Search results for: cost of medical waste
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11235

Search results for: cost of medical waste

10215 Interpretation of Medical Negligence under Consumer Laws

Authors: Ashfaq M. Naikwadi

Abstract:

Decided cases of medical negligence, mostly are not settled in the lower courts. Majority of them reach up to the apex courts. This is mostly due to different interpretations of the term medical negligence. After studying various cases of medical negligence it is found that in most of the cases the doctors/hospitals are not held liable. There are different interpretations of law concerning medical services. Globally the principles deciding medical negligence are same, viz. Legal duty of care - breach of that duty - direct causation resulting in damages. Since ordinary negligence is not punishable by law, doctors/hospitals have defenses to save themselves from liability. Complaints of negligence come to the courts whose judges mostly are not oriented with medical services or health sciences. Matters of medical negligence are decided on the basic principles of reasonableness and prudence or by relying on the expert’s opinion. Deciding reasonableness or prudence is a complex issue in case of medical services. Again expert opinion is also questionable as an expert in case of medical negligence is appointed from the same field and same faculty. There is a chance of favoritism to the doctor/hospital. The concept of vicarious liability is not widely applied to in many of the medical negligence cases. Established cases used as precedents were studied to understand the basic principles in deciding medical negligence. This paper evaluates the present criteria in interpreting medical negligence and concludes with suggesting reforms required to be made in deciding matters of medical negligence under the consumer laws.

Keywords: consumer, doctors, laws, medical negligence

Procedia PDF Downloads 358
10214 Landfill Leachate and Settled Domestic Wastewater Co-Treatment Using Activated Carbon in Sequencing Batch Reactors

Authors: Amin Mojiri, Hamidi Abdul Aziz

Abstract:

Leachate is created while water penetrates through the waste in a landfill, carrying some forms of pollutants. In literature, for treatment of wastewater and leachate, different ways of biological treatment were used. Sequencing batch reactor (SBR) is a kind of biological treatment. This study investigated the co-treatment of landfill leachate and domestic waste water by SBR and powdered activated carbon augmented (PAC) SBR process. The response surface methodology (RSM) and central composite design (CCD) were employed. The independent variables were aeration rate (L/min), contact time (h), and the ratio of leachate to wastewater mixture (%; v/v)). To perform an adequate analysis of the aerobic process, three dependent parameters, i.e. COD, color, and ammonia-nitrogen (NH3-N or NH4-N) were measured as responses. The findings of the study indicated that the PAC-SBR showed a higher performance in elimination of certain pollutants, in comparison with SBR. With the optimal conditions of aeration rate (0.6 L/min), leachate to waste water ratio (20%), and contact time (10.8 h) for the PAC-SBR, the removal efficiencies for color, NH3-N, and COD were 72.8%, 98.5%, and 65.2%, respectively.

Keywords: co-treatment, landfill Leachate, wastewater, sequencing batch reactor, activate carbon

Procedia PDF Downloads 461
10213 Innovative Technology to Sustain Food Security in Qatar

Authors: Sana Abusin

Abstract:

Food security in Qatar is a research priority of Qatar University (2021-2025) and all national strategies, including the Qatar National Vision 2030 and food security strategy (2018-2023). Achieving food security requires three actions: 1) transforming surplus food to those who are insecure; 2) reducing food loss and waste by recycling food into valuable resources such as compost (“green fertilizer”) that can be used in growing food; and, finally, 3) establishing strong enforcement agencies to protect consumers from outdated food and promote healthy food. Currently, these objectives are approached separately and not in a sustainable fashion. Food security in Qatar is a research priority of Qatar University (2021-2025) and all national strategies, including the Qatar National Vision 2030 and food security strategy (2018-2023). The study aims to develop an innovative mobile application that supports a sustainable solution to food insecurity and food waste in Qatar. The application will provide a common solution for many different users. For producers, it will facilitate easy disposal of excess food. For charities, it will notify them about surplus food ready for redistribution. The application will also benefit the second layer of end-users in the form of food recycling companies, who will receive information about available food waste that is unable to be consumed. We will use self-exoplanetary diagrams and digital pictures to show all the steps to the final stage. The aim is to motivate the young generation toward innovation and creation, and to encourage public-private collaboration in this sector.

