Search results for: ionothermal synthesis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2111

Search results for: ionothermal synthesis

1091 Biodegradable Cross-Linked Composite Hydrogels Enriched with Small Molecule for Osteochondral Regeneration

Authors: Elena I. Oprita, Oana Craciunescu, Rodica Tatia, Teodora Ciucan, Reka Barabas, Orsolya Raduly, Anca Oancea

Abstract:

Healing of osteochondral defects requires repair of the damaged articular cartilage, the underlying subchondral bone and the interface between these tissues (the functional calcified layer). For this purpose, developing a single monophasic scaffold that can regenerate two specific lineages (cartilage and bone) becomes a challenge. The aim of this work was to develop variants of biodegradable cross-linked composite hydrogel based on natural polypeptides (gelatin), polysaccharides components (chondroitin-4-sulphate and hyaluronic acid), in a ratio of 2:0.08:0.02 (w/w/w) and mixed with Si-hydroxyapatite (Si-Hap), in two ratios of 1:1 and 2:1 (w/w). Si-Hap was synthesized and characterized as a better alternative to conventional Hap. Subsequently, both composite hydrogel variants were cross-linked with (N, N-(3-dimethylaminopropyl)-N-ethyl carbodiimide (EDC) and enriched with a small bioactive molecule (icariin). The small molecule icariin (Ica) (C33H40O15) is the main active constituent (flavonoid) of Herba epimedium used in traditional Chinese medicine to cure bone- and cartilage-related disorders. Ica enhances osteogenic and chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), facilitates matrix calcification and increases the specific extracellular matrix (ECM) components synthesis by chondrocytes. Afterward, the composite hydrogels were characterized for their physicochemical properties in terms of the enzymatic biodegradation in the presence of type I collagenase and trypsin, the swelling capacity and the degree of crosslinking (TNBS assay). The cumulative release of Ica and real-time concentration were quantified at predetermined periods of time, according to the standard curve of standard Ica, after hydrogels incubation in saline buffer at physiological parameters. The obtained cross-linked composite hydrogels enriched with small-molecule Ica were also characterized for morphology by scanning electron microscopy (SEM). Their cytocompatibility was evaluated according to EN ISO 10993-5:2009 standard for medical device testing. Thus, analyses regarding cell viability (Live/Dead assay), cell proliferation (Neutral Red assay) and cell adhesion to composite hydrogels (SEM) were performed using NCTC clone L929 cell line. The final results showed that both cross-linked composite hydrogel variants enriched with Ica presented optimal physicochemical, structural and biological properties to be used as a natural scaffold able to repair osteochondral defects. The data did not reveal any toxicity of composite hydrogels in NCTC stabilized cell lines within the tested range of concentrations. Moreover, cells were capable of spreading and proliferating on both composite hydrogel surfaces. In conclusion, the designed biodegradable cross-linked composites enriched with Si and Ica are recommended for further testing as natural temporary scaffolds, which can allow cell migration and synthesis of new extracellular matrix within osteochondral defects.

Keywords: composites, gelatin, osteochondral defect, small molecule

Procedia PDF Downloads 155
1090 Going Viral: Constructively Aligning the Use of Digital Video to Effectively Support Faculty Development

Authors: Samuel Olugbenga King

Abstract:

This review article, which is a synthesis of the relevant research literature, focuses on the capabilities of digital video to support, facilitate and enhance faculty development. Based on the literature review, faculty development (i.e., academic or educational development) requires the continued adoption of cohesive, theoretical frameworks to guide research and practice; incorporation of relevant tools from analogous fields, such as teacher professional development; systematic program evaluations; and detailed descriptions of practice to further practice and creative development. A cohesive, five-heuristic framework is subsequently outlined to inform the design and evaluation of the use of digital video, so as to address the barriers to advancing faculty development, as identified through the literature review. Alternative impact evaluation approaches are also described, while the limitations of using digital video for faculty development are highlighted. This paper is therefore conceived as one way to meaningfully leverage the educational affordances of digital video to address some lingering gaps in faculty development.

Keywords: digital video, faculty/educational development, evaluation, scholarship of teaching and learning (SoTL)

Procedia PDF Downloads 328
1089 Synthesis of Quinazoline Derivatives as Selective Inhibitors of Cyclooxygenase-1 Enzyme

Authors: Marcela Dvorakova, Lenka Langhansova, Premysl Landa

Abstract:

A series of quinazoline derivatives bearing aromatic rings in 2- and 4-positions were prepared and tested for their biological activity. Firstly, the compounds were evaluated for their potential to inhibit various kinases, such as autophagy activating kinase ULK1, 3-Phosphoinositide-dependent kinase 1, and TANK-binding kinase 1. None of the compounds displayed any activity on these kinases. Secondly, the compounds were tested for their anti-inflammatory activity expressed as cyclooxygenase (COX) isoforms and 5-lipoxygenase (5-LOX) inhibition. Three of the compounds showed significant selectivity towards COX-1 isoform (COX-2/COX-1 SI = 20-30). They inhibited COX-1 in a single-digit µM range. There was also one compound that exhibited inhibitory activity towards all three tested enzymes in µM range (IC50COX-1 = 1.9 µM; IC50COX-2 and 5-LOX = 10.1µM. COX-1 inhibition was until recently considered undesirable due to COX-1 constitutive expression in most cell types and tissues. Thus, there are not many compounds known with selective COX-1 activity. However, it is now believed that COX-1 plays an important role in the pathophysiology of several acute and chronic disorders, including cancer or neurodegenerative diseases. Thus, the discovery of effective COX-1 selective inhibitors is desirable and important.

