Search results for: multi sensor image fusion
7192 Improving the Design of Blood Pressure and Blood Saturation Monitors
Authors: L. Parisi
Abstract:
A blood pressure monitor or sphygmomanometer can be either manual or automatic, employing respectively either the auscultatory method or the oscillometric method. The manual version of the sphygmomanometer involves an inflatable cuff with a stethoscope adopted to detect the sounds generated by the arterial walls to measure blood pressure in an artery. An automatic sphygmomanometer can be effectively used to monitor blood pressure through a pressure sensor, which detects vibrations provoked by oscillations of the arterial walls. The pressure sensor implemented in this device improves the accuracy of the measurements taken.Keywords: blood pressure, blood saturation, sensors, actuators, design improvement
Procedia PDF Downloads 4557191 From Two-Way to Multi-Way: A Comparative Study for Map-Reduce Join Algorithms
Authors: Marwa Hussien Mohamed, Mohamed Helmy Khafagy
Abstract:
Map-Reduce is a programming model which is widely used to extract valuable information from enormous volumes of data. Map-reduce designed to support heterogeneous datasets. Apache Hadoop map-reduce used extensively to uncover hidden pattern like data mining, SQL, etc. The most important operation for data analysis is joining operation. But, map-reduce framework does not directly support join algorithm. This paper explains and compares two-way and multi-way map-reduce join algorithms for map reduce also we implement MR join Algorithms and show the performance of each phase in MR join algorithms. Our experimental results show that map side join and map merge join in two-way join algorithms has the longest time according to preprocessing step sorting data and reduce side cascade join has the longest time at Multi-Way join algorithms.Keywords: Hadoop, MapReduce, multi-way join, two-way join, Ubuntu
Procedia PDF Downloads 4877190 Crop Classification using Unmanned Aerial Vehicle Images
Authors: Iqra Yaseen
Abstract:
One of the well-known areas of computer science and engineering, image processing in the context of computer vision has been essential to automation. In remote sensing, medical science, and many other fields, it has made it easier to uncover previously undiscovered facts. Grading of diverse items is now possible because of neural network algorithms, categorization, and digital image processing. Its use in the classification of agricultural products, particularly in the grading of seeds or grains and their cultivars, is widely recognized. A grading and sorting system enables the preservation of time, consistency, and uniformity. Global population growth has led to an increase in demand for food staples, biofuel, and other agricultural products. To meet this demand, available resources must be used and managed more effectively. Image processing is rapidly growing in the field of agriculture. Many applications have been developed using this approach for crop identification and classification, land and disease detection and for measuring other parameters of crop. Vegetation localization is the base of performing these task. Vegetation helps to identify the area where the crop is present. The productivity of the agriculture industry can be increased via image processing that is based upon Unmanned Aerial Vehicle photography and satellite. In this paper we use the machine learning techniques like Convolutional Neural Network, deep learning, image processing, classification, You Only Live Once to UAV imaging dataset to divide the crop into distinct groups and choose the best way to use it.Keywords: image processing, UAV, YOLO, CNN, deep learning, classification
Procedia PDF Downloads 1077189 Maximum Entropy Based Image Segmentation of Human Skin Lesion
Authors: Sheema Shuja Khattak, Gule Saman, Imran Khan, Abdus Salam
Abstract:
Image segmentation plays an important role in medical imaging applications. Therefore, accurate methods are needed for the successful segmentation of medical images for diagnosis and detection of various diseases. In this paper, we have used maximum entropy to achieve image segmentation. Maximum entropy has been calculated using Shannon, Renyi, and Tsallis entropies. This work has novelty based on the detection of skin lesion caused by the bite of a parasite called Sand Fly causing the disease is called Cutaneous Leishmaniasis.Keywords: shannon, maximum entropy, Renyi, Tsallis entropy
Procedia PDF Downloads 4637188 Data Collection with Bounded-Sized Messages in Wireless Sensor Networks
Authors: Min Kyung An
Abstract:
In this paper, we study the data collection problem in Wireless Sensor Networks (WSNs) adopting the two interference models: The graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR). The main issue of the problem is to compute schedules with the minimum number of timeslots, that is, to compute the minimum latency schedules, such that data from every node can be collected without any collision or interference to a sink node. While existing works studied the problem with unit-sized and unbounded-sized message models, we investigate the problem with the bounded-sized message model, and introduce a constant factor approximation algorithm. To the best known of our knowledge, our result is the first result of the data collection problem with bounded-sized model in both interference models.Keywords: data collection, collision-free, interference-free, physical interference model, SINR, approximation, bounded-sized message model, wireless sensor networks