Keywords: food security, innovative technology, sustainability, food waste, Qatar

Procedia PDF Downloads 113
10212 Generating Biogas from Municipal Kitchen Waste: An Experience from Gaibandha, Bangladesh

Authors: Taif Rocky, Uttam Saha, Mahobul Islam

Abstract:

With a rapid urbanisation in Bangladesh, waste management remains one of the core challenges. Turning municipal waste into biogas for mass usage is a solution that Bangladesh needs to adopt urgently. Practical Action with its commitment to challenging poverty with technological justice has piloted such idea in Gaibandha. The initiative received immense success and drew the attention of policy makers and practitioners. We believe, biogas from waste can highly contribute to meet the growing demand for energy in the country at present and in the future. Practical Action has field based experience in promoting small scale and innovative technologies. We have proven track record in integrated solid waste management. We further utilized this experience to promote waste to biogas at end users’ level. In 2011, we have piloted a project on waste to biogas in Gaibandha, a northern secondary town of Bangladesh. With resource and support from UNICEF and with our own innovative funds we have established a complete chain of utilizing waste to the renewable energy source and organic fertilizer. Biogas is produced from municipal solid waste, which is properly collected, transported and segregated by private entrepreneurs. The project has two major focuses, diversification of biogas end use and establishing a public-private partnership business model. The project benefits include Recycling of Wastes, Improved institutional (municipal) capacity, Livelihood from improved services and Direct Income from the project. Project risks include Change of municipal leadership, Traditional mindset, Access to decision making, Land availability. We have observed several outcomes from the initiative. Up scaling such an initiative will certainly contribute for sustainable cleaner and healthier urban environment and urban poverty reduction. - It reduces the unsafe disposal of wastes which improve the cleanliness and environment of the town. -Make drainage system effective reducing the adverse impact of water logging or flooding. -Improve public health from better management of wastes. -Promotes usage of biogas replacing the use of firewood/coal which creates smoke and indoor air pollution in kitchens which have long term impact on health of women and children. -Reduce the greenhouse gas emission from the anaerobic recycling of wastes and contributes to sustainable urban environment. -Promote the concept of agroecology from the uses of bio slurry/compost which contributes to food security. -Creates green jobs from waste value chain which impacts on poverty alleviation of urban extreme poor. -Improve municipal governance from inclusive waste services and functional partnership with private sectors. -Contribute to the implementation of 3R (Reduce, Reuse, Recycle) Strategy and Employment Creation of extreme poor to achieve the target set in Vision 2021 by Government of Bangladesh.

Keywords: kitchen waste, secondary town, biogas, segregation

Procedia PDF Downloads 213
10211 Recovery of Au and Other Metals from Old Electronic Components by Leaching and Liquid Extraction Process

Authors: Tomasz Smolinski, Irena Herdzik-Koniecko, Marta Pyszynska, M. Rogowski

Abstract:

Old electronic components can be easily found nowadays. Significant quantities of valuable metals such as gold, silver or copper are used for the production of advanced electronic devices. Old useless electronic device slowly became a new source of precious metals, very often more efficient than natural. For example, it is possible to recover more gold from 1-ton personal computers than seventeen tons of gold ore. It makes urban mining industry very profitable and necessary for sustainable development. For the recovery of metals from waste of electronic equipment, various treatment options based on conventional physical, hydrometallurgical and pyrometallurgical processes are available. In this group hydrometallurgy processes with their relatively low capital cost, low environmental impact, potential for high metal recoveries and suitability for small scale applications, are very promising options. Institute of Nuclear Chemistry and Technology has great experience in hydrometallurgy processes especially focused on recovery metals from industrial and agricultural wastes. At the moment, urban mining project is carried out. The method of effective recovery of valuable metals from central processing units (CPU) components has been developed. The principal processes such as acidic leaching and solvent extraction were used for precious metals recovery from old processors and graphic cards. Electronic components were treated by acidic solution at various conditions. Optimal acid concentration, time of the process and temperature were selected. Precious metals have been extracted to the aqueous phase. At the next step, metals were selectively extracted by organic solvents such as oximes or tributyl phosphate (TBP) etc. Multistage mixer-settler equipment was used. The process was optimized.

