability of occurrence, questionnaire, risk factor, risk score
Procedia PDF Downloads 3386743 3D Dentofacial Surgery Full Planning Procedures
Authors: Oliveira M., Gonçalves L., Francisco I., Caramelo F., Vale F., Sanz D., Domingues M., Lopes M., Moreia D., Lopes T., Santos T., Cardoso H.
Abstract:
The ARTHUR project consists of a platform that allows the virtual performance of maxillofacial surgeries, offering, in a photorealistic concept, the possibility for the patient to have an idea of the surgical changes before they are performed on their face. For this, the system brings together several image formats, dicoms and objs that, after loading, will generate the bone volume, soft tissues and hard tissues. The system also incorporates the patient's stereophotogrammetry, in addition to their data and clinical history. After loading and inserting data, the clinician can virtually perform the surgical operation and present the final result to the patient, generating a new facial surface that contemplates the changes made in the bone and tissues of the maxillary area. This tool acts in different situations that require facial reconstruction, however this project focuses specifically on two types of use cases: bone congenital disfigurement and acquired disfiguration such as oral cancer with bone attainment. Being developed a cloud based solution, with mobile support, the tool aims to reduce the decision time window of patient. Because the current simulations are not realistic or, if realistic, need time due to the need of building plaster models, patient rates on decision, rely on a long time window (1,2 months), because they don’t identify themselves with the presented surgical outcome. On the other hand, this planning was performed time based on average estimated values of the position of the maxilla and mandible. The team was based on averages of the facial measurements of the population, without specifying racial variability, so the proposed solution was not adjusted to the real individual physiognomic needs.Keywords: 3D computing, image processing, image registry, image reconstruction
Procedia PDF Downloads 2066742 Correlation of the Rate of Imperfect Competition and Profit in Banking Markets
Authors: Jan Cernohorsky
Abstract:
This article aims to assess the evolution of imperfect competition in selected banking markets, in particular in the banking markets of Slovakia, Poland, Hungary, Slovenia and Croatia. Another objective is to assess the evolution of the relationship of imperfect competition and profit development in the banking markets. The article first provides an overview of literature on the topic. It then measures the degree of imperfect competition in individual markets using the Herfindahl-Hirschman Index. The commonly used indicator of total assets was chosen as an indicator. Based on this measurement, the individual banking sectors are categorized into theoretical definitions of the various types of imperfect competition - namely all surveyed banking sectors falling within the theoretical definition of monopolistic competition. Subsequently, using correlation analysis, i.e., the Pearson correlation coefficient, or the Spearman correlation coefficient, the connection between the evolution of imperfect competition and the development of the gross profit on selected banking markets was surveyed. It was found that with the exception of the banking market in Slovenia, where there is a positive correlation; there is no correlation between the evolution of imperfect competition and profit development in the selected markets. This means a recommendation for the regulators that it is not appropriate to rationalize a higher degree of regulation in granting banking licenses on the size of the profits attained in the banking market, as the relationship between the degree of concentration in the banking market and the amount of profit according to our measurements does not exist.Keywords: bank, banking system, imperfect competition, profitability
Procedia PDF Downloads 2836741 Transcending the Boundary of Traumas: Spatial Trauma in Richard Powers' 'The Echo Maker'
Authors: Nodi Islam
Abstract:
This paper critically reads Richard Powers’ novel The Echo Maker to read and understand the personal traumas of the characters in the novel depending on the various situations they face throughout the story. Also, the paper attempts to read different traumas and disorders due to their different situations. With a focus on the individual experiences, this paper addresses the core issues of trauma, which triggers their reactions and reads the novel through theories of Freud, Caruth, and other critics in this field. While transcending the boundary of personal and collective trauma, this paper suggests that traumas not only arise from the core mental issues, from both past or present memories; it also depends on places too which can be called, according to Yi-Fu Tuan, topophobia. Intimate places such as home provoke not only attachment and expectation but also produce fear in a person. Failure in identifying with such places means losing a central piece of identity of the individual. In order to analyse the traumas in the novel, the characters’ association with homes and places has been provided. This paper attempts to suggest that people are not traumatised because of what Freud explained as unpleasant memories of the past but also intimacy and lost identities related to a place can trigger trauma.Keywords: spatial trauma, traumatic stress disorder, identity and place, core mental issues
Procedia PDF Downloads 1496740 Leader Self-sacrifice in Sports Organizations
Authors: Stefano Ruggieri, Rubinia C. Bonfanti
Abstract:
Research on leadership in sports organizations has proved extremely fruitful in recent decades, favoring the growing and diffusion of figures such as mental coaches, trainers, etc. Recent scholarly attention on organizations has been directed towards the phenomenon of leader self-sacrifice, wherein leaders who display such behavior are perceived by their followers as more effective, charismatic, and legitimate compared to those who prioritize self-interest. This growing interest reflects the importance of leaders who prioritize the collective welfare over personal gain, as they inspire greater loyalty, trust, and dedication among their followers, ultimately fostering a more cohesive and high-performing team environment. However, there is limited literature on the mechanisms through which self-sacrifice influences both group dynamics (such as cohesion and team identification) and individual factors (such as self-competence). The aim of the study is to analyze the impact of the leader self-sacrifice on cohesion, team identification and self-competence. Team identification is a crucial determinant of individual identity, delineated by the extent to which a team member aligns with a specific organizational team rather than broader social collectives. This association motivates members to synchronize their actions with the collective interests of the group, thereby fostering cohesion among its constituents, and cultivating a shared sense of purpose and unity within the team. In the domain of team sports, particularly soccer and water polo, two studies involving 447 participants (men = 238, women = 209) between 22 and 35 years old (M = 26.36, SD = 5.51) were conducted. The first study employed a correlational methodology to investigate the predictive capacity of self-sacrifice on cohesion, team identification, self-efficacy, and self-competence. The second study utilized an experimental design to explore the relationship between team identification and self-sacrifice. Together, these studies provided comprehensive insights into the multifaceted nature of leader self-sacrifice and its profound implications for group cohesion and individual well-being within organizational settings. The findings underscored the pivotal role of leader self-sacrifice in not only fostering stronger bonds among team members but also in enhancing critical facets of group dynamics, ultimately contributing to the overall effectiveness and success of the team.Keywords: cohesion, leadership, self-sacrifice, sports organizations, team-identification
Procedia PDF Downloads 446739 Development of an Artificial Neural Network to Measure Science Literacy Leveraging Neuroscience
Authors: Amanda Kavner, Richard Lamb
Abstract:
Faster growth in science and technology of other nations may make staying globally competitive more difficult without shifting focus on how science is taught in US classes. An integral part of learning science involves visual and spatial thinking since complex, and real-world phenomena are often expressed in visual, symbolic, and concrete modes. The primary barrier to spatial thinking and visual literacy in Science, Technology, Engineering, and Math (STEM) fields is representational competence, which includes the ability to generate, transform, analyze and explain representations, as opposed to generic spatial ability. Although the relationship is known between the foundational visual literacy and the domain-specific science literacy, science literacy as a function of science learning is still not well understood. Moreover, the need for a more reliable measure is necessary to design resources which enhance the fundamental visuospatial cognitive processes behind scientific literacy. To support the improvement of students’ representational competence, first visualization skills necessary to process these science representations needed to be identified, which necessitates the development of an instrument to quantitatively measure visual literacy. With such a measure, schools, teachers, and curriculum designers can target the individual skills necessary to improve students’ visual literacy, thereby increasing science achievement. This project details the development of an artificial neural network capable of measuring science literacy using functional Near-Infrared Spectroscopy (fNIR) data. This data was previously collected by Project LENS standing for Leveraging Expertise in Neurotechnologies, a Science of Learning Collaborative Network (SL-CN) of scholars of STEM Education from three US universities (NSF award 1540888), utilizing mental rotation tasks, to assess student visual literacy. Hemodynamic response data from fNIRsoft was exported as an Excel file, with 80 of both 2D Wedge and Dash models (dash) and 3D Stick and Ball models (BL). Complexity data were in an Excel workbook separated by the participant (ID), containing information for both types of tasks. After changing strings to numbers for analysis, spreadsheets with measurement data and complexity data were uploaded to RapidMiner’s TurboPrep and merged. Using RapidMiner Studio, a Gradient Boosted Trees artificial neural network (ANN) consisting of 140 trees with a maximum depth of 7 branches was developed, and 99.7% of the ANN predictions are accurate. The ANN determined the biggest predictors to a successful mental rotation are the individual problem number, the response time and fNIR optode #16, located along the right prefrontal cortex important in processing visuospatial working memory and episodic memory retrieval; both vital for science literacy. With an unbiased measurement of science literacy provided by psychophysiological measurements with an ANN for analysis, educators and curriculum designers will be able to create targeted classroom resources to help improve student visuospatial literacy, therefore improving science literacy.Keywords: artificial intelligence, artificial neural network, machine learning, science literacy, neuroscience
Procedia PDF Downloads 1196738 Economies of Scale of Worker's Continuing Professional Development in Selected Universities in South- South, Nigeria