Keywords: cyclooxygenases, kinases, lipoxygenases, quinazolines

Procedia PDF Downloads 116
1088 Long-Persistent Luminescent MAl2O4:Eu;Dy Phoshors Synthesized by Combustion

Authors: Yusuf Ziya Halefoğlu

Abstract:

Phosphorescence, classically, excitation effects (radiation, electron beam, electric field, temperature, etc.) is the name given after the elimination of materials that glow in the visible region. This event continues to glow after the elimination of the effect of excitation is called phosphorescence. In this study were synthesized by the method of the combustion lanthanide doped alkaline earth aluminates. High temperature and long reaction time required and the sol-gel method of combustion according to the methods of solid state synthesis temperature lower than the short reaction time, a small particle size, convenience, and is superior in terms of being secured. Their microstructures and its effect on the photoluminescence properties were studied. Phosphorescence is derived in the dark when produced materials are held in sunlight or under ultraviolet light typically at 365-520 nm wavelength range. In this study, the optimal ratio of rare earth elements, in terms of brightness and glow duration was examined by SEM, XRD and photoluminescence analysis.

Keywords: persistence luminescence, phosphorescence, trap depth, combustion method

Procedia PDF Downloads 221
1087 Ag and Au Nanoparticles Fabrication in Cross-Linked Polymer Microgels for Their Comparative Catalytic Study

Authors: Luqman Ali Shah, Murtaza Sayed, Mohammad Siddiq

Abstract:

Three-dimensional cross-linked polymer microgels with temperature responsive N-isopropyl acrylamide (NIPAM) and pH-sensitive methacrylic acid (MAA) were successfully synthesized by free radical emulsion polymerization with different amount of MAA. Silver and gold nanoparticles with size of 6.5 and 3.5 nm (±0.5 nm) respectively were homogeneously reduced inside these materials by chemical reduction method at pH 2.78 and 8.36 for the preparation of hybrid materials. The samples were characterized by FTIR, DLS and TEM techniques. The catalytic activity of the hybrid materials was investigated for the reduction of 4-nitrophenol (4- NP) using NaBH4 as reducing agent by UV-visible spectroscopy. The hybrid polymer network synthesized at pH 8.36 shows enhanced catalytic efficiency compared to catalysts synthesized at pH 2.78. In this study, it has been explored that catalyst activity strongly depends on amount of MAA, synthesis pH and type of metal nanoparticles entrapped.

Keywords: cross-linked polymer microgels, free radical polymerization, metal nanoparticles, catalytic activity, comparative study

Procedia PDF Downloads 302
1086 Lanthanide-Mediated Aggregation of Glutathione-Capped Gold Nanoclusters Exhibiting Strong Luminescence and Fluorescence Turn-on for Sensing Alkaline Phosphatase

Authors: Jyun-Guo You, Wei-Lung Tseng

Abstract:

Herein, this study represents a synthetic route for producing highly luminescent AuNCs based on the integration of two concepts, including thiol-induced luminescence enhancement of ligand-insufficient GSH-AuNCs and Ce3+-induced aggregation of GSH-AuNCs. The synthesis of GSH-AuNCs was conducted by modifying the previously reported procedure. To produce more Au(I)-GSH complexes on the surface of ligand-insufficient GSH-AuNCs, the extra GSH is added to attach onto the AuNC surface. The formed ligand-sufficient GSH-AuNCs (LS-GSH-AuNCs) emit relatively strong luminescence. The luminescence of LS-GSH-AuNCs is further enhanced by the coordination of two carboxylic groups (pKa1 = 2 and pKa2 = 3.5) of GSH and lanthanide ions, which induce the self-assembly of LS-GSH-AuNCs. As a result, the quantum yield of the self-assembled LS-GSH-AuNCs (SA-AuNCs) was improved to be 13%. Interestingly, the SA-AuNCs were dissembled into LS-GSH-AuNCs in the presence of adenosine triphosphate (ATP) because of the formation of the ATP- lanthanide ion complexes. Our assay was employed to detect alkaline phosphatase (ALP) activity over the range of 0.1−10 U/mL with a limit of detection (LOD) of 0.03 U/mL.

Keywords: self-assembly, lanthanide ion, adenosine triphosphate, alkaline phosphatase

Procedia PDF Downloads 156
1085 Synthesis, Microstructure and Photoluminescence Properties of Yttrium Orthovanadates: Influences of Silica Nano-Particles and Nano-Layers

Authors: Seyed Mahdi Rafiaei

Abstract:

In this investigation, firstly Eu3+ doped YVO4 phosphor was synthesized using solid-state method. Then silica was coated on the surface of particles via sol-gel method. To study the influence of SiO2 addition on microstructure and photoluminescence characteristics of YVO4:4% Eu3+ phosphor materials, we employed X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), High-Resolution Transmitted Electron Microscope (HRTEM), Focused Ion Beam (FIB), Brunauer Emmett Teller (BET), Inductively coupled plasma (ICP), Electron Spin Resonance (ESR) and Photoluminescence (PL) equipments. The XPS characterization confirmed the formation of Y–O–Si and V-O-Si bondings between YVO4:Eu3+ phosphor particle and SiO2 coating. In addition, it was found that although the amounts of added SiO2 were not remarkable, but it resulted in enhancement of emission intensity of the phosphors. Finally by employing ESR analysis, it was shown that surface oxygen vacancies, result in reduction of V5+ to the lower valence state of V4+.