Keywords: electronic waste, leaching, hydrometallurgy, metal recovery, solvent extraction

Procedia PDF Downloads 132
10210 Speed Optimization Model for Reducing Fuel Consumption Based on Shipping Log Data

Authors: Ayudhia P. Gusti, Semin

Abstract:

It is known that total operating cost of a vessel is dominated by the cost of fuel consumption. How to reduce the fuel cost of ship so that the operational costs of fuel can be minimized is the question that arises. As the basis of these kinds of problem, sailing speed determination is an important factor to be considered by a shipping company. Optimal speed determination will give a significant influence on the route and berth schedule of ships, which also affect vessel operating costs. The purpose of this paper is to clarify some important issues about ship speed optimization. Sailing speed, displacement, sailing time, and specific fuel consumption were obtained from shipping log data to be further analyzed for modeling the speed optimization. The presented speed optimization model is expected to affect the fuel consumption and to reduce the cost of fuel consumption.

Keywords: maritime transportation, reducing fuel, shipping log data, speed optimization

Procedia PDF Downloads 562
10209 Impact of Technology on Product Quality, Speed up Delivery and Cost

Authors: Rehan Ullah

Abstract:

This paper explores the hypothesis that technology can be used to improve product quality, speed up delivery and reduced cost. For companies improving the quality of their products, reducing the cost and improving the speed of delivery makes them favorable to the client who feels like all their needs have been met. The research occurs between the months of January 2018 to April 2018 which is about four months. The research experiment design uses the pretest-posttest experimental design set up between two companies both using the traditional method of manufacturing with no technology. In one company technology is introduced while in the other company the process remains the same traditional method of production. Both companies analyze the results at the end of a four-month period before a conclusion is drawn from both the pretest and the final test. The experiment results show that technology improves quality of the product, improves the speed of delivery while at the same time reduce cost benefiting both the producer and the client. Technology should, therefore, be implemented in companies to give them an edge over the competition. With technology in companies, the United States can reclaim production from overseas companies that have taken over by providing cheap labor. Better satisfied customers mean more production which in turn means more jobs for the people in the United States.

Keywords: technology, quality of product, speed up delivery, cost

Procedia PDF Downloads 154
10208 Consequential Effects of Coal Utilization on Urban Water Supply Sources – a Study of Ajali River in Enugu State Nigeria

Authors: Enebe Christian Chukwudi

Abstract:

Water bodies around the world notably underground water, ground water, rivers, streams, and seas, face degradation of their water quality as a result of activities associated with coal utilization including coal mining, coal processing, coal burning, waste storage and thermal pollution from coal plants which tend to contaminate these water bodies. This contamination results from heavy metals, presence of sulphate and iron, dissolved solids, mercury and other toxins contained in coal ash, sludge, and coal waste. These wastes sometimes find their way to sources of urban water supply and contaminate them. A major problem encountered in the supply of potable water to Enugu municipality is the contamination of Ajali River, the source of water supply to Enugu municipal by coal waste. Hydro geochemical analysis of Ajali water samples indicate high sulphate and iron content, high total dissolved solids(TDS), low pH (acidity values) and significant hardness in addition to presence of heavy metals, mercury, and other toxins. This is indicative of the following remedial measures: I. Proper disposal of mine wastes at designated disposal sites that are suitably prepared. II. Proper water treatment and III. Reduction of coal related contaminants taking advantage of clean coal technology.