Authors: Jonathan E. Oghenekohwo
Abstract:
The return to scale constitutes a significant investment index in the determination of the quantum of resources that is deployed in investment decision on worker’s continuing professional development. Such investment decision is always predicted on the expected outcomes to the individual, institution and the society in context. Several investments in the development of human capacity on the job have been made, but the return to the scale of such seems not to have been correlated positively with the quantum of resources invested in terms of productivity and performance among workers in many universities. This paper thus found out that, despite the commitment and policy instrument to avail workers the right of continuing professional development, the multiplier effects are not evident in diligence, commitment, honesty, dedication, productivity and improved performance on the job among most administrative staff in Nigerian Universities This author, therefore concludes that, given the policy on the right of workers to get trained on-the job, the outcomes of such training must reflect on the overall performance indices, otherwise, institutions should carry out a forensic analysis of the types of continuing professional development programmes that workers participate in, whether or not, they are consistent with the vision and mission of the institutions in terms of economies of scale of workers professional development to the individual, institution and the nation in context.Keywords: continuing, professional development, economies of scale, worker’s education, administrative staff
Procedia PDF Downloads 3266737 The Effects of Physical Activity and Serotonin on Depression, Anxiety, Body Image and Mental Health
Authors: Sh. Khoshemehry, M. E. Bahram, M. J. Pourvaghar
Abstract:
Sport has found a special place as an effective phenomenon in all societies of the contemporary world. The relationship between physical activity and exercise with different sciences has provided new fields for human study. The range of issues related to exercise and physical education is such that it requires specialized sciences and special studies. In this article, the psychological and social sections of exercise have been investigated for children and adults. It can be used for anyone in different age groups. Exercise and regular physical movements have a great impact on the mental and social health of the individual in addition to body health. It affects the individual's adaptability in society and his/her personality. Exercise affects the treatment of diseases such as depression, anxiety, stress, body image, and memory. Exercise is a safe haven for young people to achieve the optimum human development in its shelter. The effects of sensorimotor skills on mental actions and mental development are such a way that many psychologists and sports science experts believe these activities should be included in training programs in the first place. Familiarity of students and scholars with different programs and methods of sensorimotor activities not only causes their mental actions; but also increases mental health and vitality, enhances self-confidence and, therefore, mental health.Keywords: anxiety, mental health, physical activity, serotonin
Procedia PDF Downloads 2076736 The Role of Executive Attention and Literacy on Consumer Memory
Authors: Fereshteh Nazeri Bahadori
Abstract:
In today's competitive environment, any company that aims to operate in a market, whether industrial or consumer markets, must know that it cannot address all the tastes and demands of customers at once and serve them all. The study of consumer memory is considered an important subject in marketing research, and many companies have conducted studies on this subject and the factors affecting it due to its importance. Therefore, the current study tries to investigate the relationship between consumers' attention, literacy, and memory. Memory has a very close relationship with learning. Memory is the collection of all the information that we have understood and stored. One of the important subjects in consumer behavior is information processing by the consumer. One of the important factors in information processing is the mental involvement of the consumer, which has attracted a lot of attention in the past two decades. Since consumers are the turning point of all marketing activities, successful marketing begins with understanding why and how consumers behave. Therefore, in the current study, the role of executive attention and literacy on consumers' memory has been investigated. The results showed that executive attention and literacy would play a significant role in the long-term and short-term memory of consumers.Keywords: literacy, consumer memory, executive attention, psychology of consumer behavior
Procedia PDF Downloads 966735 Performance Evaluation of Refinement Method for Wideband Two-Beams Formation
Authors: C. Bunsanit
Abstract:
This paper presents the refinement method for two beams formation of wideband smart antenna. The refinement method for weighting coefficients is based on Fully Spatial Signal Processing by taking Inverse Discrete Fourier Transform (IDFT), and its simulation results are presented using MATLAB. The radiation pattern is created by multiplying the incoming signal with real weights and then summing them together. These real weighting coefficients are computed by IDFT method; however, the range of weight values is relatively wide. Therefore, for reducing this range, the refinement method is used. The radiation pattern concerns with five input parameters to control. These parameters are maximum weighting coefficient, wideband signal, direction of mainbeam, beamwidth, and maximum of minor lobe level. Comparison of the obtained simulation results between using refinement method and taking only IDFT shows that the refinement method works well for wideband two beams formation.Keywords: fully spatial signal processing, beam forming, refinement method, smart antenna, weighting coefficient, wideband