Procedia PDF Downloads 2217187 Compact LWIR Borescope Sensor for Surface Temperature of Engine Components
Authors: Andy Zhang, Awnik Roy, Trevor B. Chen, Bibik Oleksandr, Subodh Adhikari, Paul S. Hsu
Abstract:
The durability of a combustor in gas-turbine enginesrequiresa good control of its component temperatures. Since the temperature of combustion gases frequently exceeds the melting point of the combustion liner walls, an efficient air-cooling system is significantly important to elongatethe lifetime of liner walls. To determine the effectiveness of the air-cooling system, accurate 2D surface temperature measurement of combustor liner walls is crucial for advanced engine development. Traditional diagnostic techniques for temperature measurement, such as thermocouples, thermal wall paints, pyrometry, and phosphors, have shown disadvantages, including being intrusive and affecting local flame/flow dynamics, potential flame quenching, and physical damages to instrumentation due to harsh environments inside the combustor and strong optical interference from strong combustion emission in UV-Mid IR wavelength. To overcome these drawbacks, a compact and small borescope long-wave-infrared (LWIR) sensor is developed to achieve two-dimensional high-spatial resolution, high-fidelity thermal imaging of 2D surface temperature in gas-turbine engines, providing the desired engine component temperature distribution. The compactLWIRborescope sensor makes it feasible to promote the durability of combustor in gas-turbine engines.Keywords: borescope, engine, long-wave-infrared, sensor
Procedia PDF Downloads 1377186 UV-Enhanced Room-Temperature Gas-Sensing Properties of ZnO-SnO2 Nanocomposites Obtained by Hydrothermal Treatment
Authors: Luís F. da Silva, Ariadne C. Catto, Osmando F. Lopes, Khalifa Aguir, Valmor R. Mastelaro, Caue Ribeiro, Elson Longo
Abstract:
Gas detection is important for controlling industrial, and vehicle emissions, agricultural residues, and environmental control. In last decades, several semiconducting oxides have been used to detect dangerous or toxic gases. The excellent gas-sensing performance of these devices have been observed at high temperatures (~250 °C), which forbids the use for the detection of flammable and explosive gases. In this way, ultraviolet light activated gas sensors have been a simple and promising alternative to achieve room temperature sensitivity. Among the semiconductor oxides which exhibit a good performance as gas sensor, the zinc oxide (ZnO) and tin oxide (SnO2) have been highlighted. Nevertheless, their poor selectivity is the main disadvantage for application as gas sensor devices. Recently, heterostructures combining these two semiconductors (ZnO-SnO2) have been studied as an alternative way to enhance the gas sensor performance (sensitivity, selectivity, and stability). In this work, we investigated the influence of mass ratio Zn:Sn on the properties of ZnO-SnO2 nanocomposites prepared by hydrothermal treatment for 4 hours at 200 °C. The crystalline phase, surface, and morphological features were characterized by X-ray diffraction (XRD), high-resolution transmission electron (HR-TEM), and X-ray photoelectron spectroscopy (XPS) measurements. The gas sensor measurements were carried out at room-temperature under ultraviolet (UV) light irradiation using different ozone levels (0.06 to 0.61 ppm). The XRD measurements indicate the presence of ZnO and SnO2 crystalline phases, without the evidence of solid solution formation. HR-TEM analysis revealed that a good contact between the SnO2 nanoparticles and the ZnO nanorods, which are very important since interface characteristics between nanostructures are considered as challenge to development new and efficient heterostructures. Electrical measurements proved that the best ozone gas-sensing performance is obtained for ZnO:SnO2 (50:50) nanocomposite under UV light irradiation. Its sensitivity was around 6 times higher when compared to SnO2 pure, a traditional ozone gas sensor. These results demonstrate the potential of ZnO-SnO2 heterojunctions for the detection of ozone gas at room-temperature when irradiated with UV light irradiation.Keywords: hydrothermal, zno-sno2, ozone sensor, uv-activation, room-temperature
Procedia PDF Downloads 2847185 Perceptual Image Coding by Exploiting Internal Generative Mechanism
Authors: Kuo-Cheng Liu
Abstract:
In the perceptual image coding, the objective is to shape the coding distortion such that the amplitude of distortion does not exceed the error visibility threshold, or to remove perceptually redundant signals from the image. While most researches focus on color image coding, the perceptual-based quantizer developed for luminance signals are always directly applied to chrominance signals such that the color image compression methods are inefficient. In this paper, the internal generative mechanism is integrated into the design of a color image compression method. The internal generative mechanism working model based on the structure-based spatial masking is used to assess the subjective distortion visibility thresholds that are visually consistent to human eyes better. The estimation method of structure-based distortion visibility thresholds for color components is further presented in a locally adaptive way to design quantization process in the wavelet color image compression scheme. Since the lowest subband coefficient matrix of images in the wavelet domain preserves the local property of images in the spatial domain, the error visibility threshold inherent in each coefficient of the lowest subband for each color component is estimated by