Keywords: effects, coal, utilization, water quality, sources, waste, contamination, treatment

Procedia PDF Downloads 418
10207 Optimization of Lean Methodologies in the Textile Industry Using Design of Experiments

Authors: Ahmad Yame, Ahad Ali, Badih Jawad, Daw Al-Werfalli Mohamed Nasser, Sabah Abro

Abstract:

Industries in general have a lot of waste. Wool textile company, Baniwalid, Libya has many complex problems that led to enormous waste generated due to the lack of lean strategies, expertise, technical support and commitment. To successfully address waste at wool textile company, this study will attempt to develop a methodical approach that integrates lean manufacturing tools to optimize performance characteristics such as lead time and delivery. This methodology will utilize Value Stream Mapping (VSM) techniques to identify the process variables that affect production. Once these variables are identified, Design of Experiments (DOE) Methodology will be used to determine the significantly influential process variables, these variables are then controlled and set at their optimal to achieve optimal levels of productivity, quality, agility, efficiency and delivery to analyze the outputs of the simulation model for different lean configurations. The goal of this research is to investigate how the tools of lean manufacturing can be adapted from the discrete to the continuous manufacturing environment and to evaluate their benefits at a specific industrial.

Keywords: lean manufacturing, DOE, value stream mapping, textiles

Procedia PDF Downloads 447
10206 Use of Waste Road-Asphalt as Aggregate in Pavement Block Production

Authors: Babagana Mohammed, Abdulmuminu Mustapha Ali, Solomon Ibrahim, Buba Ahmad Umdagas

Abstract:

This research investigated the possibility of replacing coarse and fine aggregates with waste road-asphalt (RWA), when sieved appropriately, in concrete production. Interlock pavement block is used widely in many parts of the world as modern day solution to outdoor flooring applications. The weight-percentage replacements of both coarse and fine aggregates with RWA at 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90% respectively using a concrete mix ratio of 1:2:4 and water-to-cement ratio of 0.45 were carried out. The interlock block samples produced were then cured for 28days. Unconfined compressive strength (UCS) and the water absorption properties of the samples were then tested. Comparison of the results of the RWA-containing samples to those of the respective control samples shows significant benefits of using RWA in interlock block production. UCS results of RWA-containing samples compared well with those of the control samples and the RWA content also influenced the lowering of the water absorption of the samples. Overall, the research shows that it is possible to replace both coarse and fine aggregates with RWA materials when sieved appropriately, hence indicating that RWA could be recycled beneficially.

Keywords: aggregate, block-production, pavement, road-asphalt, use, waste

Procedia PDF Downloads 186
10205 Steel Industry Waste as Recyclable Raw Material for the Development of Ferrous-Aluminum Alloys

Authors: Arnold S. Freitas Neto, Rodrigo E. Coelho, Erick S. Mendonça

Abstract:

The study aims to assess if high-purity iron powder in iron-aluminum alloys can be replaced by SAE 1020 steel chips with an atomicity proportion of 50% for each element. Chips of SAE 1020 are rejected in industrial processes. Thus, the use of SAE 1020 as a replaceable composite for iron increase the sustainability of ferrous alloys by recycling industrial waste. The alloys were processed by high energy milling, of which the main advantage is the minimal loss of raw material. The raw material for three of the six samples were high purity iron powder and recyclable aluminum cans. For the other three samples, the high purity iron powder has been replaced with chips of SAE 1020 steel. The process started with the separate milling of chips of aluminum and SAE 1020 steel to obtain the powder. Subsequently, the raw material was mixed in the pre-defined proportions, milled together for five hours and then underwent a closed-die hot compaction at the temperature of 500 °C. Thereafter, the compacted samples underwent heat treatments known as sintering and solubilization. All samples were sintered one hour, and 4 samples were solubilized for either 4 or 10 hours under well-controlled atmosphere conditions. Lastly, the composition and the mechanical properties of their hardness were analyzed. The samples were analyzed by optical microscopy, scanning electron microscopy and hardness testing. The results of the analysis showed a similar chemical composition and interesting hardness levels with low standard deviations. This verified that the use of SAE 1020 steel chips can be a low-cost alternative for high-purity iron powder and could possibly replace high-purity Iron in industrial applications.

