Search results for: human-bot interactions
1107 Inclusion of Children with Disabilities in Early Childhood Development Programs in Nepal: Construction of a Stakeholder Informed Framework
Authors: Divya Dawadi, Kerry Bissaker
Abstract:
Inclusion of children with a disability (CwD) in Early Childhood Education and Development (ECED) programs in Nepal while viewed as desirable is not widespread. Even though the ECED program is currently providing access to ECED services for one million young children, with the aim to improve children's school readiness by equipping them with the necessary knowledge and skills to succeed more effectively in their primary schooling, access to early year's education in inclusive settings for CwD is challenging. Using a heuristic qualitative design, this research aims to construct a framework by analyzing the perspectives of parents and professionals through interviews and focus group discussions, with a view to recommending a new policy to address the rights of CwD and their families. Several school-based and/or organizational and contextual factors interact to contribute to CwD becoming victims of multiple layers of exclusion. The school-based factors include policy, attitudes, teacher efficacy, resources, coordination and parental engagement. The contextual factors are spirituality, caste ethnicity, language, economic status, and geographic location. However, there is a varied effect of the interaction between school-based and contextual factors on different groups of CwD. A policy needs to recognize the multiplicity of the interactions between these factors that inhibit the inclusion of varied groups of CwD in ECED programs and address them separately.Keywords: children with a disability, early childhood education and development, framework, inclusion
Procedia PDF Downloads 3591106 Development of selective human matrix metalloproteinases-9 (hMMP-9) inhibitors as potent diabetic wound healing agents
Authors: Geetakshi Arora, Danish Malhotra
Abstract:
Diabetic wounds are serious health issues and often fail to heal, leading to limb amputation that makes the life of the patient miserable. Delayed wound healing has been characterized by an increase in matrix metalloproteinase-9 (MMP-9). Thus research throughout the world has been going on to develop selective MMP-9 inhibitors for aiding diabetic wound healing. Bioactive constituents from natural sources always served as potential leads in drug development with high rates of success. Considering the need for novel selective MMP-9 inhibitors and the importance of natural bioactive compounds in drug development, we have screened a library of bioactive constituents from plant sources that were effective in diabetic wound healing on human MMP-9 (hMMP-9) using molecular docking studies. Screened constituents are ranked according to their dock score, ∆G value (binding affinity), and Ligand efficiency evaluated from FleXX docking and Hyde scoring modules available with drug designing platform LeadIT. Rhamnocitrin showed the highest correlation between dock score, ∆G value (binding affinity), and Ligand efficiency was further explored for binding interactions with hMMP-9. The overall study suggest that Rhamnocitrin is sufficiently decorated with both hydrophilic and hydrophobic substitutions that perfectly block hMMP-9 and act as a potential lead in the design and development of selective hMMP-9 inhibitors.Keywords: MMP-9, diabetic wound, molecular docking, phytoconstituents
Procedia PDF Downloads 1261105 E-Immediacy in Saudi Higher Education Context: Female Students’ Perspectives
Authors: Samar Alharbi, Yota Dimitriadi
Abstract:
The literature on educational technology in Saudi Arabia reveals female learners’ unwillingness to study fully online courses in higher education despite the fact that Saudi universities have offered a variety of online degree programmes to undergraduate students in many regions of the country. The root causes keeping female students from successfully learning in online environments are limited social interaction, lack of motivation and difficulty with the use of e-learning platforms. E-immediacy remains an important method of online teaching to enhance students’ interaction and support their online learning. This study explored Saudi female students’ perceptions, as well as the experiences of lecturers’ immediacy behaviours in online environments, who participate in fully online courses using Blackboard at a Saudi university. Data were collected through interviews with focus groups. The three focus groups included five to seven students each. The female participants were asked about lecturers’ e-immediacy behaviours and which e-immediacy behaviours were important for an effective learning environment. A thematic analysis of the data revealed three main themes: the encouragement of student interaction, the incorporation of social media and addressing the needs of students. These findings provide lecturers with insights into instructional designs and strategies that can be adopted in using e-immediacy in effective ways, thus improving female learners’ interactions as well as their online learning experiences.Keywords: e-learning, female students, higher education, immediacy
Procedia PDF Downloads 3481104 Modeling of Gas Extraction from a Partially Gas-Saturated Porous Gas Hydrate Reservoir with Respect to Thermal Interactions with Surrounding Rocks
Authors: Angelina Chiglintseva, Vladislav Shagapov
Abstract:
We know from the geological data that quite sufficient gas reserves are concentrated in hydrates that occur on the Earth and on the ocean floor. Therefore, the development of these sources of energy and the storage of large reserves of gas hydrates is an acute global problem. An advanced technology for utilizing gas is to store it in a gas-hydrate state. Under natural conditions, storage facilities can be established, e.g., in underground reservoirs, where quite large volumes of gas can be conserved compared with reservoirs of pure gas. An analysis of the available experimental data of the kinetics and the mechanism of the gas-hydrate formation process shows the self-conservation effect that allows gas to be stored at negative temperatures and low values of pressures of up to several atmospheres. A theoretical model has been constructed for the gas-hydrate reservoir that represents a unique natural chemical reactor, and the principal possibility of the full extraction of gas from a hydrate due to the thermal reserves of the reservoirs themselves and the surrounding rocks has been analyzed. The influence exerted on the evolution of a gas hydrate reservoir by the reservoir thicknesses and the parameters that determine its initial state (a temperature, pressure, hydrate saturation) has been studied. It has been established that the shortest time of exploitation required by the reservoirs with a thickness of a few meters for the total hydrate decomposition is recorded in the cyclic regime when gas extraction alternated with the subsequent conservation of the gas hydrate deposit. The study was performed by a grant from the Russian Science Foundation (project No.15-11-20022).Keywords: conservation, equilibrium state, gas hydrate reservoir, rocks
Procedia PDF Downloads 3001103 Colloidal Gas Aphron Generated by a Cationic Surfactant as an Alternative Technique to Recovery Natural Colorants from Fermented Broth