using the proposed spatial error visibility threshold assessment. The threshold inherent in each coefficient of other subbands for each color component is then estimated in a local adaptive fashion based on the distortion energy allocation. By considering that the error visibility thresholds are estimated using predicting and reconstructed signals of the color image, the coding scheme incorporated with locally adaptive perceptual color quantizer does not require side information. Experimental results show that the entropies of three color components obtained by using proposed IGM-based color image compression scheme are lower than that obtained by using the existing color image compression method at perceptually lossless visual quality.Keywords: internal generative mechanism, structure-based spatial masking, visibility threshold, wavelet domain
Procedia PDF Downloads 2487184 A Hybrid Pareto-Based Swarm Optimization Algorithm for the Multi-Objective Flexible Job Shop Scheduling Problems
Authors: Aydin Teymourifar, Gurkan Ozturk
Abstract:
In this paper, a new hybrid particle swarm optimization algorithm is proposed for the multi-objective flexible job shop scheduling problem that is very important and hard combinatorial problem. The Pareto approach is used for solving the multi-objective problem. Several new local search heuristics are integrated into an algorithm based on the critical block concept to enhance the performance of the algorithm. The algorithm is compared with the recently published multi-objective algorithms based on benchmarks selected from the literature. Several metrics are used for quantifying performance and comparison of the achieved solutions. The algorithms are also compared based on the Weighting summation of objectives approach. The proposed algorithm can find the Pareto solutions more efficiently than the compared algorithms in less computational time.Keywords: swarm-based optimization, local search, Pareto optimality, flexible job shop scheduling, multi-objective optimization
Procedia PDF Downloads 3687183 Basic Study of Mammographic Image Magnification System with Eye-Detector and Simple EEG Scanner
Authors: Aika Umemuro, Mitsuru Sato, Mizuki Narita, Saya Hori, Saya Sakurai, Tomomi Nakayama, Ayano Nakazawa, Toshihiro Ogura
Abstract:
Mammography requires the detection of very small calcifications, and physicians search for microcalcifications by magnifying the images as they read them. The mouse is necessary to zoom in on the images, but this can be tiring and distracting when many images are read in a single day. Therefore, an image magnification system combining an eye-detector and a simple electroencephalograph (EEG) scanner was devised, and its operability was evaluated. Two experiments were conducted in this study: the measurement of eye-detection error using an eye-detector and the measurement of the time required for image magnification using a simple EEG scanner. Eye-detector validation showed that the mean distance of eye-detection error ranged from 0.64 cm to 2.17 cm, with an overall mean of 1.24 ± 0.81 cm for the observers. The results showed that the eye detection error was small enough for the magnified area of the mammographic image. The average time required for point magnification in the verification of the simple EEG scanner ranged from 5.85 to 16.73 seconds, and individual differences were observed. The reason for this may be that the size of the simple EEG scanner used was not adjustable, so it did not fit well for some subjects. The use of a simple EEG scanner with size adjustment would solve this problem. Therefore, the image magnification system using the eye-detector and the simple EEG scanner is useful.Keywords: EEG scanner, eye-detector, mammography, observers
Procedia PDF Downloads 2157182 Automatic Near-Infrared Image Colorization Using Synthetic Images
Authors: Yoganathan Karthik, Guhanathan Poravi
Abstract:
Colorizing near-infrared (NIR) images poses unique challenges due to the absence of color information and the nuances in light absorption. In this paper, we present an approach to NIR image colorization utilizing a synthetic dataset generated from visible light images. Our method addresses two major challenges encountered in NIR image colorization: accurately colorizing objects with color variations and avoiding over/under saturation in dimly lit scenes. To tackle these challenges, we propose a Generative Adversarial Network (GAN)-based framework that learns to map NIR images to their corresponding colorized versions. The synthetic dataset ensures diverse color representations, enabling the model to effectively handle objects with varying hues and shades. Furthermore, the GAN architecture facilitates the generation of realistic colorizations while preserving the integrity of dimly lit scenes, thus mitigating issues related to over/under saturation. Experimental results on benchmark NIR image datasets demonstrate the efficacy of our approach in producing high-quality colorizations with improved color accuracy and naturalness. Quantitative evaluations and comparative studies validate the superiority of our method over existing techniques, showcasing its robustness and generalization capability across diverse NIR image scenarios. Our research not only contributes to advancing NIR image colorization but also underscores the importance of synthetic datasets and GANs in addressing domain-specific challenges in image processing tasks. The proposed framework holds promise for various applications in remote sensing, medical imaging, and surveillance where accurate color representation of NIR imagery is crucial for analysis and interpretation.Keywords: computer vision, near-infrared images, automatic image colorization, generative adversarial networks, synthetic data