Keywords: Fe-Al alloys, high energy milling, iron-aluminum alloys, metallography characterization, powder metallurgy, recycling ferrous alloy, SAE 1020 steel recycling

Procedia PDF Downloads 352
10204 Characteristics of Different Volumes of Waste Cellular Concrete Powder-Cement Paste for Sustainable Construction

Authors: Mohammed Abed, Rita Nemes

Abstract:

Cellular concrete powder (CCP) is not used widely as supplementary cementitious material, but in the literature, its efficiency is proved when it used as a replacement of cement in concrete mixtures. In this study, different amounts of raw CCP (CCP as a waste material without any industrial modification) will be used to investigate the characteristics of cement pastes and the effects of CCP on the properties of the cement pastes. It is an attempt to produce green binder paste, which is useful for sustainable construction applications. The fresh and hardened properties of a number of CCP blended cement paste will be tested in different life periods, and the optimized CCP volume will be reported with more significant investigations on durability properties. Different replacing of mass percentage (low and high) of the cement mass will be conducted (0%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90%). The consistency, flexural strength, and compressive strength will be the base indicator for the further properties' investigations. The CCP replacement until 50% have been tested until 7 days, and the initial results showed a linear relationship between strength and the percentage of the replacement; that is an optimistic indicator for further replacement percentages of waste CCP.

Keywords: cellular concrete powder, supplementary cementitious material, sustainable construction, green concrete

Procedia PDF Downloads 318
10203 Evaluation of a Staffing to Workload Tool in a Multispecialty Clinic Setting

Authors: Kristin Thooft

Abstract:

— Increasing pressure to manage healthcare costs has resulted in shifting care towards ambulatory settings and is driving a focus on cost transparency. There are few nurse staffing to workload models developed for ambulatory settings, less for multi-specialty clinics. Of the existing models, few have been evaluated against outcomes to understand any impact. This evaluation took place after the AWARD model for nurse staffing to workload was implemented in a multi-specialty clinic at a regional healthcare system in the Midwest. The multi-specialty clinic houses 26 medical and surgical specialty practices. The AWARD model was implemented in two specialty practices in October 2020. Donabedian’s Structure-Process-Outcome (SPO) model was used to evaluate outcomes based on changes to the structure and processes of care provided. The AWARD model defined and quantified the processes, recommended changes in the structure of day-to-day nurse staffing. Cost of care per patient visit, total visits, a total nurse performed visits used as structural and process measures, influencing the outcomes of cost of care and access to care. Independent t-tests were used to compare the difference in variables pre-and post-implementation. The SPO model was useful as an evaluation tool, providing a simple framework that is understood by a diverse care team. No statistically significant changes in the cost of care, total visits, or nurse visits were observed, but there were differences. Cost of care increased and access to care decreased. Two weeks into the post-implementation period, the multi-specialty clinic paused all non-critical patient visits due to a second surge of the COVID-19 pandemic. Clinic nursing staff was re-allocated to support the inpatient areas. This negatively impacted the ability of the Nurse Manager to utilize the AWARD model to plan daily staffing fully. The SPO framework could be used for the ongoing assessment of nurse staffing performance. Additional variables could be measured, giving a complete picture of the impact of nurse staffing. Going forward, there must be a continued focus on the outcomes of care and the value of nursing

Keywords: ambulatory, clinic, evaluation, outcomes, staffing, staffing model, staffing to workload

Procedia PDF Downloads 172
10202 Industry Symbiosis and Waste Glass Upgrading: A Feasibility Study in Liverpool Towards Circular Economy

Authors: Han-Mei Chen, Rongxin Zhou, Taige Wang

Abstract:

Glass is widely used in everyday life, from glass bottles for beverages to architectural glass for various forms of glazing. Although the mainstream of used glass is recycled in the UK, the single-use and then recycling procedure results in a lot of waste as it incorporates intact glass with smashing, re-melting, and remanufacturing. These processes bring massive energy consumption with a huge loss of high embodied energy and economic value, compared to re-use, which’s towards a ‘zero carbon’ target. As a tourism city, Liverpool has more glass bottle consumption than most less leisure-focused cities. It’s therefore vital for Liverpool to find an upgrading approach for the single-use glass bottles with low carbon output. This project aims to assess the feasibility of industrial symbiosis and upgrading the framework of glass and to investigate the ways of achieving them. It is significant to Liverpool’s future industrial strategy since it provides an opportunity to target economic recovery for post-COVID by industry symbiosis and up-grading waste management in Liverpool to respond to the climate emergency. In addition, it will influence the local government policy for glass bottle reuse and recycling in North West England and as a good practice to be further recommended to other areas of the UK. First, a critical literature review of glass waste strategies has been conducted in the UK and worldwide industrial symbiosis practices. Second, mapping, data collection, and analysis have shown the current life cycle chain and the strong links of glass reuse and upgrading potentials via site visits to 16 local waste recycling centres. The results of this research have demonstrated the understanding of the influence of key factors on the development of a circular industrial symbiosis business model for beverage glass bottles. The current waste management procedures of the glass bottle industry, its business model, supply chain, and material flow have been reviewed. The various potential opportunities for glass bottle up-valuing have been investigated towards an industrial symbiosis in Liverpool. Finally, an up-valuing business model has been developed for an industrial symbiosis framework of glass in Liverpool. For glass bottles, there are two possibilities 1) focus on upgrading processes towards re-use rather than single-use and recycling and 2) focus on ‘smart’ re-use and recycling, leading to optimised values in other sectors to create a wider industry symbiosis for a multi-level and circular economy.

Keywords: glass bottles, industry symbiosis, smart re-use, waste upgrading

Procedia PDF Downloads 96
10201 Technology Transfer of Indigenous Technologies: Emerging Aid to Indian Health Sector

Authors: Tripta Dixit, Smita Sahu, William Selvamurthy, Sadhana Srivastava

Abstract:

India is battling with the issues of accessibility, affordability and availability of quality health to the masses. Indian medical heritage which dated back to 3000 BC unveils the rich knowledge pool which has undergone a perceptible change over years, such as eradication of many communicable diseases, increasing individual awareness of quality health and import driven medical device market etc. Despite a slew of initiatives the holistic slogan of ‘health for all’ remains elusive and a concern for the nation. The 21st-century projects a myriad of challenges like cultural diversity, large population, demographic dividend and geographical segmentation leading to varied needs of people as per their regional conditions of climate, disease prevalence, nutrition and sanitation. But these challenges are also opportunities for the development of indigenous, low cost and accessible technologies to tackle them. This requires reinforcing the potential of indigenous technologies in coordination with prevailing health issues in various regions of country. This paper emphasis on the strategy for exploring the indigenous technologies with entrusted up-scaling to meet the diverse needs of the people. This review proposes to adopt technology transfer as a strategy to establish a vibrant ecosystem for identifying and up-scaling the indigenous medical technologies with diligent hand-holding for public health.

Keywords: health, indigenous, medical technology, technology transfer

Procedia PDF Downloads 246
10200 Unmanned Aerial Vehicle Landing Based on Ultra-Wideband Localization System and Optimal Strategy for Searching Optimal Landing Point

Authors: Meng Wu

Abstract:

Unmanned aerial vehicle (UAV) landing technology is a common task that is required to be fulfilled by fly robots. In this paper, the crazyflie2.0 is located by ultra-wideband (UWB) localization system that contains 4 UWB anchors. Another UWB anchor is introduced and installed on a stationary platform. One cost function is designed to find the minimum distance between crazyflie2.0 and the anchor installed on the stationary platform. The coordinates of the anchor are unknown in advance, and the goal of the cost function is to define the location of the anchor, which can be considered as an optimal landing point. When the cost function reaches the minimum value, the corresponding coordinates of the UWB anchor fixed on the stationary platform can be calculated and defined as the landing point. The simulation shows the effectiveness of the method in this paper.