Procedia PDF Downloads 2266734 Effect of Some Metal Ions on the Activity of Lipase Produced by Aspergillus Niger Cultured on Vitellaria Paradoxa Shells
Authors: Abdulhakeem Sulyman, Olukotun Zainab, Hammed Abdulquadri
Abstract:
Lipases (triacylglycerol acyl hydrolases) (EC 3.1.1.3) are class of enzymes that catalyses the hydrolysis of triglycerides to glycerol and free fatty acids. They account for up to 10% of the enzyme in the market and have a wide range of applications in biofuel production, detergent formulation, leather processing and in food and feed processing industry. This research was conducted to study the effect of some metal ions on the activity of purified lipase produced by Aspergillus niger cultured on Vitellaria paradoxa shells. Purified lipase in 12.5 mM p-NPL was incubated with different metal ions (Zn²⁺, Ca²⁺, Mn²⁺, Fe²⁺, Na⁺, K⁺ and Mg²⁺). The final concentrations of metal ions investigated were 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 mM. The results obtained from the study showed that Zn²⁺, Ca²⁺, Mn²⁺ and Fe²⁺ ions increased the activity of lipase up to 3.0, 3.0, 1.0, and 26.0 folds respectively. Lipase activity was partially inhibited by Na⁺ and Mg²⁺ with up to 88.5% and 83.7% loss of activity respectively. Lipase activity was also inhibited by K⁺ with up to 56.7% loss in the activity as compared to in the absence of metal ions. The study concluded that lipase produced by Aspergillus niger cultured on Vitellaria paradoxa shells can be activated by the presence of Zn²⁺, Ca²⁺, Mn²⁺ and Fe²⁺ and inhibited by Na⁺, K⁺ and Mg²⁺.Keywords: Aspergillus niger, Vitellaria paradoxa, lipase, metal ions
Procedia PDF Downloads 1506733 Online Monitoring Rheological Property of Polymer Melt during Injection Molding
Authors: Chung-Chih Lin, Chien-Liang Wu
Abstract:
The detection of the polymer melt state during manufacture process is regarded as an efficient way to control the molded part quality in advance. Online monitoring rheological property of polymer melt during processing procedure provides an approach to understand the melt state immediately. Rheological property reflects the polymer melt state at different processing parameters and is very important in injection molding process especially. An approach that demonstrates how to calculate rheological property of polymer melt through in-process measurement, using injection molding as an example, is proposed in this study. The system consists of two sensors and a data acquisition module can process the measured data, which are used for the calculation of rheological properties of polymer melt. The rheological properties of polymer melt discussed in this study include shear rate and viscosity which are investigated with respect to injection speed and melt temperature. The results show that the effect of injection speed on the rheological properties is apparent, especially for high melt temperature and should be considered for precision molding process.Keywords: injection molding, melt viscosity, shear rate, monitoring
Procedia PDF Downloads 3816732 Detection of Image Blur and Its Restoration for Image Enhancement
Authors: M. V. Chidananda Murthy, M. Z. Kurian, H. S. Guruprasad
Abstract:
Image restoration in the process of communication is one of the emerging fields in the image processing. The motion analysis processing is the simplest case to detect motion in an image. Applications of motion analysis widely spread in many areas such as surveillance, remote sensing, film industry, navigation of autonomous vehicles, etc. The scene may contain multiple moving objects, by using motion analysis techniques the blur caused by the movement of the objects can be enhanced by filling-in occluded regions and reconstruction of transparent objects, and it also removes the motion blurring. This paper presents the design and comparison of various motion detection and enhancement filters. Median filter, Linear image deconvolution, Inverse filter, Pseudoinverse filter, Wiener filter, Lucy Richardson filter and Blind deconvolution filters are used to remove the blur. In this work, we have considered different types and different amount of blur for the analysis. Mean Square Error (MSE) and Peak Signal to Noise Ration (PSNR) are used to evaluate the performance of the filters. The designed system has been implemented in Matlab software and tested for synthetic and real-time images.Keywords: image enhancement, motion analysis, motion detection, motion estimation
Procedia PDF Downloads 2876731 Efficient of Technology Remediation Soil That Contaminated by Petroleum Based on Heat without Combustion
Authors: Gavin Hutama Farandiarta, Hegi Adi Prabowo, Istiara Rizqillah Hanifah, Millati Hanifah Saprudin, Raden Iqrafia Ashna
Abstract:
The increase of the petroleum’s consumption rate encourages industries to optimize and increase the activity in processing crude oil into petroleum. However, although the result gives a lot of benefits to humans worldwide, it also gives negative impact to the environment. One of the negative impacts of processing crude oil is the soil will be contaminated by petroleum sewage sludge. This petroleum sewage sludge, contains hydrocarbon compound and it can be calculated by Total Petroleum Hydrocarbon (TPH).Petroleum sludge waste is accounted as hazardous and toxic. The soil contamination caused by the petroleum sludge is very hard to get rid of. However, there is a way to manage the soil that is contaminated by petroleum sludge, which is by using heat (thermal desorption) in the process of remediation. There are several factors that affect the success rate of the remediation with the help of heat which are temperature, time, and air pressure in the desorption column. The remediation process using the help of heat is an alternative in soil recovery from the petroleum pollution which highly effective, cheap, and environmentally friendly that produces uncontaminated soil and the petroleum that can be used again.Keywords: petroleum sewage sludge, remediation soil, thermal desorption, total petroleum hydrocarbon (TPH)