Procedia PDF Downloads 437181 Surface Modified Thermoplastic Polyurethane and Poly(Vinylidene Fluoride) Nanofiber Based Flexible Triboelectric Nanogenerator and Wearable Bio-Sensor
Authors: Sk Shamim Hasan Abir, Karen Lozano, Mohammed Jasim Uddin
Abstract:
Over the last few years, nanofiber-based triboelectric nanogenerator (TENG) has caught great attention among researchers all over the world due to its inherent capability of converting mechanical energy to usable electrical energy. In this study, poly(vinylidene fluoride) (PVDF) and thermoplastic polyurethane (TPU) nanofiber prepared by Forcespinning® (FS) technique were used to fabricate TENG for self-charging energy storage device and biomechanical body motion sensor. The surface of the TPU nanofiber was modified by uniform deposition of thin gold film to enhance the frictional properties; yielded 254 V open-circuit voltage (Voc) and 86 µA short circuit current (Isc), which were 2.12 and 1.87 times greater in contrast to bare PVDF-TPU TENG. Moreover, the as-fabricated PVDF-TPU/Au TENG was tested against variable capacitors and resistive load, and the results showed that with a 3.2 x 2.5 cm2 active contact area, it can quick charge up to 7.64 V within 30 seconds using a 1.0 µF capacitor and generate significant 2.54 mW power, enough to light 75 commercial LEDs (1.5 V each) by the hand tapping motion at 4 Hz (240 beats per minutes (bpm)) load frequency. Furthermore, the TENG was attached to different body parts to capture distinctive electrical signals for various body movements, elucidated the prospective usability of our prepared nanofiber-based TENG in wearable body motion sensor application.Keywords: biomotion sensor, forcespinning, nanofibers, triboelectric nanogenerator
Procedia PDF Downloads 1007180 Using Electrical Impedance Tomography to Control a Robot
Authors: Shayan Rezvanigilkolaei, Shayesteh Vefaghnematollahi
Abstract:
Electrical impedance tomography is a non-invasive medical imaging technique suitable for medical applications. This paper describes an electrical impedance tomography device with the ability to navigate a robotic arm to manipulate a target object. The design of the device includes various hardware and software sections to perform medical imaging and control the robotic arm. In its hardware section an image is formed by 16 electrodes which are located around a container. This image is used to navigate a 3DOF robotic arm to reach the exact location of the target object. The data set to form the impedance imaging is obtained by having repeated current injections and voltage measurements between all electrode pairs. After performing the necessary calculations to obtain the impedance, information is transmitted to the computer. This data is fed and then executed in MATLAB which is interfaced with EIDORS (Electrical Impedance Tomography Reconstruction Software) to reconstruct the image based on the acquired data. In the next step, the coordinates of the center of the target object are calculated by image processing toolbox of MATLAB (IPT). Finally, these coordinates are used to calculate the angles of each joint of the robotic arm. The robotic arm moves to the desired tissue with the user command.Keywords: electrical impedance tomography, EIT, surgeon robot, image processing of electrical impedance tomography
Procedia PDF Downloads 2727179 MULTI-FLGANs: Multi-Distributed Adversarial Networks for Non-Independent and Identically Distributed Distribution
Authors: Akash Amalan, Rui Wang, Yanqi Qiao, Emmanouil Panaousis, Kaitai Liang
Abstract:
Federated learning is an emerging concept in the domain of distributed machine learning. This concept has enabled General Adversarial Networks (GANs) to benefit from the rich distributed training data while preserving privacy. However, in a non-IID setting, current federated GAN architectures are unstable, struggling to learn the distinct features, and vulnerable to mode collapse. In this paper, we propose an architecture MULTI-FLGAN to solve the problem of low-quality images, mode collapse, and instability for non-IID datasets. Our results show that MULTI-FLGAN is four times as stable and performant (i.e., high inception score) on average over 20 clients compared to baseline FLGAN.Keywords: federated learning, generative adversarial network, inference attack, non-IID data distribution
Procedia PDF Downloads 1587178 Fuzzy Multi-Component DEA with Shared and Undesirable Fuzzy Resources
Authors: Jolly Puri, Shiv Prasad Yadav
Abstract:
Multi-component data envelopment analysis (MC-DEA) is a popular technique for measuring aggregate performance of the decision making units (DMUs) along with their components. However, the conventional MC-DEA is limited to crisp input and output data which may not always be available in exact form. In real life problems, data may be imprecise or fuzzy. Therefore, in this paper, we propose (i) a fuzzy MC-DEA (FMC-DEA) model in which shared and undesirable fuzzy resources are incorporated, (ii) the proposed FMC-DEA model is transformed into a pair of crisp models using cut approach, (iii) fuzzy aggregate performance of a DMU and fuzzy efficiencies of components are defined to be fuzzy numbers, and (iv) a numerical example is illustrated to validate the proposed approach.Keywords: multi-component DEA, fuzzy multi-component DEA, fuzzy resources, decision making units (DMUs)