Keywords: UAV landing, UWB localization system, UWB anchor, cost function, stationary platform

Procedia PDF Downloads 71
10199 Space Debris: An Environmental Hazard

Authors: Anwesha Pathak

Abstract:

Space law refers to all legal provisions that may regulate or apply to space travel, as well as to space-related activity. Although there is undoubtedly a core corpus of “space law,” rather than designating a conceptually distinct single kind of law, the phrase can be seen as a label applied to a bucket that includes a variety of different laws and regulations. Similar to ‘family law' or ‘environmental law' "space law" refers to a variety of laws that are identified by the subject matter they address rather than by the logical extension of a single legal concept. The word "space law" refers to the Law of Space, which can cover anything from the specifics of an insurance agreement for a specific space launch to the most general guidelines that direct state behaviour in space. Space debris, often referred to as space junk, space pollution, space waste, space trash, or space garbage, is a term used to describe abandoned human-made objects in space, primarily in Earth orbit. These include disused spacecraft, discarded launch vehicle stages, mission-related detritus, and fragmentation material from the destruction of disused rocket bodies and spacecraft, which is particularly prevalent in Earth orbit. Other types of space debris, besides abandoned human-made objects in orbit, include pieces left over from collisions, erosion, and disintegration, or even paint specks, solidified liquids ejected from spacecraft, and unburned components from solid rocket engines. The initial action of launching or using a spacecraft in near-Earth orbit imposes an external cost on others that is typically not taken into account or fully accounted for in the cost by the launcher or payload owner.

Keywords: space, outer space treaty, geostationary orbit, satellites, spacecrafts

Procedia PDF Downloads 83
10198 Geo-Collaboration Model between a City and Its Inhabitants to Develop Complementary Solutions for Better Household Waste Collection

Authors: Abdessalam Hijab, Hafida Boulekbache, Eric Henry

Abstract:

According to several research studies, the city as a whole is a complex, spatially organized system; its modeling must take into account several factors, socio-economic, and political, or geographical, acting at multiple scales of observation according to varied temporalities. Sustainable management and protection of the environment in this complex system require significant human and technical investment, particularly for monitoring and maintenance. The objective of this paper is to propose an intelligent approach based on the coupling of Geographic Information System (GIS) and Information and Communications Technology (ICT) tools in order to integrate the inhabitants in the processes of sustainable management and protection of the urban environment, specifically in the processes of household waste collection in urban areas. We are discussing a collaborative 'city/inhabitant' space. Indeed, it is a geo-collaborative approach, based on the spatialization and real-time geo-localization of topological and multimedia data taken by the 'active' inhabitant, in the form of geo-localized alerts related to household waste issues in their city. Our proposal provides a good understanding of the extent to which civil society (inhabitants) can help and contribute to the development of complementary solutions for the collection of household waste and the protection of the urban environment. Moreover, it allows the inhabitant to contribute to the enrichment of a data bank for future uses. Our geo-collaborative model will be tested in the Lamkansa sampling district of the city of Casablanca in Morocco.

Keywords: geographic information system, GIS, information and communications technology, ICT, geo-collaboration, inhabitants, city

Procedia PDF Downloads 109
10197 Mechanical Properties of Waste Clay Brick Based Geopolymer Cured at Various Temperature

Authors: Shihab Ibrahim

Abstract:

Geopolymer binders as an alternative binder system to ordinary Portland cement are the focus of the past 2 decades of researches. In order to eliminate CO2 emission by cement manufacturing and utilizing construction waste as a source material, clean waste clay bricks which are the waste from Levent Brick factory was activated with a mixture of sodium hydroxide and sodium silicate solution. 12 molarity of sodium hydroxide solution was used and the ratio of sodium silicate to sodium hydroxide was 2.5. Alkaline solution to clay brick powder ratio of 0.35, 0.4, 0.45, and 0.5 was studied. Alkaline solution to powder ratio of 0.4 was found to be optimum ratio to have the same workability as ordinary Portland cement paste. Compressive strength of the clay brick based geopolymer paste samples was evaluated under different curing temperatures and curing durations. One day compressive strength of 57.3 MPa after curing at 85C for 24 hours was obtained which was higher than 7 days compressive strength of ordinary Portland cement paste. The highest compressive strength 71.4 MPa was achieved at seventh day age for the geopolymer paste samples cured at 85C for 24 hours. It was found that 8 hour curing at elevated temperature 85C, is sufficient to get 96% of total strength. 37.4 MPa strength at seventh day of clay brick based geopolymer sample cured at room temperature was achieved. Water absorption around 10% was found for clay brick based geopolymer samples cured at different temperatures with compare to 9.14% water absorption of ordinary Portland cement paste. The clay brick based geopolymer binder can have the potentiality to be used as an alternative binder to Portland cement in a case that the heat treatment provided. Further studies are needed in order to produce the binder in a way that can harden and gain strength without any elevated curing.