Keywords: solid state, sol-gel, silica, coating, photoluminescence

Procedia PDF Downloads 196
1084 One-Step Synthesis of Fluorescent Carbon Dots in a Green Way as Effective Fluorescent Probes for Detection of Iron Ions and pH Value

Authors: Mostafa Ghasemi, Andrew Urquhart

Abstract:

In this study, fluorescent carbon dots (CDs) were synthesized in a green way using a one-step hydrothermal method. Carbon dots are carbon-based nanomaterials with a size of less than 10 nm, unique structure, and excellent properties such as low toxicity, good biocompatibility, tunable fluorescence, excellent photostability, and easy functionalization. These properties make them a good candidate to use in different fields such as biological sensing, photocatalysis, photodynamic, and drug delivery. Fourier transformed infrared (FTIR) spectra approved OH/NH groups on the surface of the as-synthesized CDs, and UV-vis spectra showed excellent fluorescence quenching effect of Fe (III) ion on the as-synthesized CDs with high selectivity detection compared with other metal ions. The probe showed a linear response concentration range (0–2.0 mM) to Fe (III) ion, and the limit of detection was calculated to be about 0.50 μM. In addition, CDs also showed good sensitivity to the pH value in the range from 2 to 14, indicating great potential as a pH sensor.

Keywords: carbon dots, fluorescence, pH sensing, metal ions sensor

Procedia PDF Downloads 53
1083 Effect of Temperature on Adsorption of Nano Ca-DTPMP Scale Inhibitor

Authors: Radhiyatul Hikmah Binti Abu, Zukhairi Bin Md Rahim, Siti Ujila Binti Masuri, Nur Ismarrubie Binti Zahari, Mohd Zobir Hussein

Abstract:

This paper describes the synthesis of Calcium Diethylenetriamine-penta (Ca-DTPMP) Scale Inhibitor (SI) and the effect of temperature on its adsorption onto the mineral surfaces. Nanosized particles of Ca-DTPMP SI were synthesized and TEM result shows that the sizes of the synthesized particles are ranged from 10 nm to 30 nm. This synthesized nano SI was then used in static adsorption/precipitation test with various temperatures (37°C, 60°C and 100°C) to determine the effect of temperature on its adsorption ability. The performance of the SI was measured by their diffusion capability, which can be inferred by weighing the metal-SI that successfully adsorbed onto the kaolinite (mineral) surface. The kaolinite samples were analyzed using Scanning Electron Microscope (SEM) and the results show the reduction of pores on kaolinite surface as temperature increases. This indicates higher adsorption of the SI particles onto the mineral surface. Furthermore, EDX analysis shows the presence of Phosphorus (P) and Magnesium (Mg2+) on kaolinite particle surface, hence reaffirming the fact that adsorption took place on the kaolinite surface.

Keywords: adsorption, diffusivity, scale, scale inhibitor

Procedia PDF Downloads 423
1082 In Situ Laser-Induced Synthesis of Copper Microstructures with High Catalytic Properties and Sensory Characteristics

Authors: Maxim Panov, Evgenia Khairullina, Sergey Ermakov, Oleg Gundobin, Vladimir Kochemirovsky

Abstract:

The continuous in situ laser-induced catalysis proceeding via generation and growth of nano-sized copper particles was discussed. Also, the simple and lost-cost method for manufacturing of microstructural copper electrodes was proposed. The electrochemical properties of these electrodes were studied by cyclic voltammetry and impedance spectroscopy. The surface of the deposited copper structures (electrodes) was investigated by X-ray photoelectron spectroscopy and atomic force microscopy. These microstructures are highly conductive and porous with a dispersion of pore size ranging from 50 nm to 50 μm. An analytical response of the fabricated copper electrode is 30 times higher than those observed for a pure bulk copper with similar geometric parameters. A study of sensory characteristics for hydrogen peroxide determination showed that the value of Faraday current at the fabricated copper electrode is 2-2.5 orders of magnitude higher than for etalon one.

Keywords: laser-induced deposition, electrochemical electrodes, non-enzymatic sensors, copper

Procedia PDF Downloads 224
1081 Synthesis, Characterization and Application of Undoped and Fe Doped TiO₂ (Ti₁₋ₓFeₓO₂; X=0.01, 0.02, 0.03) Nanoparticles

Authors: Sudhakar Saroj, Satya Vir Singh

Abstract:

Undoped and Fe doped TiO₂, Ti₁₋ₓFeₓO₂ (x=0.00, 0.01, 0.03, 0.05, 0.07 and 0.09) have been synthesized by solution combustion method using Titanium (IV) oxide as a precursor, and also were characterized by XRD, DRS, FTIR, XPS, SEM, and EDX. The formation of anatase phase of undoped and Fe TiO₂ nanoparticles were confirmed by XRD, and the average crystallite size was determined by Debye-Scherer's equation. The DRS analysis indicates the shifting of light absorbance in visible region from UV region with increasing the doping concentration in TiO₂. The vibrational band of the Ti-O lattice was confirmed by the FT-IR spectrum. The XPS results confirm the presence of elements of titanium, oxygen and iron in the synthesized samples and determine the binding energy of elements. SEM image of the above-synthesized nanoparticles showed the spherical shape of nanoparticles. The purities of the synthesized nanoparticles were confirmed by EDX analysis. The photocatalytic activities of the synthesized nanoparticles were tested by studying the degradation of dye (Direct Blue 199) in the photocatalytic reactor. The Ti₀.₉₇Fe₀.₀₃O₂ photocatalyst shows highest photodegradation activity among all the synthesized undoped and Fe doped TiO₂ photocatalyst.

Keywords: direct blue 199, nanoparticles, TiO₂, photodegradation

Procedia PDF Downloads 218
1080 The Popular Imagination through the Poem of “Ras B’Nadam”

Authors: Hirreche Baghdad Mohamed

Abstract:

One of the main texts in popular culture in Algeria is a symbolic and imaginary tale, through which the author was able to derive from the world and popular cultural stock and symbolic capital elements that enabled him to create a synthesis between a number of imaginary and real events. Thanks to the level of spirituality that the author was experiencing, he was able to go deep in order to redraw the boundaries of human life in view of its existence and status (life experiences, its end, and its fate). It is a text that is consistent with religious values and has a philosophical depth. This poem can be shared in official and unofficial meetings, during feasts, and during popular celebrations, such as circumcision ceremonies, marriage, and condolences. It has also the ability to draw attention and appeal to the listener and let him travel into the imaginary world. It is the text related to the story of "Ras b’nadem", or "the head of a man", or rather, a "human skull", for which only a few academic studies have been devoted, and there are two copies of it, one attributed to Lakhdar Ibn Khalouf as a matter of suspicion, while the other is attributed to Qadour Ibn Ashour Al-Zarhouni.