Authors: V. C. Santos-Ebinuma, J. F. B. Pereira, M. F. S. Teixeira, A. Pessoa Jr., P. Jauregi
Abstract:
There is worldwide interest in process development for colorants production from natural sources. Microorganisms provide an alternative source of natural colorants which can be produced by cultivation technology and extracted from fermented broth. The aim of the present work was to study the recovery of red colorants from fermented broth of Penicillium purpurogenum DPUA 1275 using the technique of Colloidal Gas Aphrons (CGA); CGA are surfactant-stabilized microbubbles generated by intense stirring of a surfactant solution. CGA were generated by the cationic, hexadecyl trimethyl ammonium bromide (CTAB) surfactant. Firstly, experiments were carried out at different surfactant/fermented broth volumetric ratios (VCGA/VFB, VRATIO) varying between 3 and 18 at pH 6.9. Secondly, the experiments were carried out at VRATIO of 6 and 12 in different pH, namely, 6.9, 8.0, 9.0 and 10.0. The first results of recovery showed that an increase in the VRATIO from 3 to 6 and 12 promoted an increase as recovery as partition coefficient. However, at VRATIO of 18 the lowest partition coefficient was obtained. The best results were achieved at VRATIO of 6 and 12, namely recovery, Re, around 60% and partition coefficient, K, of 2.5 and 3.0 to 6 and 12 VRATIO, respectively. The second set of experiments showed that the pH 9.0 promoted the best results at VRATIO of 12 as follow: Re=70%, K=5.39, proteins and sugar selectivity (SePROT, 3.75 and SeSUGAR, 7.20, respectively). These results indicate that with CTAB the recovery is mainly driven by electrostatic interactions. In conclusion, the results above show that CGA employing a cationic surfactant is a promissory technique and it can be used as the first step of purification to recovery red colorants from fermented broth.Keywords: liquid-liquid extraction, colloidal gas aphrons, recovery, natural colorants
Procedia PDF Downloads 3531102 3D Finite Element Analysis for Mechanics of Soil-Tool Interaction
Authors: A. Armin, R. Fotouhi, W. Szyszkowski
Abstract:
This paper is part of a study to develop robots for farming. As such power requirement to operate equipment attach to such robots become an important factor. Soil-tool interaction play major role in power consumption, thus predicting accurately the forces which act on the blade during the farming is prime importance for optimal designing of farm equipment. In this paper a finite element investigation for tillage tools and soil interaction is described by using an inelastic constitutive material law for agriculture application. A 3-dimentional (3D) nonlinear finite element analysis (FEA) is developed to examine behavior of a blade with different rake angles moving in a block of soil, and to estimate the blade force. The soil model considered is an elastic-plastic with non-associated Drucker-Prager material model. Special use of contact elements are employed to consider connection between soil-blade and soil-soil surfaces. The FEA results are compared with experiment ones, which show good agreement in accurately predicting draft forces developed on the blade when it moves through the soil. Also, a very good correlation was obtained between FEA results and analytical results from classical soil mechanics theories for straight blades. These comparisons verified the FEA model developed. For analyzing complicated soil-tool interactions and for optimum design of blades, this method will be useful.Keywords: finite element analysis, soil-blade contact modeling, blade force, mechanical engineering
Procedia PDF Downloads 2961101 Intercultural Urbanism: Interpreting Cultural Inclusion in Traditional Precincts of Contemporary Cities: A Case of Mattancherry
Authors: Amrutha Jayan
Abstract:
The cities are attractors of the human population, offering opportunities for economic activities for different linguistic, cultural, and ethnic groups. The urban form and design of the city impact the life of these people. Social and cultural exclusions result in spatial segregation and gentrification. The spaces provided in cities must be inclusive for all these communities for them to feel part of the city and contribute to society. Intercultural urbanism is a theory and practice of city building, planning, and design of urban spaces and architectures that are cognizant of the social impact of the built environment. The postulate acknowledges cultural differences and opportunities for cultural exchange. Literature on intercultural urbanism, culture and space, spatial justice, and cultural inclusion are analyzed to identify parameters contributing to intercultural placemaking. A qualitative study on Mattancherry shows how the precinct has sustained throughout the years with different communities living together within a radius of 5 km, creating a diverse and vibrant environment. The research identifies the urban elements that contribute to intercultural interactions and maintain the synergy between these communities. The public spaces, porous edges, built-form, streets, and accessibility contribute to chance encounters and intercultural interactivity. The research seeks to find the factors that contribute to intercultural placemaking.Keywords: intercultural urbanism, cultural inclusion, spatial justice, public space
Procedia PDF Downloads 2201100 Design of Smart Urban Lighting by Using Social Sustainability Approach
Authors: Mohsen Noroozi, Maryam Khalili
Abstract:
Creating cities, objects and spaces that are economically, environmentally and socially sustainable and which meet the challenge of social interaction and generation change will be one of the biggest tasks of designers. Social sustainability is about how individuals, communities and societies live with each other and set out to achieve the objectives of development model which they have chosen for themselves. Urban lightning as one of the most important elements of urban furniture that people constantly interact with it in public spaces; can be a significant object for designers. Using intelligence by internet of things for urban lighting makes it more interactive in public environments. It can encourage individuals to carry out appropriate behaviors and provides them the social awareness through new interactions. The greatest strength of this technology is its strong impact on many aspects of everyday life and users' behaviors. The analytical phase of the research is based on a multiple method survey strategy. Smart lighting proposed in this paper is an urban lighting designed on results obtained from a collective point of view about the social sustainability. In this paper, referring to behavioral design methods, the social behaviors of the people has been studied. Data show that people demands for a deeper experience of social participation, safety perception and energy saving with the meaningful use of interactive and colourful lighting effects. By using intelligent technology, some suggestions are provided in the field of future lighting to consider the new forms of social sustainability.Keywords: behavior pattern, internet of things, social sustainability, urban lighting
Procedia PDF Downloads 1941099 Design of a Real Time Closed Loop Simulation Test Bed on a General Purpose Operating System: Practical Approaches
Authors: Pratibha Srivastava, Chithra V. J., Sudhakar S., Nitin K. D.