Procedia PDF Downloads 4077177 A Process of Forming a Single Competitive Factor in the Digital Camera Industry
Authors: Kiyohiro Yamazaki
Abstract:
This paper considers a forming process of a single competitive factor in the digital camera industry from the viewpoint of product platform. To make product development easier for companies and to increase product introduction ratios, development efforts concentrate on improving and strengthening certain product attributes, and it is born in the process that the product platform is formed continuously. It is pointed out that the formation of this product platform raises product development efficiency of individual companies, but on the other hand, it has a trade-off relationship of causing unification of competitive factors in the whole industry. This research tries to analyze product specification data which were collected from the web page of digital camera companies. Specifically, this research collected all product specification data released in Japan from 1995 to 2003 and analyzed the composition of image sensor and optical lens; and it identified product platforms shared by multiple products and discussed their application. As a result, this research found that the product platformation was born in the development of the standard product for major market segmentation. Every major company has made product platforms of image sensors and optical lenses, and as a result, this research found that the competitive factors were unified in the entire industry throughout product platformation. In other words, this product platformation brought product development efficiency of individual firms; however, it also caused industrial competition factors to be unified in the industry.Keywords: digital camera industry, product evolution trajectory, product platform, unification of competitive factors
Procedia PDF Downloads 1587176 Difference Expansion Based Reversible Data Hiding Scheme Using Edge Directions
Authors: Toshanlal Meenpal, Ankita Meenpal
Abstract:
A very important technique in reversible data hiding field is Difference expansion. Secret message as well as the cover image may be completely recovered without any distortion after data extraction process due to reversibility feature. In general, in any difference expansion scheme embedding is performed by integer transform in the difference image acquired by grouping two neighboring pixel values. This paper proposes an improved reversible difference expansion embedding scheme. We mainly consider edge direction for embedding by modifying the difference of two neighboring pixels values. In general, the larger difference tends to bring a degraded stego image quality than the smaller difference. Image quality in the range of 0.5 to 3.7 dB in average is achieved by the proposed scheme, which is shown through the experimental results. However payload wise it achieves almost similar capacity in comparisons with previous method.Keywords: information hiding, wedge direction, difference expansion, integer transform
Procedia PDF Downloads 4847175 Associations Between Positive Body Image, Physical Activity and Dietary Habits in Young Adults
Authors: Samrah Saeed
Abstract:
Introduction: This study considers a measure of positive body image and the associations between body appreciation, beauty ideals internalization, dietary habits, and physical activity in young adults. Positive body image is assessed by Body Appreciation Scale 2. It is used to assess a person's acceptance of the body, the degree of positivity, and respect for the body.Regular physical activity and healthy eating arebasically important for the body, and they play an important role in creating a positive image of the body. Objectives: To identify the associations between body appreciation and beauty ideals internalization. To compare body appreciation and body ideals internalization among students of different physical activity. To explore the associations between dietary habits (unhealthy, healthy), body appreciation and body ideals internalization. Research methods and organization: Study participants were young adult students, aged 18-35, both male and female.The research questionnaire consisted of four areas: body appreciation, beauty ideals internalization, dietary habits, and physical activity.The questionnaire was created in Google Forms online survey platform.The questionnaire was filled out anonymously Result and Discussion: Physical dissatisfaction, diet, eating disorders and exercise disorders are found in young adults all over the world.Thorough nutrition helps people understand who they are by reassuring them that they are okay without judging or accepting themselves. Social media can positively influence body image in many ways.A healthy body image is important because it affect self-esteem, self-acceptance, and your attitude towards food and exercise.Keywords: pysical activity, dietary habits, body image, beauty ideals internalization, body appreciation
Procedia PDF Downloads 967174 The Use of Sustainable Tourism, Decrease Performance Levels, and Change Management for Image Branding as a Contemporary Tool of Foreign Policy
Authors: Mehtab Alam
Abstract:
Sustainable tourism practices require to improve the decreased performance levels in phases of change management for image branding. This paper addresses the innovative approach of using sustainable tourism for image branding as a contemporary tool of foreign policy. The sustainable tourism-based foreign policy promotes cultural values, green tourism, economy, and image management for the avoidance of rising global conflict. The mixed-method approach (quantitative 382 surveys, qualitative 11 interviews at saturation point) implied for the data analysis. The research finding provides the potential of using sustainable tourism by implying skills and knowledge, capacity, and personal factors of change management in improving tourism-based performance levels. It includes the valuable tourism performance role for the success of a foreign policy through sustainable tourism. Change management in tourism-based foreign policy provides the destination readiness for international engagement and curbing of climate issues through green tourism. The research recommends the impact of change management in improving the tourism-based performance levels of image branding for a coercive foreign policy. The paper’s future direction for the immediate implementation of tourism-based foreign policy is to overcome the contemporary issues of travel marketing management, green infrastructure, and cross-border regulation.Keywords: decrease performance levels, change management, sustainable tourism, image branding, foreign policy
Procedia PDF Downloads 1247173 Current Status and Future Trends of Mechanized Fruit Thinning Devices and Sensor Technology
Authors: Marco Lopes, Pedro D. Gaspar, Maria P. Simões
Abstract:
This paper reviews the different concepts that have been investigated concerning the mechanization of fruit thinning as well as multiple working principles and solutions that have been developed for feature extraction of horticultural products, both in the field and industrial environments. The research should be committed towards selective methods, which inevitably need to incorporate some kinds of sensor technology. Computer vision often comes out as an obvious solution for unstructured detection problems, although leaves despite the chosen point of view frequently occlude fruits. Further research on non-traditional sensors that are capable of object differentiation is needed. Ultrasonic and Near Infrared (NIR) technologies have been investigated for applications related to horticultural produce and show a potential to satisfy this need while simultaneously providing spatial information as time of flight sensors. Light Detection and Ranging (LIDAR) technology also shows a huge potential but it implies much greater costs and the related equipment is usually much larger, making it less suitable for portable devices, which may serve a purpose on smaller unstructured orchards. Portable devices may serve a purpose on these types of orchards. In what concerns sensor methods, on-tree fruit detection, major challenge is to overcome the problem of fruits’ occlusion by leaves and branches. Hence, nontraditional sensors capable of providing some type of differentiation should be investigated.Keywords: fruit thinning, horticultural field, portable devices, sensor technologies
Procedia PDF Downloads 1397172 Laban Movement Analysis Using Kinect
Authors: Bernstein Ran, Shafir Tal, Tsachor Rachelle, Studd Karen, Schuster Assaf
Abstract:
Laban Movement Analysis (LMA), developed in the dance community over the past seventy years, is an effective method for observing, describing, notating, and interpreting human movement to enhance communication and expression in everyday and professional life. Many applications that use motion capture data might be significantly leveraged if the Laban qualities will be recognized automatically. This paper presents an automated recognition method of Laban qualities from motion capture skeletal recordings and it is demonstrated on the output of Microsoft’s Kinect V2 sensor.Keywords: Laban movement analysis, multitask learning, Kinect sensor, machine learning
Procedia PDF Downloads 3417171 Barrier Lowering in Contacts between Graphene and Semiconductor Materials
Authors: Zhipeng Dong, Jing Guo
Abstract:
Graphene-semiconductor contacts have been extensively studied recently, both as a stand-alone diode device for potential applications in photodetectors and solar cells, and as a building block to vertical transistors. Graphene is a two-dimensional nanomaterial with vanishing density-of-states at the Dirac point, which differs from conventional metal. In this work, image-charge-induced barrier lowering (BL) in graphene-semiconductor contacts is studied and compared to that in metal Schottky contacts. The results show that despite of being a semimetal with vanishing density-of-states at the Dirac point, the image-charge-induced BL is significant. The BL value can be over 50% of that of metal contacts even in an intrinsic graphene contacted to an organic semiconductor, and it increases as the graphene doping increases. The dependences of the BL on the electric field and semiconductor dielectric constant are examined, and an empirical expression for estimating the image-charge-induced BL in graphene-semiconductor contacts is provided.Keywords: graphene, semiconductor materials, schottky barrier, image charge, contacts
Procedia PDF Downloads 3037170 3D Vision Transformer for Cervical Spine Fracture Detection and Classification
Authors: Obulesh Avuku, Satwik Sunnam, Sri Charan Mohan Janthuka, Keerthi Yalamaddi
Abstract:
In the United States alone, there are over 1.5 million spine fractures per year, resulting in about 17,730 spinal cord injuries. The cervical spine is where fractures in the spine most frequently occur. The prevalence of spinal fractures in the elderly has increased, and in this population, fractures may be harder to see on imaging because of coexisting degenerative illness and osteoporosis. Nowadays, computed tomography (CT) is almost completely used instead of radiography for the imaging diagnosis of adult spine fractures (x-rays). To stop neurologic degeneration and paralysis following trauma, it is vital to trace any vertebral fractures at the earliest. Many approaches have been proposed for the classification of the cervical spine [2d models]. We are here in this paper trying to break the bounds and use the vision transformers, a State-Of-The-Art- Model in image classification, by making minimal changes possible to the architecture of ViT and making it 3D-enabled architecture and this is evaluated using a weighted multi-label logarithmic loss. We have taken this problem statement from a previously held Kaggle competition, i.e., RSNA 2022 Cervical Spine Fracture Detection.Keywords: cervical spine, spinal fractures, osteoporosis, computed tomography, 2d-models, ViT, multi-label logarithmic loss, Kaggle, public score, private score
Procedia PDF Downloads 1147169 Performance Assessment of Multi-Level Ensemble for Multi-Class Problems
Authors: Rodolfo Lorbieski, Silvia Modesto Nassar
Abstract:
Many supervised machine learning tasks require decision making across numerous different classes. Multi-class classification has several applications, such as face recognition, text recognition and medical diagnostics. The objective of this article is to analyze an adapted method of Stacking in multi-class problems, which combines ensembles within the ensemble itself. For this purpose, a training similar to Stacking was used, but with three levels, where the final decision-maker (level 2) performs its training by combining outputs from the tree-based pair of meta-classifiers (level 1) from Bayesian families. These are in turn trained by pairs of base classifiers (level 0) of the same family. This strategy seeks to promote diversity among the ensembles forming the meta-classifier level 2. Three performance measures were used: (1) accuracy, (2) area under the ROC curve, and (3) time for three factors: (a) datasets, (b) experiments and (c) levels. To compare the factors, ANOVA three-way test was executed for each performance measure, considering 5 datasets by 25 experiments by 3 levels. A triple interaction between factors was observed only in time. The accuracy and area under the ROC curve presented similar results, showing a double interaction between level and experiment, as well as for the dataset factor. It was concluded that level 2 had an average performance above the other levels and that the proposed method is especially efficient for multi-class problems when compared to binary problems.Keywords: stacking, multi-layers, ensemble, multi-class
Procedia PDF Downloads 2697168 Radio-Frequency Identification (RFID) Based Smart Helmet for Coal Miners
Authors: Waheeda Jabbar, Ali Gul, Rida Noor, Sania Kurd, Saba Gulzar
Abstract:
Hundreds of miners die from mining accidents each year due to poisonous gases found underground mining areas. This paper proposed an idea to protect the precious lives of mining workers. A supervising system is designed which is based on ZigBee wireless technique along with the smart protective helmets to detect real-time surveillance and it gives early warnings on presence of different poisonous gases in order to save mineworkers from any danger caused by these poisonous gases. A wireless sensor network is established using ZigBee wireless technique by integrating sensors on the helmet, apart from this helmet have embedded heartbeat sensor to detect the pulse rate and be aware of the physical or mental strength of a mineworker to increase the potential safety. Radio frequency identification (RFID) technology is used to find the location of workers. A ZigBee based base station is set-upped to control the communication. The idea is implemented and results are verified through experiment.Keywords: Arduino, gas sensor (MQ7), RFID, wireless ZigBee
Procedia PDF Downloads 4557167 Satellite Image Classification Using Firefly Algorithm
Authors: Paramjit Kaur, Harish Kundra
Abstract:
In the recent years, swarm intelligence based firefly algorithm has become a great focus for the researchers to solve the real time optimization problems. Here, firefly algorithm is used for the application of satellite image classification. For experimentation, Alwar area is considered to multiple land features like vegetation, barren, hilly, residential and water surface. Alwar dataset is considered with seven band satellite images. Firefly Algorithm is based on the attraction of less bright fireflies towards more brightener one. For the evaluation of proposed concept accuracy assessment parameters are calculated using error matrix. With the help of Error matrix, parameters of Kappa Coefficient, Overall Accuracy and feature wise accuracy parameters of user’s accuracy & producer’s accuracy can be calculated. Overall results are compared with BBO, PSO, Hybrid FPAB/BBO, Hybrid ACO/SOFM and Hybrid ACO/BBO based on the kappa coefficient and overall accuracy parameters.Keywords: image classification, firefly algorithm, satellite image classification, terrain classification
Procedia PDF Downloads 4017166 A New Learning Automata-Based Algorithm to the Priority-Based Target Coverage Problem in Directional Sensor Networks
Authors: Shaharuddin Salleh, Sara Marouf, Hosein Mohammadi
Abstract:
Directional sensor networks (DSNs) have recently attracted a great deal of attention due to their extensive applications in a wide range of situations. One of the most important problems associated with DSNs is covering a set of targets in a given area and, at the same time, maximizing the network lifetime. This is due to limitation in sensing angle and battery power of the directional sensors. This problem gets more complicated by the possibility that targets may have different coverage requirements. In the present study, this problem is referred to as priority-based target coverage (PTC). As sensors are often densely deployed, organizing the sensors into several cover sets and then activating these cover sets successively is a promising solution to this problem. In this paper, we propose a learning automata-based algorithm to organize the directional sensors into several cover sets in such a way that each cover set could satisfy coverage requirements of all the targets. Several experiments are conducted to evaluate the performance of the proposed algorithm. The results demonstrated that the algorithms were able to contribute to solving the problem.Keywords: directional sensor networks, target coverage problem, cover set formation, learning automata
Procedia PDF Downloads 4147165 Branding Tourism Destinations; The Trending Initiatives for Edifice Image Choices of Foreign Policy
Authors: Mehtab Alam, Mudiarasan Kuppusamy, Puvaneswaran Kunaserkaran
Abstract:
The purpose of this paper is to bridge the gap and complete the relationship between tourism destinations and image branding as a choice of edifice foreign policy. Such options became a crucial component for individuals interested in leisure and travel activities. The destination management factors have been evaluated and analyzed using the primary and secondary data in a mixed-methods approach (quantitative sample of 384 and qualitative 8 semi-structured interviews at saturated point). The study chose the Environmental Management Accounting (EMA) and Image Restoration (IR) theories, along with a schematic diagram and an analytical framework supported by NVivo software 12, for two locations in Abbottabad, KPK, Pakistan: Shimla Hill and Thandiani. This incorporates the use of PLS-SEM model for assessing validity of data while SPSS for data screening of descriptive statistics. The results show that destination management's promotion of tourism has significantly improved Pakistan's state image. The use of institutional setup, environmental drivers, immigration, security, and hospitality as well as recreational initiatives on destination management is encouraged. The practical ramifications direct the heads of tourism projects, diplomats, directors, and policymakers to complete destination projects before inviting people to Pakistan. The paper provides the extent of knowledge for academic tourism circles to use tourism destinations as brand ambassadors.Keywords: tourism, management, state image, foreign policy, image branding
Procedia PDF Downloads 697164 Experimental Study on Tensile Strength of Polyethylene/Carbon Injected Composites
Authors: Armin Najipour, A. M. Fattahi
Abstract:
The aim of this research was to investigate the effect of the addition of multi walled carbon nanotubes on the mechanical properties of polyethylene/carbon nanotube nanocomposites. To do so, polyethylene and carbon nanotube were mixed in different weight percentages containing 0, 0.5, 1, and 1.5% carbon nanotube in two screw extruder apparatus by fusion. Then the nanocomposite samples were molded in injection apparatus according to ASTM:D638 standard. The effects of carbon nanotube addition in 4 different levels on the tensile strength, elastic modulus and elongation of the nanocomposite samples were investigated. The results showed that the addition of carbon nanotube had a significant effect on improving tensile strength of the nanocomposite samples such that by adding 1% w/w carbon nanotube, the tensile strength 23.4%,elastic modulus 60.4%and elongation 29.7% of the samples improved. Also, according to the results, Manera approximation model at percentages about 0.5% weight and modified Halpin-Tsai at percentages about 1% weight lead to favorite and reliable results.Keywords: carbon nanotube, injection molding, Mechanical properties, Nanocomposite, polyethylene
Procedia PDF Downloads 2707163 Defining Methodology for Multi Model Software Process Improvement Framework
Authors: Aedah Abd Rahman
Abstract:
Software organisations may implement single or multiple frameworks in order to remain competitive. There are wide selection of generic Software Process Improvement (SPI) frameworks, best practices and standards implemented with different focuses and goals. Issues and difficulties emerge in the SPI practices from the context of software development and IT Service Management (ITSM). This research looks into the integration of multiple frameworks from the perspective of software development and ITSM. The research question of this study is how to define steps of methodology to solve the multi model software process improvement problem. The objective of this study is to define the research approach and methodologies to produce a more integrated and efficient Multi Model Process Improvement (MMPI) solution. A multi-step methodology is used which contains the case study, framework mapping and Delphi study. The research outcome has proven the usefulness and appropriateness of the proposed framework in SPI and quality practice in Malaysian software industries. This mixed method research approach is used to tackle problems from every angle in the context of software development and services. This methodology is used to facilitate the implementation and management of multi model environment of SPI frameworks in multiple domains.Keywords: Delphi study, methodology, multi model software process improvement, service management
Procedia PDF Downloads 260