Keywords: ras B’Nadam, ras al mahna, lakhdar ibn khalouf, qadour ibn ashour, sufism, melhoun poetry, resistance poetry

Procedia PDF Downloads 164
1079 Photocatalytic Activity of Polypyrrole/ZnO Composites for Degradation of Dye Reactive Red 45 in Wastewater

Authors: Ljerka Kratofil Krehula, Vanja Gilja, Andrea Husak, Sniježana Šuka, Zlata Hrnjak-Murgić

Abstract:

Zinc oxide (ZnO) can be used as photocatalysts for water purification. However, one particular interest is given on the integration of inorganic ZnO nanoclusters with conducting polymers because the resulting nanocomposites may possess unique properties and enhanced photocatalytic activity in comparison to pure ZnO, using UV and also visible light. It is needed to explore the appropriate structure of polypyrrole that can induce activation of ZnO photocatalyst since the synthesis of organic/inorganic hybrid materials can result in a synergistic and complementary feature, increasing ZnO photocatalytic efficiency. In this paper several different composites of polypyrrole/zinc oxide (ZnO) were studied. Composite samples were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV) and scanning electron microscopy (SEM). The photocatalytic efficiency of prepared samples was studied as a decomposition of Reactive Red 45 (RR 45) dye, which was monitored by UV-Vis spectroscopy as a change in absorbance of characteristic wavelength at 542 nm. Results show good photocatalytic efficiency of all nanocomposite samples.

Keywords: photocatalysis, polypyrrole, wastewater, zinc oxide

Procedia PDF Downloads 250
1078 Synthesis of Silver Nanoparticle: An Analytical Method Based Approach for the Quantitative Assessment of Drug

Authors: Zeid A. Alothman

Abstract:

Silver nanoparticle (AgNP) has been synthesized using adrenaline. Adrenaline readily undergoes an autoxidation reaction in an alkaline medium with the dissolved oxygen to form adrenochrome, thus behaving as a mild reducing agent for the dissolved oxygen. This reducing behavior of adrenaline when employed to reduce Ag(+) ions yielded a large enhancement in the intensity of absorbance in the visible region. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) studies have been performed to confirm the surface morphology of AgNPs. Further, the metallic nanoparticles with size greater than 2 nm caused a strong and broad absorption band in the UV-visible spectrum called surface plasmon band or Mie resonance. The formation of AgNPs caused the large enhancement in the absorbance values with λmax at 436 nm through the excitation of the surface plasmon band. The formation of AgNPs was adapted to for the quantitative assessment of adrenaline using spectrophotometry with lower detection limit and higher precision values.

Keywords: silver nanoparticle, adrenaline, XRD, TEM, analysis

Procedia PDF Downloads 185
1077 Carbon Dioxide Capture, Utilization, and Storage: Sequestration

Authors: Ankur Sachan

Abstract:

Carbon dioxide being the most anthropogenic greenhouse gas,it needs to be isolated from entering into atmosphere. Carbon capture and storage is process that captures CO2 emitted from various sources, separates it from other gases and stores it in a safe place preferably in underground geological formations for large period of time. It is then purified and monitored so that can be made to reuse. Monoethanolamine, zeolitic imidazolate framework, microalgae, membranes etc are utilized to capture CO2. Post-combustion, pre-combustion and oxyfuel combustion along with chemical looping combustion are technologies for scrubbing CO2. The properties of CO2 being easily miscible and readily dissolving in oil with impurities makes it capable for numerous applications such as in producing oil by enhanced oil recovery (EOR), Bio CCS Algal Synthesis etc. CO2-EOR operation is capable to produce million barrels of oil and extend the field's lifetime as in case of Weyburn Oil Field in Canada. The physical storage of CO2 is technically the most feasible direction provided that the associated safety and sustainability issues can be met and new materials for CCUS process at low cost are urgently found so that so that fossil based systems with carbon capture are cost competitive.

Keywords: carbon capture, CCUS, sustainability, oil

Procedia PDF Downloads 500
1076 Synthesis and Characterization of Akermanite Nanoparticles (AMN) as a Bio-Ceramic Nano Powder by Sol-Gel Method for Use in Biomedical

Authors: Seyedmahdi Mousavihashemi

Abstract:

Natural Akermanite (NAM) has been successfully prepared by a modified sol-gel method. Optimization in calcination temperature and mechanical ball milling resulted in a pure and nano-sized powder which characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared Spectroscopy (FT–IR). We hypothesized that nano-sized Akermanite (AM) would mimic more efficiently the nanocrystal structure and function of natural bone apatite, owing to the higher surface area, compare to conventional micron-size Akermanite (AM). Accordingly, we used the unique advantage of nanotechnology to improve novel nano akermanite particles as a potential candidate for bone tissue regeneration whether as a per implant filling powder or in combination with other biomaterials as a composite scaffold. Pure Akermanite (PAM) powders were successfully obtained via a simple sol-gel method followed by calcination at 1250 °C. Mechanical grinding in a ceramic ball mill for 7 hours resulted in akermanite (AM) nanoparticles in the range of about 30- 45 nm.