Abstract:
A closed-loop system comprises of a controller, a response system, and an actuating system. The controller, which is the system under test for us, excites the actuators based on feedback from the sensors in a periodic manner. The sensors should provide the feedback to the System Under Test (SUT) within a deterministic time post excitation of the actuators. Any delay or miss in the generation of response or acquisition of excitation pulses may lead to control loop controller computation errors, which can be catastrophic in certain cases. Such systems categorised as hard real-time systems that need special strategies. The real-time operating systems available in the market may be the best solutions for such kind of simulations, but they pose limitations like the availability of the X Windows system, graphical interfaces, other user tools. In this paper, we present strategies that can be used on a general purpose operating system (Bare Linux Kernel) to achieve a deterministic deadline and hence have the added advantages of a GPOS with real-time features. Techniques shall be discussed how to make the time-critical application run with the highest priority in an uninterrupted manner, reduced network latency for distributed architecture, real-time data acquisition, data storage, and retrieval, user interactions, etc.Keywords: real time data acquisition, real time kernel preemption, scheduling, network latency
Procedia PDF Downloads 1471098 Tunable Control of Therapeutics Release from the Nanochannel Delivery System (nDS)
Authors: Thomas Geninatti, Bruno Giacomo, Alessandro Grattoni
Abstract:
Nanofluidic devices have been investigated for over a decade as promising platforms for the controlled release of therapeutics. The nanochannel drug delivery system (nDS), a membrane fabricated with high precision silicon techniques, capable of zero-order release of drugs by exploiting diffusion transport at the nanoscale originated from the interactions between molecules with nanochannel surfaces, showed the flexibility of the sustained release in vitro and in vivo, over periods of time ranging from weeks to months. To improve the implantable bio nanotechnology, in order to create a system that possesses the key features for achieve the suitable release of therapeutics, the next generation of nDS has been created. Platinum electrodes are integrated by e-beam deposition onto both surfaces of the membrane allowing low voltage (<2 V) and active temporal control of drug release through modulation of electrostatic potentials at the inlet and outlet of the membrane’s fluidic channels. Hence, a tunable administration of drugs is ensured from the nanochannel drug delivery system. The membrane will be incorporated into a peek implantable capsule, which will include drug reservoir, control hardware and RF system to allow suitable therapeutic regimens in real-time. Therefore, this new nanotechnology offers tremendous potential solutions to manage chronic disease such as cancer, heart disease, circadian dysfunction, pain and stress.Keywords: nanochannel membrane, drug delivery, tunable release, personalized administration, nanoscale transport, biomems
Procedia PDF Downloads 3141097 Enhancing Cellulose Acetate Films: Impact of Glycerol and Ionic Liquid Plasticizers
Authors: Rezzouq Asiya, Bouftou Abderrahim, Belfadil Doha, Taoufyk Azzeddine, El Bouchti Mehdi, Zyade Souad, Cherkaoui Omar, Majid Sanaa
Abstract:
Plastic packaging is widely used, but its pollution is a major environmental problem. Solutions require new sustainable technologies, environmental management, and the use of bio-based polymers as sustainable packaging. Cellulose acetate (CA) is a biobased polymer used in a variety of applications such as the manufacture of plastic films, textiles, and filters. However, it has limitations in terms of thermal stability and rigidity, which necessitates the addition of plasticizers to optimize its use in packaging. Plasticizers are molecules that increase the flexibility of polymers, but their influence on the chemical and physical properties of films (CA) has not been studied in detail. Some studies have focused on mechanical and thermal properties. However, an in-depth analysis is needed to understand the interactions between the additives and the polymer matrix. In this study, the aim is to examine the effect of two types of plasticizers, glycerol (a conventional plasticizer) and an ionic liquid, on the transparency, mechanical, thermal and barrier properties of cellulose acetate (CA) films prepared by the solution-casting method . Various analytical techniques were used to characterize these films, including infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), water vapor permeability (WVP), oxygen permeability, scanning electron microscopy (SEM), opacity, transmission analysis and mechanical tests.Keywords: cellulose acetate, plasticizers, biopolymers, ionic liquid, glycerol.