Procedia PDF Downloads 2476730 Exploring the Dynamic Identities of Multilingual Adolescents in Contexts of L3+ Learning in Four European Sites
Authors: Harper Staples
Abstract:
A necessary outcome of today’s contemporary globalised reality, current views of multilingualism hold that it no longer represents the exception, but rather the rule. As such, the simultaneous acquisition of multiple languages represents a common experience for many of today's students and therefore represents a key area of inquiry in the domain of foreign language learner identity. Second and multilingual language acquisition processes parallel each other in many ways; however, there are differences to be found in the ways in which a student may learn a third language. A multilingual repertoire will have to negotiate complex change as language competencies dynamically evolve; moreover, this process will vary according to the contextual factors attributed to a unique learner. A developing multilingual identity must, therefore, contend with an array of potential challenges specific to the individual in question. Despite an overarching recognition in the literature that pluri-language acquisition represents a unique field of inquiry within applied linguistic research, there is a paucity of empirical work which examines the ways in which individuals construct a sense of their own identity as multilingual speakers in such contexts of learning. This study explores this phenomenon via a mixed-methods, comparative case study approach at four school sites based in Finland, France, Wales, and England. It takes a strongly individual-in-context view, conceptualising each adolescent participant in dynamic terms in order to undertake a holistic exploration of the myriad factors that might impact upon, and indeed be impacted by, a learner's developing multilingual identity. Emerging themes of note thus far suggest that, beyond the expected divergences in the experience of multilinguality at the individual level, there are contradictions in the way in which adolescent students in each site 'claim' their plurilingualism. This can be argued to be linked to both meso and macro-level factors, including the foreign language curriculum and, more broadly, societal attitudes towards multilingualism. These diverse emergent identifications have implications not only for attainment in the foreign language but also for student well-being more generally.Keywords: foreign language learning, student identity, multilingualism, educational psychology
Procedia PDF Downloads 1766729 Understanding and Measuring Stigma, Barriers and Attitudes Associated with Seeking Psychological Help Among Young Adults in Czech Republic
Authors: Tereza Hruskova
Abstract:
200 million people globally experience serious mental health problems, and only one third seek professional help, and help-seeking is described as a last resort. Adolescents and young adults have a high prevalence of mental illness. Mental stigma is a key element in the decision to seek help and is divided into (i) self-stigma (self-stigmatization), including internal beliefs, low self-esteem, and lower quality of life, and (ii) public stigma (social stigma) containing stereotypes, beliefs and society's disapproval of help-seeking having a negative effect on help-seeking and our attitudes. Previous research has mainly focused on examining the construct of help seeking, avoidance, and delaying separately and trying to find out why people do not seek help in time and what obstacles stand in the way. Barriers are not static and may change over time and the stage of help-seeking. Attitudes are closely related to self-stigma and social stigma and predict whether a person will seek help. Barriers (stigmatization, a sense of humiliation, insufficient recognition of the problem, preferences, solving it alone, and distrust of a professional) and facilitators (previous experience with mental problems, social support, and help from others) are factors influencing help-seeking. The current research on the Czech population of young adults responds to the gap between a person with mental health problems and actually seeking professional help. The aim of the study is to describe in detail the individual constructs and factors, to understand the person seeking help, and to define possible obstacles on this path of seeking help. A sample of approximately 250 participants (age 18-35) would take part in the online questionnaire, conducted in May-June 2023, and would be administered a demographic questionnaire and four scales measuring attitudes (Attitudes Toward Seeking Professional Psychological Help – Short form), barriers (Barrier to Help Seeking Scale), self-stigma (Self Stigma of Seeking Help) and stigmatization (Perceptions of Stigmatization by Others for seeking help). Firstly, all four scales would be translated into the Czech language. The aim is (I) to determine the validity and reliability of the Czech translation of the scales, (II) to examine the factors of the scales on the Czech population and compare them retrospectively with the results of reliability and validity from the original language of the scales and (III) to examine the connections between attitudes towards seeking, avoidance or delaying the search for professional psychological help due to the demographic and individual differences of the participants, barriers, self-stigmatization and social stigmatization. We expect to carry out the first study on the given topic in the Czech Republic, to identify and better understand the factors leading to the avoidance of seeking professional help and to reveal the relationships between stigmatization, attitudes and barriers leading to the avoidance or postponement of seeking professional help. The belief is to find out whether the Czech population of young adults differs from the data found on the foreign population in individual constructs, as cultural differences in individual countries were found.Keywords: mental health, stigma, problems, seeking psychological help