Keywords: biomedical engineering, nano composite, SEM, TEM

Procedia PDF Downloads 221
1075 Development of Al-5%Cu/Si₃N₄, B₄C or BN Composites for Piston Applications

Authors: Ahmed Lotfy, Andrey V. Pozdniakov, Vadim C. Zolotorevskiy

Abstract:

The purpose of this research is to provide a competitive alternative to aluminum silicon alloys used in automotive applications. This alternative was created by developing three types of composites Al-5%Cu- (B₄C, BN or Si₃N₄) particulates with a low coefficient of thermal expansion. Stir casting was used to synthesis composites containing 2, 5 and 7 wt. % of B₄C, Si₃N₄ and 2, 5 of BN followed by squeeze casting. The squeeze casting process decreased the porosity of the final composites. The composites exhibited a fairly uniform particle distribution throughout the matrix alloy. The microstructure and XRD results of the composites suggested a significant reaction occurred at the interface between the particles and alloy. Increasing the aging temperature from 200 to 250°C decreased the hardness values of the matrix and the composites and decreased the time required to reach the peak. Turner model was used to calculate the expected values of thermal expansion coefficient CTE of matrix and its composites. Deviations between calculated and experimental values of CTE were not exceeded 10%. Al-5%Cu-B₄C composites experimentally showed the lowest values of CTE (17-19)·10-6 °С-1 and (19-20) ·10-6 °С-1 in the temperature range 20-100 °С and 20-200 °С respectively.

Keywords: aluminum matrix composites, coefficient of thermal expansion, X-ray diffraction, squeeze casting, electron microscopy,

Procedia PDF Downloads 389
1074 Eco-Friendly Synthesis of Carbon Quantum Dots as an Effective Adsorbent

Authors: Hebat‑Allah S. Tohamy, Mohamed El‑Sakhawy, Samir Kamel

Abstract:

Fluorescent carbon quantum dots (CQDs) were prepared by an economical, green, and single-step procedure based on microwave heating of urea with sugarcane bagasse (SCB), cellulose (C), or carboxymethyl cellulose (CMC). The prepared CQDs were characterized using a series of spectroscopic techniques, and they had small size, strong absorption in the UV, and excitation wavelength-dependent fluorescence. The prepared CQDs were used for Pb(II) adsorption from an aqueous solution. The removal efficiency percentages (R %) were 99.16, 96.36, and 98.48 for QCMC, QC, and QSCB. The findings validated the efficiency of CQDs synthesized from CMC, cellulose, and SCB as excellent materials for further utilization in the environmental fields of wastewater pollution detection, adsorption, and chemical sensing applications. The kinetics and isotherms studied found that all CQD isotherms fit well with the Langmuir model than Freundlich and Temkin models. According to R², the pseudo-second-order fits the adsorption of QCMC, while the first-order one fits with QC and QSCB.

Keywords: carbon quantum dots, graphene quantum dots, fluorescence, quantum yield, water treatment, agricultural wastes

Procedia PDF Downloads 105
1073 Preparation and Characterization of TiO₂-SiO₂ Composite Films on Plastics Using Aqueous Peroxotitanium Acid Solution

Authors: Ayu Minamizawa, Jae-Ho Kim, Susumu Yonezawa

Abstract:

Aqueous peroxotitanium acid solution was prepared by the reaction between H₂O₂ solution and TiO₂ fluorinated using F₂ gas. The coating of TiO₂/SiO₂ multilayer on the surface of polycarbonate (PC) resin was carried out step by step using the TEOS solution and aqueous peroxotitanium acid solution. We confirmed each formation of SiO₂ and TiO₂ layer by scanning electron microscopy and energy-dispersive X-ray spectroscopy, and x-ray photoelectron spectroscopy results. The formation of a TiO₂ thin layer on SiO₂ coated on polycarbonate (PC) was carried out at 120 ℃ and for 15 min ~ 3 h with aqueous peroxotitanium acid solution using a hydrothermal synthesis autoclave reactor. The morphology TiO₂ coating layer largely depended on the reaction time, as shown in the results of SEM-EDS analysis. Increasing the reaction times, the TiO₂ layer expanded uniformly. Moreover, the surface fluorination of the SiO₂ layer can promote the formation of the TiO₂ layer on the surface.

Keywords: aqueous peroxotitanium acid solution, photocatalytic activity, polycarbonate, surface fluorination

Procedia PDF Downloads 99
1072 Synthesis of Smart Materials Based on Polyaniline Coated Fibers

Authors: Mihaela Beregoi, Horia Iovu, Cristina Busuioc, Alexandru Evanghelidis, Elena Matei, Monica Enculescu, Ionut Enculescu

Abstract:

Nanomaterials field is very attractive for all researchers who are attempting to develop new devices with the same or improved properties than the micro-sized ones, while reducing the reagents and power consumptions. In this way, a wide range of nanomaterials were fabricated and integrated in applications for electronics, optoelectronics, solar cells, tissue reconstruction and drug delivery. Obviously, the most appealing ones are those dedicated to the medical domain. Different types of nano-sized materials, such as particles, fibers, films etc., can be synthesized by using physical, chemical or electrochemical methods. One of these techniques is electrospinning, which enable the production of fibers with nanometric dimensions by pumping a polymeric solution in a high electric field; due to the electrostatic charging and solvent evaporation, the precursor mixture is converted into nonwoven meshes with different fiber densities and mechanical properties. Moreover, polyaniline is a conducting polymer with interesting optical properties, suitable for displays and electrochromic windows. Otherwise, polyaniline is an electroactive polymer that can contract/expand by applying electric stimuli, due to the oxidation/reduction reactions which take place in the polymer chains. These two main properties can be exploited in order to synthesize smart materials that change their dimensions, exhibiting in the same time good electrochromic properties. In the context aforesaid, a poly(methyl metacrylate) solution was spun to get webs composed of fibers with diameter values between 500 nm and 1 µm. Further, the polymer meshes were covered with a gold layer in order to make them conductive and also appropriate as working electrode in an electrochemical cell. The gold shell was deposited by DC sputtering. Such metalized fibers can be transformed into smart materials by covering them with a thin layer of conductive polymer. Thus, the webs were coated with a polyaniline film by the electrochemical route, starting from and aqueous solution of aniline and sulfuric acid, where sulfuric acid acts as oxidant agent. For the polymerization of aniline, a saturated calomel electrode was employed as reference, a platinum plate as counter electrode and the gold covered webs as working electrode. Chronoamperometry was selected as deposition method for polyaniline, by modifying the deposition time. Metalized meshes with different fiber densities were used, the transmission ranging between 70 and 80 %. The morphological investigation showed that polyaniline layer has a granular structure for all deposition experiments. As well, some preliminary optical tests were done by using sulfuric acid as electrolyte, which revealed the modification of polyaniline colour from green to dark blue when applying a voltage. In conclusion, new multilayered materials were obtained by a simple approach: the merge of the electrospinning method benefits with polyaniline chemistry. This synthesis method allows the fabrication of structures with reproducible characteristics, suitable for display or tissue substituents.