Procedia PDF Downloads 401096 An Improved Multiple Scattering Reflectance Model Based on Specular V-Cavity
Authors: Hongbin Yang, Mingxue Liao, Changwen Zheng, Mengyao Kong, Chaohui Liu
Abstract:
Microfacet-based reflection models are widely used to model light reflections for rough surfaces. Microfacet models have become the standard surface material building block for describing specular components with varying roughness; and yet, while they possess many desirable properties as well as produce convincing results, their design ignores important sources of scattering, which can cause a significant loss of energy. Specifically, they only simulate the single scattering on the microfacets and ignore the subsequent interactions. As the roughness increases, the interaction will become more and more important. So a multiple-scattering microfacet model based on specular V-cavity is presented for this important open problem. However, it spends much unnecessary rendering time because of setting the same number of scatterings for different roughness surfaces. In this paper, we design a geometric attenuation term G to compute the BRDF (Bidirectional reflection distribution function) of multiple scattering of rough surfaces. Moreover, we consider determining the number of scattering by deterministic heuristics for different roughness surfaces. As a result, our model produces a similar appearance of the objects with the state of the art model with significantly improved rendering efficiency. Finally, we derive a multiple scattering BRDF based on the original microfacet framework.Keywords: bidirectional reflection distribution function, BRDF, geometric attenuation term, multiple scattering, V-cavity model
Procedia PDF Downloads 1151095 Assessing the Impact of Human Behaviour on Water Resource Systems Performance: A Conceptual Framework
Authors: N. J. Shanono, J. G. Ndiritu
Abstract:
The poor performance of water resource systems (WRS) has been reportedly linked to not only climate variability and the water demand dynamics but also human behaviour-driven unlawful activities. Some of these unlawful activities that have been adversely affecting water sector include unauthorized water abstractions, water wastage behaviour, refusal of water re‐use measures, excessive operational losses, discharging untreated or improperly treated wastewater, over‐application of chemicals by agricultural users and fraudulent WRS operation. Despite advances in WRS planning, operation, and analysis incorporating such undesirable human activities to quantitatively assess their impact on WRS performance remain elusive. This study was then inspired by the need to develop a methodological framework for WRS performance assessment that integrates the impact of human behaviour with WRS performance assessment analysis. We, therefore, proposed a conceptual framework for assessing the impact of human behaviour on WRS performance using the concept of socio-hydrology. The framework identifies and couples four major sources of WRS-related values (water values, water systems, water managers, and water users) using three missing links between human and water in the management of WRS (interactions, outcomes, and feedbacks). The framework is to serve as a database for choosing relevant social and hydrological variables and to understand the intrinsic relations between the selected variables to study a specific human-water problem in the context of WRS management.Keywords: conceptual framework, human behaviour; socio-hydrology; water resource systems
Procedia PDF Downloads 1351094 The Interoperability between CNC Machine Tools and Robot Handling Systems Based on an Object-Oriented Framework
Authors: Pouyan Jahanbin, Mahmoud Houshmand, Omid Fatahi Valilai
Abstract:
A flexible manufacturing system (FMS) is a manufacturing system having the capability of handling the variations of products features that is the result of ever-changing customer demands. The flexibility of the manufacturing systems help to utilize the resources in a more effective manner. However, the control of such systems would be complicated and challenging. FMS needs CNC machines and robots and other resources for establishing the flexibility and enhancing the efficiency of the whole system. Also it needs to integrate the resources to reach required efficiency and flexibility. In order to reach this goal, an integrator framework is proposed in which the machining data of CNC machine tools is received through a STEP-NC file. The interoperability of the system is achieved by the information system. This paper proposes an information system that its data model is designed based on object oriented approach and is implemented through a knowledge-based system. The framework is connected to a database which is filled with robot’s control commands. The framework programs the robots by rules embedded in its knowledge based system. It also controls the interactions of CNC machine tools for loading and unloading actions by robot. As a result, the proposed framework improves the integration of manufacturing resources in Flexible Manufacturing Systems.Keywords: CNC machine tools, industrial robots, knowledge-based systems, manufacturing recourses integration, flexible manufacturing system (FMS), object-oriented data model
Procedia PDF Downloads 4551093 Selective Solvent Extraction of Co from Ni and Mn through Outer-Sphere Interactions
Authors: Korban Oosthuizen, Robert C. Luckay
Abstract:
Due to the growing popularity of electric vehicles and the importance of cobalt as part of the cathode material for lithium-ion batteries, demand for this metal is on the rise. Recycling of the cathode materials by means of solvent extraction is an attractive means of recovering cobalt and easing the pressure on limited natural resources. In this study, a series of straight chain and macrocyclic diamine ligands were developed for the selective recovery of cobalt from the solution containing nickel and manganese by means of solvent extraction. This combination of metals is the major cathode material used in electric vehicle batteries. The ligands can be protonated and function as ion-pairing ligands targeting the anionic [CoCl₄]²⁻, a species which is not observed for Ni or Mn. Selectivity for Co was found to be good at very high chloride concentrations and low pH. Longer chains or larger macrocycles were found to enhance selectivity, and linear chains on the amide side groups also resulted in greater selectivity over the branched groups. The cation of the chloride salt used for adjusting chloride concentrations seems to play a major role in extraction through salting-out effects. The ligands developed in this study show good selectivity for Co over Ni and Mn but require very high chloride concentrations to function. This research does, however, open the door for further investigations into using diamines as solvent extraction ligands for the recovery of cobalt from spent lithium-ion batteries.Keywords: hydrometallurgy, solvent extraction, cobalt, lithium-ion batteries
Procedia PDF Downloads 781092 Effect of Barium Doping on Structural, Morphological, Optical and Photocatalytic Properties of Sprayed ZnO Thin Films
Authors: H. Djaaboube, I. Loucif, Y. Bouachiba, R. Aouati, A. Maameri, A. Taabouche, A. Bouabellou
Abstract:
Thin films of pure and barium-doped zinc oxide (ZnO) were prepared using a spray pyrolysis process. The films were deposited on glass substrates at 450°C. The different samples are characterized by X-ray diffraction (XRD) and UV-Vis spectroscopy. X-ray diffraction patterns reveal the formation of a single ZnO Wurtzite structure and the good crystallinity of the films. The substitution of Ba ions influences the texture of the layers and makes the (002) plane a preferential growth plane. At concentrations below 6% Ba, the hexagonal structure of ZnO undergoes compressive stresses due to barium ions which have a radius twice of the Zn ions. This result leads to the decrees of a and c parameters and, therefore, the volume of the unit cell. This result is confirmed by the decrease in the number of crystallites and the increase in the size of the crystallites. At concentrations above 6%, barium substitutes the zinc atom and modifies the structural parameters of the thin layers. The bandgap of ZnO films decreased with increasing doping; this decrease is probably due to the 4d orbitals of the Ba atom due to the sp-d spin-exchange interactions between the band electrons and the localized d-electrons of the substituted Ba ion. Although, the Urbache energy undergoes an increase which implies the creation of energy levels below the conduction band and decreases the band gap width. The photocatalytic activity of ZnO doped 9% Ba was evaluated by the photodegradation of methylene blue under UV irradiation.Keywords: barium, doping, photodegradation, spray pyrolysis, ZnO
Procedia PDF Downloads 831091 Study of Buried Interfaces in Fe/Si Multilayer by Hard X-Ray Emission Spectroscopy
Authors: Hina Verma, Karine Le Guen, Renaud Dalaunay, Iyas Ismail, Vita Ilakovac, Jean Pascal Rueff, Yunlin Jacques Zheng, Philippe Jonnard
Abstract:
To the extent of our knowledge, X-ray emission spectroscopy (XES) has been applied in the soft x-ray region (photon energy ≤ 2 keV) to study the buried layers and interfaces of stacks of nanometer-thin films. Now we extend the methodology to study the buried interfaces in the hard X-ray region (i.e., ≥ five keV). The emission spectra allow us to study the interactions between elements in the buried layers from the analysis of their valence states, thereby providing sensitive information about the physical-chemical environment of the emitting element in multilayers. We exploit the chemical sensitivity of XES to study the interfaces between Fe and Si layers in the Fe/Si multilayer from the Fe Kβ₂,₅ emission spectra (7108 eV). The Fe Kβ₅ emission line results from the electronic transition from occupied 3d to 1s levels (i.e., valence to core transition) and is hence sensitive to the chemical state of emitting Fe atoms. The comparison of emission spectra recorded for Fe/Si multilayer with Fe and FeSi₂ references reveal the formation of FeSi₂ at the Fe-Si interfaces inside the multilayer stack. The interfacial thickness was calculated to be 1.4 ± 0.2 nm by taking into consideration the intensity of Fe atoms emitted from the interface and the Fe layer. The formation of FeSi₂ at the interface was further confirmed by the X-ray diffraction and X-ray photoelectron spectroscopy done on the Fe/Si multilayer. Hence, we can conclude that the XES in the hard X-ray range could be used to study multilayers and their interfaces and obtain information both qualitatively and quantitatively.Keywords: buried interfaces, hard X-ray emission spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy
Procedia PDF Downloads 1431090 Food Effects and Food Choices: Aligning the Two for Better Health
Authors: John Monro, Suman Mishra
Abstract:
Choosing foods for health benefits requires information that accurately represents the relative effectiveness of foods with respect to specific health end points, or with respect to responses leading to health outcomes. At present consumers must rely on nutrient composition data, and on health claims to guide them to healthy food choices. Nutrient information may be of limited usefulness because it does not reflect the effect of food structure and food component interactions – that is, whole food effects. Health claims demand stringent criteria that exclude most foods, even though most foods have properties through which they may contribute to positive health outcomes in a diet. In this presentation, we show how the functional efficacy of foods may be expressed in the same format as nutrients, with weight units, as virtual food components that allow a nutrition information panel to show not only what a food is, but also what it does. In the presentation, two body responses linked to well-being are considered – glycaemic response and colonic bulk – in order to illustrate the concept. We show how the nutrient information on available carbohydrates and dietary fibre values obtained by food analysis methods fail to provide information of the glycaemic potency or the colonic bulking potential of foods, because of failings in the methods and approach taken to food analysis. It is concluded that a category of food values that represent the functional efficacy of foods is required to accurately guide food choices for health.Keywords: dietary fibre, glycaemic response, food values, food effects, health
Procedia PDF Downloads 5021089 Deniplant Nutraceuticals for Endometriosis Pain
Authors: Gheorghe Giurgiu, Manole Cojocaru, Mihnea Andrei Nicodin
Abstract:
Background: Inflammation has the main role in the progression of endometriosis. The mechanisms by which endometriosis induces a chronic pain state remain poorly understood. Unfortunately, there is no known cure for endometriosis. But you can manage it with medication and at-home treatments. Some findings have highlighted the main role of inflammation in endometriosis by acting on proliferation, apoptosis, and angiogenesis. The introduction of new agents can be effective in improving the condition of patients; for example, plants are promising sources of bioactive natural components. Objectives: These natural compounds could be interesting strategies in therapy. While there is no absolute cure for this condition, some home remedies can relieve the pain and discomfort it brings. The purpose of this study is to summarize the potential action of Deniplant nutraceuticals in endometriosis by acting on inflammation. Materials and Methods: The primary symptoms of endometriosis are pelvic pain and infertility. The use of Deniplant nutraceuticals could be interesting in disease management for women. Results: Treating pain-related aspects of endometriosis would contribute to the improvement of mental health and daytime function. Because the microbiome can influence inflammation, new therapies can develop through its natural modulation. There are other options, including natural remedies, herbs like cinnamon twigs or licorice root, or supplements such as thiamine, magnesium, or omega-3 fatty acids. Conclusion: Deniplant nutraceuticals can downregulate inflammation in endometriosis. Nevertheless, the limited number of studies focusing on the different interactions of Deniplant nutraceuticals in endometriosis restricts its clear and immediate use in a therapeutic strategy.Keywords: endometriosis, diet, Deniplant nutraceuticals, pain
Procedia PDF Downloads 761088 A Coupled Extended-Finite-Discrete Element Method: On the Different Contact Schemes between Continua and Discontinua