Procedia PDF Downloads 756728 Artificial Intelligence and Distributed System Computing: Application and Practice in Real Life
Authors: Lai Junzhe, Wang Lihao, Burra Venkata Durga Kumar
Abstract:
In recent years, due to today's global technological advances, big data and artificial intelligence technologies have been widely used in various industries and fields, playing an important role in reducing costs and increasing efficiency. Among them, artificial intelligence has derived another branch in its own continuous progress and the continuous development of computer personnel, namely distributed artificial intelligence computing systems. Distributed AI is a method for solving complex learning, decision-making, and planning problems, characterized by the ability to take advantage of large-scale computation and the spatial distribution of resources, and accordingly, it can handle problems with large data sets. Nowadays, distributed AI is widely used in military, medical, and human daily life and brings great convenience and efficient operation to life. In this paper, we will discuss three areas of distributed AI computing systems in vision processing, blockchain, and smart home to introduce the performance of distributed systems and the role of AI in distributed systems.Keywords: distributed system, artificial intelligence, blockchain, IoT, visual information processing, smart home
Procedia PDF Downloads 1136727 Deep Learning Based Road Crack Detection on an Embedded Platform
Authors: Nurhak Altın, Ayhan Kucukmanisa, Oguzhan Urhan
Abstract:
It is important that highways are in good condition for traffic safety. Road crashes (road cracks, erosion of lane markings, etc.) can cause accidents by affecting driving. Image processing based methods for detecting road cracks are available in the literature. In this paper, a deep learning based road crack detection approach is proposed. YOLO (You Look Only Once) is adopted as core component of the road crack detection approach presented. The YOLO network structure, which is developed for object detection, is trained with road crack images as a new class that is not previously used in YOLO. The performance of the proposed method is compared using different training methods: using randomly generated weights and training their own pre-trained weights (transfer learning). A similar training approach is applied to the simplified version of the YOLO network model (tiny yolo) and the results of the performance are examined. The developed system is able to process 8 fps on NVIDIA Jetson TX1 development kit.Keywords: deep learning, embedded platform, real-time processing, road crack detection
Procedia PDF Downloads 3396726 Exploring Individual and Team Approaches in Crafting Workplace Inclusivity for Deaf and Hard of Hearing Employees in Malaysia
Authors: Nor Wahiza Abdul Wahat, Nor Haniza Abdul Wahat, Siti Noormi Alias, Mohamad Sazali Shaari
Abstract:
This study prepares the groundwork for the development of a strategic model and instrument for workplace inclusivity for deaf and hard-of-hearing employees in Malaysia. In the past, scholars have discussed inclusivity of workplaces to the extent to which employees feel they are significantly part of the organizational processes. Such processes include access to information, connectedness to colleagues and team members as well as their ability to participate in and influence decision-making processes. A qualitative study was conducted to explore on experiences of employed deaf and hard-of-hearing employees in a few Malaysian organizations. Data were collected from two focus group discussions involving male and female deaf and hard of hearing employees. Three in-depth interviews were also conducted with employer representatives. Generated themes highlighted individual, and team approaches towards crafting workplace inclusivity for deaf and hard of hearing employees in Malaysia. The adaptiveness of deaf and hard-of-hearing employees and social inclusion by colleagues were among the emerged sub-themes. This study allowed the researchers to further develop workplace inclusivity instruments and models for the benefit of deaf and hard of hearing Malaysian employees, as well as their employers.Keywords: deaf, hard of hearing, workplace inclusivity, disabilities
Procedia PDF Downloads 1746725 Exploring the Intersection Between the General Data Protection Regulation and the Artificial Intelligence Act
Authors: Maria Jędrzejczak, Patryk Pieniążek
Abstract:
The European legal reality is on the eve of significant change. In European Union law, there is talk of a “fourth industrial revolution”, which is driven by massive data resources linked to powerful algorithms and powerful computing capacity. The above is closely linked to technological developments in the area of artificial intelligence, which has prompted an analysis covering both the legal environment as well as the economic and social impact, also from an ethical perspective. The discussion on the regulation of artificial intelligence is one of the most serious yet widely held at both European Union and Member State level. The literature expects legal solutions to guarantee security for fundamental rights, including privacy, in artificial intelligence systems. There is no doubt that personal data have been increasingly processed in recent years. It would be impossible for artificial intelligence to function without processing large amounts of data (both personal and non-personal). The main driving force behind the current development of artificial intelligence is advances in computing, but also the increasing availability of data. High-quality data are crucial to the effectiveness of many artificial intelligence systems, particularly when using techniques involving model training. The use of computers and artificial intelligence technology allows for an increase in the speed and efficiency of the actions taken, but also creates security risks for the data processed of an unprecedented magnitude. The proposed regulation in the field of artificial intelligence requires analysis in terms of its impact on the regulation on personal data protection. It is necessary to determine what the mutual relationship between these regulations is and what areas are particularly important in the personal data protection regulation for processing personal data in artificial intelligence systems. The adopted axis of considerations is a preliminary assessment of two issues: 1) what principles of data protection should be applied in particular during processing personal data in artificial intelligence systems, 2) what regulation on liability for personal data breaches is in such systems. The need to change the regulations regarding the rights and obligations of data subjects and entities processing personal data cannot be excluded. It is possible that changes will be required in the provisions regarding the assignment of liability for a breach of personal data protection processed in artificial intelligence systems. The research process in this case concerns the identification of areas in the field of personal data protection that are particularly important (and may require re-regulation) due to the introduction of the proposed legal regulation regarding artificial intelligence. The main question that the authors want to answer is how the European Union regulation against data protection breaches in artificial intelligence systems is shaping up. The answer to this question will include examples to illustrate the practical implications of these legal regulations.Keywords: data protection law, personal data, AI law, personal data breach
Procedia PDF Downloads 656724 A Neural Network Based Clustering Approach for Imputing Multivariate Values in Big Data
Authors: S. Nickolas, Shobha K.
Abstract:
The treatment of incomplete data is an important step in the data pre-processing. Missing values creates a noisy environment in all applications and it is an unavoidable problem in big data management and analysis. Numerous techniques likes discarding rows with missing values, mean imputation, expectation maximization, neural networks with evolutionary algorithms or optimized techniques and hot deck imputation have been introduced by researchers for handling missing data. Among these, imputation techniques plays a positive role in filling missing values when it is necessary to use all records in the data and not to discard records with missing values. In this paper we propose a novel artificial neural network based clustering algorithm, Adaptive Resonance Theory-2(ART2) for imputation of missing values in mixed attribute data sets. The process of ART2 can recognize learned models fast and be adapted to new objects rapidly. It carries out model-based clustering by using competitive learning and self-steady mechanism in dynamic environment without supervision. The proposed approach not only imputes the missing values but also provides information about handling the outliers.Keywords: ART2, data imputation, clustering, missing data, neural network, pre-processing
Procedia PDF Downloads 2746723 An ERP Study of Chinese Pseudo-Object Structures
Authors: Changyin Zhou
Abstract:
Verb-argument relation is a very important aspect of syntax-semantics interaction in sentence processing. Previous ERP (event related potentials) studies in this field mainly concentrated on the relation between the verb and its core arguments. The present study aims to reveal the ERP pattern of Chinese pseudo-object structures (SOSs), in which a peripheral argument is promoted to occupy the position of the patient object, as compared with the patient object structures (POSs). The ERP data were collected when participants were asked to perform acceptability judgments about Chinese phrases. Our result shows that, similar to the previous studies of number-of-argument violations, Chinese SOSs show a bilaterally distributed N400 effect. But different from all the previous studies of verb-argument relations, Chinese SOSs demonstrate a sustained anterior positivity (SAP). This SAP, which is the first report related to complexity of argument structure operation, reflects the integration difficulty of the newly promoted arguments and the progressive nature of well-formedness checking in the processing of Chinese SOSs.Keywords: Chinese pseudo-object structures, ERP, sustained anterior positivity, verb-argument relation
Procedia PDF Downloads 4346722 Transportation Mode Classification Using GPS Coordinates and Recurrent Neural Networks
Authors: Taylor Kolody, Farkhund Iqbal, Rabia Batool, Benjamin Fung, Mohammed Hussaeni, Saiqa Aleem
Abstract:
The rising threat of climate change has led to an increase in public awareness and care about our collective and individual environmental impact. A key component of this impact is our use of cars and other polluting forms of transportation, but it is often difficult for an individual to know how severe this impact is. While there are applications that offer this feedback, they require manual entry of what transportation mode was used for a given trip, which can be burdensome. In order to alleviate this shortcoming, a data from the 2016 TRIPlab datasets has been used to train a variety of machine learning models to automatically recognize the mode of transportation. The accuracy of 89.6% is achieved using single deep neural network model with Gated Recurrent Unit (GRU) architecture applied directly to trip data points over 4 primary classes, namely walking, public transit, car, and bike. These results are comparable in accuracy to results achieved by others using ensemble methods and require far less computation when classifying new trips. The lack of trip context data, e.g., bus routes, bike paths, etc., and the need for only a single set of weights make this an appropriate methodology for applications hoping to reach a broad demographic and have responsive feedback.Keywords: classification, gated recurrent unit, recurrent neural network, transportation
Procedia PDF Downloads 1376721 Thermo-Mechanical Processing Scheme to Obtain Micro-Duplex Structure Favoring Superplasticity in an As-Cast and Homogenized Medium Alloyed Nickel Base Superalloy
Authors: K. Sahithya, I. Balasundar, Pritapant, T. Raghua
Abstract:
Ni-based superalloy with a nominal composition Ni-14% Cr-11% Co-5.8% Mo-2.4% Ti-2.4% Nb-2.8% Al-0.26 % Fe-0.032% Si-0.069% C (all in wt %) is used as turbine discs in a variety of aero engines. Like any other superalloy, the primary processing of the as-cast superalloy poses a major challenge due to its complex alloy chemistry. The challenge was circumvented by characterizing the different phases present in the material, optimizing the homogenization treatment, identifying a suitable thermomechanical processing window using dynamic materials modeling. The as-cast material was subjected to homogenization at 1200°C for a soaking period of 8 hours and quenched using different media. Water quenching (WQ) after homogenization resulted in very fine spherical γꞌ precipitates of sizes 30-50 nm, whereas furnace cooling (FC) after homogenization resulted in bimodal distribution of precipitates (primary gamma prime of size 300nm and secondary gamma prime of size 5-10 nm). MC type primary carbides that are stable till the melting point of the material were found in both WQ and FC samples. Deformation behaviour of both the materials below (1000-1100°C) and above gamma prime solvus (1100-1175°C) was evaluated by subjecting the material to series of compression tests at different constant true strain rates (0.0001/sec-1/sec). An in-detail examination of the precipitate dislocation interaction mechanisms carried out using TEM revealed precipitate shearing and Orowan looping as the mechanisms governing deformation in WQ and FC, respectively. Incoherent/semi coherent gamma prime precipitates in the case of FC material facilitates better workability of the material, whereas the coherent precipitates in WQ material contributed to higher resistance to deformation of the material. Both the materials exhibited discontinuous dynamic recrystallization (DDRX) above gamma prime solvus temperature. The recrystallization kinetics was slower in the case of WQ material. Very fine grain boundary carbides ( ≤ 300 nm) retarded the recrystallisation kinetics in WQ. Coarse carbides (1-5 µm) facilitate particle stimulated nucleation in FC material. The FC material was cogged (primary hot working) 1120˚C, 0.03/sec resulting in significant grain refinement, i.e., from 3000 μm to 100 μm. The primary processed material was subjected to intensive thermomechanical deformation subsequently by reducing the temperature by 50˚C in each processing step with intermittent heterogenization treatment at selected temperatures aimed at simultaneous coarsening of the gamma prime precipitates and refinement of the gamma matrix grains. The heterogeneous annealing treatment carried out, resulted in gamma grains of 10 μm and gamma prime precipitates of 1-2 μm. Further thermo mechanical processing of the material was carried out at 1025˚C to increase the homogeneity of the obtained micro-duplex structure.Keywords: superalloys, dynamic material modeling, nickel alloys, dynamic recrystallization, superplasticity
Procedia PDF Downloads 1216720 When Women Take the Lead: Exploring the Intersection Between Gender Equality and Women’s Environmental Political Engagement from a Comparative Perspective
Authors: Summer Isaacson
Abstract:
Research on gender differences in environmental behavior has long claimed that women engage less than men in environmental political participation (EPP) (protests, petitions), despite their higher levels of environmental concern and vulnerability. Using recent data from the ISSP’s 2020 Environment module including 28 countries, we revisit the gender gap in EPP. Arguing that increasing gender equality and socio-economic development can allow women to voice their environmental grievances, we use multi-level models to examine the effects of macro-level gender equality on gender differences in environmental protests, petitions, and boycotts. By distinguishing individual from collective and non-confrontational from confrontational engagement forms, this study offers an encompassing understanding of gendered patterns of participation. Women do participate more than men, but mainly in individual and non-confrontational EPP forms (petitions, boycotts) and with substantial variation across countries. Moreover, considering how women have historically been restrained from participating in politics, we argue that structural gender inequality remains an important limitation to women’s engagement. Cross-level interactions indicate that in more egalitarian countries, women are more likely to engage in several types of EPP than men. The study offers new perspectives and findings on gender differences in EPP, highlighting the impact of gender inequality on women’s participation.Keywords: environmental activism, political participation, gender equality, pro-environmental behavior
Procedia PDF Downloads 64