Keywords: electrospinning, fibers, smart materials, polyaniline

Procedia PDF Downloads 272
1071 Preformed Au Colloidal Nanoparticles Immobilised on NiO as Highly Efficient Heterogeneous Catalysts for Reduction of 4-Nitrophenol to 4-Aminophenol

Authors: Khaled Alshammari

Abstract:

A facile approach to synthesizing highly active and stable Au/NiO catalysts for the hydrogenation of nitro-aromatics is reported. Preformed gold nanoparticles have been immobilized onto NiO using a colloidal method. In this article, the reduction of 4-nitrophenol with NaBH4 has been used as a model reaction to investigate the catalytic activity of synthesized Au/NiO catalysts. In addition, we report a systematic study of the reduction kinetics and the influence of specific reaction parameters such as (i) temperature, (ii) stirring rate, (iii) sodium borohydride concentration and (iv) substrate/metal molar ratio. The reaction has been performed at a substrate/metal molar ratio of 7.4, a ratio significantly higher than previously reported. The reusability of the catalyst has been examined, with little to no decrease in activity observed over 5 catalytic cycles. Systematic variation of Au loading reveals the successful synthesis of low-cost and efficient Au/NiO catalysts at very low Au content and using high substrate/metal molar ratios.

Keywords: nonochemistry, catalyst, nanoparticles supported, characterization of materials, colloidal nanoparticles

Procedia PDF Downloads 35
1070 Synthesis, Characterization, and Physico–Chemical Properties of Nano Zinc Oxide and PVA Composites

Authors: S. H. Rashmi, G. M. Madhu, A. A. Kittur, R. Suresh

Abstract:

Polymer nanocomposites represent a new class of materials in which nanomaterials act as the reinforcing material in composites, wherein small additions of nanomaterials lead to large enhancements in thermal, optical, and mechanical properties. A boost in these properties is due to the large interfacial area per unit volume or weight of the nanoparticles and the interactions between the particle and the polymer. Micro-sized particles used as reinforcing agents scatter light, thus, reducing light transmittance and optical clarity. Efficient nanoparticle dispersion combined with good polymer–particle interfacial adhesion eliminates scattering and allows the exciting possibility of developing strong yet transparent films, coatings and membranes. This paper aims at synthesizing zinc oxide nanoparticles which are reinforced in poly vinyl alcohol (PVA) polymer. The mechanical properties showed that the tensile strength of the PVA nanocomposites increases with the increase in the amount of nanoparticles.

Keywords: glutaraldehyde, polymer nanocomposites, poly vinyl alcohol, zinc oxide

Procedia PDF Downloads 279
1069 Synthesis of Green Fuel Additive from Waste Bio-Glycerol

Authors: Ala’a H. Al-Muhtaseb, Farrukh Jamil, Lamya Al-Haj, Mohab Al-Hinai

Abstract:

Bio-glycerol is considered as high boiling polar triol and immiscible with fossil fuel fractions due to which it is transformed into its respective ketals and acetals which help to improve the quality of diesel emitting less amount of aldehydes and carbon monoxide. Solketal visual appearance is transparent and it is odorless organic liquid used as fuel additive for diesel to improve its cold flow properties. Condensation of bio-glycerol with bio-acetone in presence of beta zeolite has been done for synthesizing solketal. It was observed that glycerol conversion and selectivity of solketal was largely effected by temperature, as it increases from 40 ºC to 60 ºC the conversion of glycerol rises from 80.04 % to 94.26 % and selectivity of solketal from 80.0 % to 94.21 % but further increase in temperature to 100 ºC glycerol conversion reduced to 93.06 % and solketal selectivity to 92.08 %. At the optimum conditions, the bio-glycerol conversion and solketal yield were about 94.26% and 94.21wt% respectively. This process offers an attractive route for converting bio-glycerol, the main by-product of biodiesel to solketal with bio-acetone; a value-added green product with potential industrial applications as a valuable green fuel additive or combustion promoter for gasoline/diesel engines.

Keywords: bio-acetone, bio-glycerol, acetylation, solketal

Procedia PDF Downloads 246
1068 Ectopic Osteoinduction of Porous Composite Scaffolds Reinforced with Graphene Oxide and Hydroxyapatite Gradient Density

Authors: G. M. Vlasceanu, H. Iovu, E. Vasile, M. Ionita

Abstract:

Herein, the synthesis and characterization of chitosan-gelatin highly porous scaffold reinforced with graphene oxide, and hydroxyapatite (HAp), crosslinked with genipin was targeted. In tissue engineering, chitosan and gelatin are two of the most robust biopolymers with wide applicability due to intrinsic biocompatibility, biodegradability, low antigenicity properties, affordability, and ease of processing. HAp, per its exceptional activity in tuning cell-matrix interactions, is acknowledged for its capability of sustaining cellular proliferation by promoting bone-like native micro-media for cell adjustment. Genipin is regarded as a top class cross-linker, while graphene oxide (GO) is viewed as one of the most performant and versatile fillers. The composites with natural bone HAp/biopolymer ratio were obtained by cascading sonochemical treatments, followed by uncomplicated casting methods and by freeze-drying. Their structure was characterized by Fourier Transform Infrared Spectroscopy and X-ray Diffraction, while overall morphology was investigated by Scanning Electron Microscopy (SEM) and micro-Computer Tomography (µ-CT). Ensuing that, in vitro enzyme degradation was performed to detect the most promising compositions for the development of in vivo assays. Suitable GO dispersion was ascertained within the biopolymer mix as nanolayers specific signals lack in both FTIR and XRD spectra, and the specific spectral features of the polymers persisted with GO load enhancement. Overall, correlations between the GO induced material structuration, crystallinity variations, and chemical interaction of the compounds can be correlated with the physical features and bioactivity of each composite formulation. Moreover, the HAp distribution within follows an auspicious density gradient tuned for hybrid osseous/cartilage matter architectures, which were mirrored in the mice model tests. Hence, the synthesis route of a natural polymer blend/hydroxyapatite-graphene oxide composite material is anticipated to emerge as influential formulation in bone tissue engineering. Acknowledgement: This work was supported by the project 'Work-based learning systems using entrepreneurship grants for doctoral and post-doctoral students' (Sisteme de invatare bazate pe munca prin burse antreprenor pentru doctoranzi si postdoctoranzi) - SIMBA, SMIS code 124705 and by a grant of the National Authority for Scientific Research and Innovation, Operational Program Competitiveness Axis 1 - Section E, Program co-financed from European Regional Development Fund 'Investments for your future' under the project number 154/25.11.2016, P_37_221/2015. The nano-CT experiments were possible due to European Regional Development Fund through Competitiveness Operational Program 2014-2020, Priority axis 1, ID P_36_611, MySMIS code 107066, INOVABIOMED.

Keywords: biopolymer blend, ectopic osteoinduction, graphene oxide composite, hydroxyapatite

Procedia PDF Downloads 92
1067 Synthesis of Oxygenated Fuel Additive from Bio-Glycerol

Authors: Farrukh Jamil, Ala'a H. Al-Muhtaseb, Lamya Al-Haj, Mohab A. Al-Hinai

Abstract:

Glycerol is considered as high boiling polar triol and immiscible with fossil fuel fractions due to which it is transformed into its respective ketals and acetals which help to improve the quality of diesel emitting less amount of aldehydes and carbon monoxide. Solketal visual appearance is transparent, and it is odorless organic liquid used as a fuel additive for diesel to improve its cold flow properties. Condensation of bio-glycerol with bio-acetone in presence of beta zeolite has been done for synthesizing solketal. It was observed that glycerol conversion and selectivity of solketal was largely effected by temperature, as it increases from 40 ºC to 60 ºC the conversion of glycerol rises from 80.04 % to 94.26 % and selectivity of solketal from 80.0 % to 94.21 % but further increase in temperature to 100 ºC glycerol conversion reduced to 93.06 % and solketal selectivity to 92.08 %. At the optimum conditions, the bio-glycerol conversion and solketal yield were about 94.26% and 94.21wt% respectively. This process offers an attractive route for converting bio-glycerol, the main by-product of biodiesel to solketal with bio-acetone; a value-added green product with potential industrial applications as a valuable green fuel additive or combustion promoter for gasoline/diesel engines.

Keywords: bio-glycerol, catalyst, green additive, biomass

Procedia PDF Downloads 221
1066 Synthesis of Novel Organic Dyes Based on Indigo for Dye-Sensitized Solar Cells

Authors: M. Hosseinnejad, K. Gharanjig, S. Moradian

Abstract:

A novel metal free organic dyes based on indigo was prepared and used as sensitizers in dye-sensitized solar cells. The synthesized dye together with its corresponding intermediates were purified and characterized by analytical techniques. Such techniques confirmed the corresponding structures of dye and its intermediate and the yield of all the stages of dye preparation were calculated to be above 85%. Fluorometric analyses show fluorescence in the green region of the visible spectrum for dye. Oxidation potential measurements for dye ensured an energetically permissible and thermodynamically favourable charge transfer throughout the continuous cycle of photo-electric conversion. Finally, dye sensitized solar cells were fabricated in order to determine the photovoltaic behaviour and conversion efficiencies of dye. Such evaluations demonstrate rather medium conversion efficiencies of 2.33% for such simple structured synthesized dye. Such conversion efficiencies demonstrate the potentiality of future use of such dye structures in dye-sensitized solar cells with respect to low material costs, ease of molecular tailoring, high yields of reactions, high performance and ease of recyclability.

Keywords: conversion efficiency, Dye-sensitized solar cells, indigo, photonic material

Procedia PDF Downloads 352
1065 Synthesis and Anti-Inflammatory Activity of Pyrazol-3-yl Thiazole 4-Carboxylic Acid Derivatives Targeting Enzyme in the Leukotriene Pathway

Authors: Shweta Sinha, Mukesh Doble, Manju S. L.

Abstract:

Pyrazole scaffold is an important group of compound in heterocyclic chemistry and is found to possess numerous uses in chemistry. Pyrazole derivatives are also known to possess important biological activities including antitumor, antimicrobial, antiviral, antifungal, anticancer and anti-inflammatory. Inflammation is associated with pain, allergy and asthma. Leukotrienes are mediators of various inflammatory and allergic disorders. 5-Lipoxygenase (5-LOX) is an important enzyme involved in the biosynthesis of leukotrienes and metabolism of arachidonic acid (AA) and thus targeted for anti-inflammation. In vitro inhibitory activity of pyrazol-3-yl thiazole 4-carboxylic acid derivatives is tested against enzyme 5-LOX. Most of these compounds exhibit good inhibitory activity against this enzyme. Binding mode study of these compounds is determined by computational tool. Further experiments are being done to understand the mechanism of action of these compounds in inhibiting this enzyme. To conclude, these compounds appear to be a promising target in drug design against 5-LOX.