Authors: Shervin Khazaeli, Shahab Haj-zamani
Abstract:
Recently, advanced geotechnical engineering problems related to soil movement, particle loss, and modeling of local failure (i.e. discontinua) as well as modeling the in-contact structures (i.e. continua) are of the great interest among researchers. The aim of this research is to meet the requirements with respect to the modeling of the above-mentioned two different domains simultaneously. To this end, a coupled numerical method is introduced based on Discrete Element Method (DEM) and eXtended-Finite Element Method (X-FEM). In the coupled procedure, DEM is employed to capture the interactions and relative movements of soil particles as discontinua, while X-FEM is utilized to model in-contact structures as continua, which may consist of different types of discontinuities. For verification purposes, the new coupled approach is utilized to examine benchmark problems including different contacts between/within continua and discontinua. Results are validated by comparison with those of existing analytical and numerical solutions. This study proves that extended-finite-discrete element method can be used to robustly analyze not only contact problems, but also other types of discontinuities in continua such as (i) crack formations and propagations, (ii) voids and bimaterial interfaces, and (iii) combination of previous cases. In essence, the proposed method can be used vastly in advanced soil-structure interaction problems to investigate the micro and macro behaviour of the surrounding soil and the response of the embedded structure that contains discontinuities.Keywords: contact problems, discrete element method, extended-finite element method, soil-structure interaction
Procedia PDF Downloads 5051087 Electro-Fenton Degradation of Erythrosine B Using Carbon Felt as a Cathode: Doehlert Design as an Optimization Technique
Authors: Sourour Chaabane, Davide Clematis, Marco Panizza
Abstract:
This study investigates the oxidation of Erythrosine B (EB) food dye by a homogeneous electro-Fenton process using iron (II) sulfate heptahydrate as a catalyst, carbon felt as cathode, and Ti/RuO2. The treated synthetic wastewater contains 100 mg L⁻¹ of EB and has a pH = 3. The effects of three independent variables have been considered for process optimization, such as applied current intensity (0.1 – 0.5 A), iron concentration (1 – 10 mM), and stirring rate (100 – 1000 rpm). Their interactions were investigated considering response surface methodology (RSM) based on Doehlert design as optimization method. EB removal efficiency and energy consumption were considered model responses after 30 minutes of electrolysis. Analysis of variance (ANOVA) revealed that the quadratic model was adequately fitted to the experimental data with R² (0.9819), adj-R² (0.9276) and low Fisher probability (< 0.0181) for EB removal model, and R² (0.9968), adj-R² (0.9872) and low Fisher probability (< 0.0014) relative to the energy consumption model reflected a robust statistical significance. The energy consumption model significantly depends on current density, as expected. The foregoing results obtained by RSM led to the following optimal conditions for EB degradation: current intensity of 0.2 A, iron concentration of 9.397 mM, and stirring rate of 500 rpm, which gave a maximum decolorization rate of 98.15 % with a minimum energy consumption of 0.74 kWh m⁻³ at 30 min of electrolysis.Keywords: electrofenton, erythrosineb, dye, response serface methdology, carbon felt
Procedia PDF Downloads 721086 Magneto-Thermo-Mechanical Analysis of Electromagnetic Devices Using the Finite Element Method
Authors: Michael G. Pantelyat
Abstract:
Fundamental basics of pure and applied research in the area of magneto-thermo-mechanical numerical analysis and design of innovative electromagnetic devices (modern induction heaters, novel thermoelastic actuators, rotating electrical machines, induction cookers, electrophysical devices) are elaborated. Thus, mathematical models of magneto-thermo-mechanical processes in electromagnetic devices taking into account main interactions of interrelated phenomena are developed. In addition, graphical representation of coupled (multiphysics) phenomena under consideration is proposed. Besides, numerical techniques for nonlinear problems solution are developed. On this base, effective numerical algorithms for solution of actual problems of practical interest are proposed, validated and implemented in applied 2D and 3D computer codes developed. Many applied problems of practical interest regarding modern electrical engineering devices are numerically solved. Investigations of the influences of various interrelated physical phenomena (temperature dependences of material properties, thermal radiation, conditions of convective heat transfer, contact phenomena, etc.) on the accuracy of the electromagnetic, thermal and structural analyses are conducted. Important practical recommendations on the choice of rational structures, materials and operation modes of electromagnetic devices under consideration are proposed and implemented in industry.Keywords: electromagnetic devices, multiphysics, numerical analysis, simulation and design
Procedia PDF Downloads 3861085 The Influence of Online Audience Response on Journalists
Authors: Raja Arslan Ahmad Khan
Abstract:
Audience feedback and data play an increasingly crucial role, particularly in the digital age. The advent of digital media and the digitalization of news have given rise to novel forms of audience feedback, markedly different from traditional channels. The engagement of online audiences challenges the conventional role of journalists, introducing a dynamic where audiences can wield both direct and indirect influence. This struggle between the audience and journalists is evident in their contributions and interactions. Media professionals are grappling with challenges such as derogatory remarks, hate speech, online harassment, audience hostility, and attacks from online audiences. The influence of online audiences extends to shaping journalists' daily routines and work practices. Consequently, this study seeks to analyze the impact of online audience feedback on journalists at a routine level within the Malaysian context. Employing a Hierarchy of Influence model as a theoretical framework, the study will utilize a quantitative approach with a snowball survey method. The study's findings aim to enhance our understanding of how online audiences influence journalists and their work practices, encompassing aspects like journalists' autonomy and integrity, editorial decision-making, performance and accountability, daily routines, work practices, as well as the psychological and emotional costs they bear. It's important to note that the study has limitations due to the use of the snowball survey method and its focus within the specific context of Malaysia, making it relatively small in scale.Keywords: online audiences, feedback, influence, journalists, Malaysia
Procedia PDF Downloads 671084 Hybrid Collaborative-Context Based Recommendations for Civil Affairs Operations
Authors: Patrick Cummings, Laura Cassani, Deirdre Kelliher
Abstract:
In this paper we present findings from a research effort to apply a hybrid collaborative-context approach for a system focused on Marine Corps civil affairs data collection, aggregation, and analysis called the Marine Civil Information Management System (MARCIMS). The goal of this effort is to provide operators with information to make sense of the interconnectedness of entities and relationships in their area of operation and discover existing data to support civil military operations. Our approach to build a recommendation engine was designed to overcome several technical challenges, including 1) ensuring models were robust to the relatively small amount of data collected by the Marine Corps civil affairs community; 2) finding methods to recommend novel data for which there are no interactions captured; and 3) overcoming confirmation bias by ensuring content was recommended that was relevant for the mission despite being obscure or less well known. We solve this by implementing a combination of collective matrix factorization (CMF) and graph-based random walks to provide recommendations to civil military operations users. We also present a method to resolve the challenge of computation complexity inherent from highly connected nodes through a precomputed process.Keywords: Recommendation engine, collaborative filtering, context based recommendation, graph analysis, coverage, civil affairs operations, Marine Corps
Procedia PDF Downloads 1251083 Fabrication of Highly Stable Low-Density Self-Assembled Monolayers by Thiolyne Click Reaction
Authors: Leila Safazadeh, Brad Berron
Abstract:
Self-assembled monolayers have tremendous impact in interfacial science, due to the unique opportunity they offer to tailor surface properties. Low-density self-assembled monolayers are an emerging class of monolayers where the environment-interfacing portion of the adsorbate has a greater level of conformational freedom when compared to traditional monolayer chemistries. This greater range of motion and increased spacing between surface-bound molecules offers new opportunities in tailoring adsorption phenomena in sensing systems. In particular, we expect low-density surfaces to offer a unique opportunity to intercalate surface bound ligands into the secondary structure of protiens and other macromolecules. Additionally, as many conventional sensing surfaces are built upon gold surfaces (SPR or QCM), these surfaces must be compatible with gold substrates. Here, we present the first stable method of generating low-density self assembled monolayer surfaces on gold for the analysis of their interactions with protein targets. Our approach is based on the 2:1 addition of thiol-yne chemistry to develop new classes of y-shaped adsorbates on gold, where the environment-interfacing group is spaced laterally from neighboring chemical groups. This technique involves an initial deposition of a crystalline monolayer of 1,10 decanedithiol on the gold substrate, followed by grafting of a low-packed monolayer on through a photoinitiated thiol-yne reaction in presence of light. Orthogonality of the thiol-yne chemistry (commonly referred to as a click chemistry) allows for preparation of low-density monolayers with variety of functional groups. To date, carboxyl, amine, alcohol, and alkyl terminated monolayers have been prepared using this core technology. Results from surface characterization techniques such as FTIR, contact angle goniometry and electrochemical impedance spectroscopy confirm the proposed low chain-chain interactions of the environment interfacing groups. Reductive desorption measurements suggest a higher stability for the click-LDMs compared to traditional SAMs, along with the equivalent packing density at the substrate interface, which confirms the proposed stability of the monolayer-gold interface. In addition, contact angle measurements change in the presence of an applied potential, supporting our description of a surface structure which allows the alkyl chains to freely orient themselves in response to different environments. We are studying the differences in protein adsorption phenomena between well packed and our loosely packed surfaces, and we expect this data will be ready to present at the GRC meeting. This work aims to contribute biotechnology science in the following manner: Molecularly imprinted polymers are a promising recognition mode with several advantages over natural antibodies in the recognition of small molecules. However, because of their bulk polymer structure, they are poorly suited for the rapid diffusion desired for recognition of proteins and other macromolecules. Molecularly imprinted monolayers are an emerging class of materials where the surface is imprinted, and there is not a bulk material to impede mass transfer. Further, the short distance between the binding site and the signal transduction material improves many modes of detection. My dissertation project is to develop a new chemistry for protein-imprinted self-assembled monolayers on gold, for incorporation into SPR sensors. Our unique contribution is the spatial imprinting of not only physical cues (seen in current imprinted monolayer techniques), but to also incorporate complementary chemical cues. This is accomplished through a photo-click grafting of preassembled ligands around a protein template. This conference is important for my development as a graduate student to broaden my appreciation of the sensor development beyond surface chemistry.Keywords: low-density self-assembled monolayers, thiol-yne click reaction, molecular imprinting
Procedia PDF Downloads 2261082 Comparison of Physicochemical Properties of DNA-Ionic Liquids Complexes
Authors: Ewelina Nowak, Anna Wisla-Swider, Gohar Khachatryan, Krzysztof Danel
Abstract:
Complexes of ionic liquids with different heterocyclic-rings were synthesized by ion exchange reactions with pure salmon DNA. Ionic liquids (ILs) like 1-hexyl-3-methylimidazolium chloride, 1-butyl-4-methylpyridinium chloride and 1-ethyl-1-methylpyrrolidinium bromide were used. The ILs were built into helical state and confirmed by IR spectrometric techniques. Patterns of UV-Vis, photoluminescence, IR, and CD spectra indicated inclusion of small molecules into DNA structure. Molecular weight and radii of gyrations values of ILs-DNA complexes chains were established by HPSEC–MALLS–RI method. Modification DNA with 1-ethyl-1-methylpyrrolidinium bromide gives more uniform material and leads to elimination of high molecular weight chains. Thus, the incorporation DNA double helical structure with both 1-hexyl-3-methylimidazolium chloride and 1-butyl-4-methylpyridinium chloride exhibited higher molecular weight values. Scanning electron microscopy images indicate formation of nanofibre structures in all DNA complexes. Fluorescence depends strongly on the environment in which the chromophores are inserted and simultaneously on the molecular interactions with the biopolymer matrix. The most intensive emission was observed for DNA-imidazole ring complex. Decrease in intensity UV-Vis peak absorption is a consequence of a reduction in the spatial order of polynucleotide strands and provides different π–π stacking structure. Changes in optical properties confirmed by spectroscopy methods make DNA-ILs complexes potential biosensor applications.Keywords: biopolymers, biosensors, cationic surfactant, DNA, DNA-gels
Procedia PDF Downloads 1831081 Effects of Process Parameters on the Yield of Oil from Coconut Fruit
Authors: Ndidi F. Amulu, Godian O. Mbah, Maxwel I. Onyiah, Callistus N. Ude
Abstract:
Analysis of the properties of coconut (Cocos nucifera) and its oil was evaluated in this work using standard analytical techniques. The analyses carried out include proximate composition of the fruit, extraction of oil from the fruit using different process parameters and physicochemical analysis of the extracted oil. The results showed the percentage (%) moisture, crude lipid, crude protein, ash, and carbohydrate content of the coconut as 7.59, 55.15, 5.65, 7.35, and 19.51 respectively. The oil from the coconut fruit was odourless and yellowish liquid at room temperature (30oC). The treatment combinations used (leaching time, leaching temperature and solute: solvent ratio) showed significant differences (P˂0.05) in the yield of oil from coconut flour. The oil yield ranged between 36.25%-49.83%. Lipid indices of the coconut oil indicated the acid value (AV) as 10.05 Na0H/g of oil, free fatty acid (FFA) as 5.03%, saponification values (SV) as 183.26 mgKOH-1 g of oil, iodine value (IV) as 81.00 I2/g of oil, peroxide value (PV) as 5.00 ml/ g of oil and viscosity (V) as 0.002. A standard statistical package minitab version 16.0 program was used in the regression analysis and analysis of variance (ANOVA). The statistical software mentioned above was also used to generate various plots such as single effect plot, interactions effect plot and contour plot. The response or yield of oil from the coconut flour was used to develop a mathematical model that correlates the yield to the process variables studied. The maximum conditions obtained that gave the highest yield of coconut oil were leaching time of 2 hrs, leaching temperature of 50 oC and solute/solvent ratio of 0.05 g/ml.Keywords: coconut, oil-extraction, optimization, physicochemical, proximate
Procedia PDF Downloads 3531080 Internet Use, Social Networks, Loneliness and Quality of Life among Adults Aged 50 and Older: Mediating and Moderating Effects
Authors: Rabia Khaliala, Adi Vitman-Schorr
Abstract:
Background: The increase in longevity of people on one hand, and on the other hand the fact that the social networks in later life become increasingly narrower, highlight the importance of Internet use to enhance quality of life (QoL). However, whether Internet use increases or decreases social networks, loneliness and quality of life is not clear-cut. Purposes: To explore the direct and/or indirect effects of Internet use on QoL, and to examine whether ethnicity and time the elderly spent with family moderate the mediation effect of Internet use on quality of life throughout loneliness. Methods: This descriptive-correlational study was carried out in 2016 by structured interviews with a convenience sample of 502 respondents aged 50 and older, living in northern Israel. Bootstrapping with resampling strategies was used for testing mediation a model. Results: Use of the Internet was found to be positively associated with QoL. However, this relationship was mediated by loneliness, and moderated by the time the elderly spent with family members. In addition, respondents' ethnicity significantly moderated the mediation effect between Internet use and loneliness. Conclusions: Internet use can enhance QoL of older adults directly or indirectly by reducing loneliness. However, these effects are conditional on other variables. The indirect effect moderated by ethnicity, and the direct effect moderated by the time the elderly spend with their families. Researchers and practitioners should be aware of these interactions which can impact loneliness and quality of life of older persons differently.Keywords: internet use, loneliness, quality of life, social contacts
Procedia PDF Downloads 1851079 The Psychological Effect of Emotional Demands and Discrimination, and the Role of Job Resources among Asian Immigrant Microbusiness Owners
Authors: Il-Ho Kim, Samuel Noh, Kwame McKenzie, Cyu-Chul Choi
Abstract:
Many members of immigrant minorities choose to operate microbusinesses that involve emotionally taxing interactions with customers and discriminatory exposures in the workplace. This study investigated the psychological risks of emotional demands and discrimination as well as the buffering roles of two types of job resources (job autonomy and job security) among immigrant microbusiness owners (MBOs). Data were derived from a cross-sectional survey of 550 Korean immigrant MBOs, aged 30 to 70, living in Toronto and its surrounding areas. Face-to-face interviews were conducted between March and November 2013. Results showed that emotional suppression and discrimination were positively associated with depressive symptoms. However, the direct effect of positive emotional demands was insignificant. For job resources, the beneficial effect of job security on depressive symptom was apparent, but the effect of job autonomy was trivial. Regarding the moderating effect, job security buffered the psychological harm of both emotional suppression and workplace discrimination. Although job autonomy buffered the link between discrimination and depressive symptoms, the buffering effect of job autonomy on the emotional suppression-depression link was insignificant. This study’s finding implies that emotional demands and workplace discrimination seem to be important factors in contributing to occupational psychological problems, but the psychological impact can differ according to the types of emotional demands and job resources among immigrant MBOs.Keywords: immigrant microbusiness owners, emotional demands, discrimination, job resources, depression
Procedia PDF Downloads 2221078 Physics Recitations for College Physics Courses Using Breakout Rooms during COVID Pandemic
Authors: Pratheesh Jakkala
Abstract:
This paper addresses the use of breakout sessions to conduct successful weekly physics recitations for College Physics I and II at a large University in remote teaching method during COVID-19 pandemic. All breakout sessions are synchronous, conducted live, and handled by teaching assistants. A two-prong approach is used to maintain the integrity of recitations. Three different conference platforms WebEx, Zoom, and Canvas conferences, were tested, and BigBlue button using Canvas was adopted. The results and experiences of all three learning platforms are presented in this paper. Recitation questions were assigned on WebAssign learning platform and a standard five-question template developed by the instructor was used for group discussions and active peer-peer engagement. Breakout sessions feature of BigBlueButton in Canvas conferences was successfully implemented. Each breakout session consists of a team of 4 students. An online whiteboard, chat window options were used for live teamwork. Student peer-peer interactions, Teaching Assistants’ interaction with students were video and audio recorded. A total of 72 students in College Physics II and 55 students in College Physics I was enrolled. 82% of students agreed that method under study is better than previous methods. The study addressed the quality of student teamwork, student attitude towards problem-solving, and student performance in the exams.Keywords: recitations, breakout rooms, online learning platforms, COVID pandemic
Procedia PDF Downloads 110