Keywords: inflammation, inhibition, 5-lipoxygenase, pyrazole

Procedia PDF Downloads 224
1064 A Study on the Synthesis and Antioxidant Activity of Hybrid Pyrazoline Integrated with Pyrazole and Thiazole Nuclei

Authors: Desta Gebretekle Shiferaw, Balakrishna Kalluraya

Abstract:

Pyrazole is an aromatic five-membered heterocycle with two nitrogen and three carbon atoms in its ring structure. According to the literature, pyrazoline, pyrazole, and thiazole-containing moieties are found in various drug structures and are responsible for nearly all pharmacological effects. The pyrazoline linked to pyrazole moiety carbothioamides was synthesized via the reaction of pyrazole-bearing chalcones (3-(5-chloro-3-methyl-¹-phenyl-1H-pyrazol-4-yl)-¹-(substituted aryl) prop-2-ene-¹-one derivatives) with a nucleophile thiosemicarbohyrazide by heating in ethanol using fused sodium acetate as a catalyst. Then the carbothioamide derivatives were converted into the pyrazoline hybrid to pyrazole and thiazole derivatives by condensing with substituted phenacyl bromide in alcohol in a basic medium. Next, the chemical structure of the newly synthesized molecules was confirmed by IR, 1H-NMR, and mass spectral data. Further, they were screened for their in vitro antioxidant activity. Compared to butylated hydroxy anisole (BHA)., the antioxidant data showed that the synthesized compounds had good to moderate activity.

Keywords: pyrazoline-pyrazole carbothioamide derivatives, pyrazoline-pyrazole-thiazole derivatives, spectral studies, antioxidant activity

Procedia PDF Downloads 54
1063 Maternal and Newborn Health Care Program Implementation and Integration by Maternal Community Health Workers, Africa: An Integrative Review

Authors: Nishimwe Clemence, Mchunu Gugu, Mukamusoni Dariya

Abstract:

Background: Community health workers and extension workers can play an important role in supporting families to adopt health practices, encourage delivery in a health care facility, and ensure time referral of mothers and newborns if needed. Saving the lives of neonates should, therefore, be a significant health outcome in any maternal and newborn health program that is being implemented. Furthermore, about half of a million mothers die from pregnancy-related causes. Maternal and newborn deaths related to the period of postnatal care are neglected. Some authors emphasized that in developing countries, newborn mortality rates have been reduced much more slowly because of the lack of many necessary facility-based and outreach service. The aim of this review was to critically analyze the implementation and integration process of the maternal and newborn health care program by maternal community health workers, into the health care system, in Africa. Furthermore, it aims to reduce maternal and newborn mortality. We addressed the following review question: (1) what process is involved in the implementation and integration of the maternal and newborn health care program by maternal community health workers during antenatal, delivery and postnatal care into health system care in Africa? Methods: The database searched was from Health Source: Nursing/Academic Edition through academic search complete via EBSCO Host. An iterative approach was used to go through Google scholarly papers. The reviewers considered adapted Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidance, and the Mixed Methods Appraisal Tool (MMAT) was used. Synthesis method in integrative review following elements of noting patterns and themes, seeing plausibility, clustering, counting, making contrasts and comparisons, discerning commons and unusual patterns, subsuming particulars into general, noting relations between variability, finding intervening factors and building a logical chain of evidence, using data–based convergent synthesis design. Results: From the seventeen of studies included, results focused on three dimensions inspired by the literature on antenatal, delivery, and postnatal interventions. From this, further conceptual framework was elaborated. The conceptual framework process of implementation and integration of maternal and newborn health care program by maternal community health workers was elaborated in order to ensure the sustainability of community based intervention. Conclusions: the review revealed that the implementation and integration of maternal and newborn health care program require planning. We call upon governments, non-government organizations, the global health community, all stakeholders including policy makers, program managers, evaluators, educators, and providers to be involved in implementation and integration of maternal and newborn health program in updated policy and community-based intervention. Furthermore, emphasis should be placed on competence, responsibility, and accountability of maternal community health workers, their training and payment, collaboration with health professionals in health facilities, and reinforcement of outreach service. However, the review was limited in focus to the African context, where the process of maternal and newborn health care program has been poorly implemented.

Keywords: Africa, implementation of integration, maternal, newborn

Procedia PDF Downloads 141
1062 The Emotional Implication of the Phraseological Fund Applied in Cognitive Business Negotiation

Authors: Kristine Dzagnidze

Abstract:

The paper equally centers on both the structural and cognitive linguistics in light of phraseologism and its emotional implication. Accordingly, the methods elaborated within the framework of both the systematic-structural and linguo-cognitive theories are identically relevant to the research of mine. In other words, through studying the negotiation process, our attention is drawn upon defining negotiations’ peculiarities, emotion, style and specifics of cognition, motives, aims, contextual characterizations and the quality of cultural context and integration. Besides, the totality of the concepts and methods is also referred to, which is connected with the stage of the development of the emotional linguistic thinking. The latter contextually correlates with the dominance of anthropocentric–communicative paradigm. The synthesis of structuralistic and cognitive perspectives has turned out to be relevant to our research, carried out in the form of intellectual action, that is, on the one hand, the adequacy of the research purpose to the expected results. On the other hand, the validity of methodology for formulating the objective conclusions needed for emotional connotation beyond phraseologism. The mechanism mentioned does not make a claim about a discovery of a new truth. Though, it gives the possibility of a novel interpretation of the content in existence.

Keywords: cognitivism, communication, implication, negotiation

Procedia PDF Downloads 244