Keywords: construction and demolition waste, geopolymer, clay brick, compressive strength.

Procedia PDF Downloads 243
10196 Inventory Policy Above Country Level for Cooperating Countries for Vaccines

Authors: Aysun Pınarbaşı, Béla Vizvári

Abstract:

The countries are the units that procure the vaccines during the COVID-19 pandemic. The delivered quantities are huge. The countries must bear the inventory holding cost according to the variation of stock quantities. This cost depends on the speed of the vaccination in the country. This speed is time-dependent. The vaccinated portion of the population can be approximated by the cumulative distribution function of the Cauchy distribution. A model is provided for determining the minimal-cost inventory policy, and its optimality conditions are provided. The model is solved for 20 countries for different numbers of procurements. The results reveal the individual behavior of each country. We provide an inventory policy for the pandemic period for the countries. This paper presents a deterministic model for vaccines with a demand rate variable over time for the countries. It is aimed to provide an analytical model to deal with the minimization of holding cost and develop inventory policies regarding this aim to be used for a variety of perishable products such as vaccines. The saturation process is introduced, and an approximation of the vaccination curve of the countries has been discussed. According to this aspect, a deterministic model for inventory policy has been developed.

Keywords: covid-19, vaccination, inventory policy, bounded total demand, inventory holding cost, cauchy distribution, sigmoid function

Procedia PDF Downloads 68
10195 Concrete Recycling in Egypt for Construction Applications: A Technical and Financial Feasibility Model

Authors: Omar Farahat Hassanein, A. Samer Ezeldin

Abstract:

The construction industry is a very dynamic field. Every day new technologies and methods are developing to fasten the process and increase its efficiency. Hence, if a project uses fewer resources, it will be more efficient. This paper examines the recycling of concrete construction and demolition (C&D) waste to reuse it as aggregates in on-site applications for construction projects in Egypt and possibly in the Middle East. The study focuses on a stationary plant setting. The machinery set-up used in the plant is analyzed technically and financially. The findings are gathered and grouped to obtain a comprehensive cost-benefit financial model to demonstrate the feasibility of establishing and operating a concrete recycling plant. Furthermore, a detailed business plan including the time and hierarchy is proposed.

Keywords: construction wastes, recycling, sustainability, financial model, concrete recycling, concrete life cycle

Procedia PDF Downloads 408
10194 Preventative Maintenance, Impact on the Optimal Replacement Strategy of Secondhand Products

Authors: Pin-Wei Chiang, Wen-Liang Chang, Ruey-Huei Yeh

Abstract:

This paper investigates optimal replacement and preventative maintenance policies of secondhand products under a Finite Planning Horizon (FPH). Any consumer wishing to replace their product under FPH would have it undergo minimal repairs. The replacement provided would be required to undergo periodical preventive maintenance done to avoid product failure. Then, a mathematical formula for disbursement cost for products under FPH can be derived. Optimal policies are then obtained to minimize cost. In the first of two segments of the paper, a model for initial product purchase of either new or secondhand products is used. This model is built by analyzing product purchasing price, surplus value of product, as well as the minimal repair cost. The second segment uses a model for replacement products, which are also secondhand products with no limit on usage. This model analyzes the same components as the first as well as expected preventative maintenance cost. Using these two models, a formula for the expected final total cost can be developed. The formula requires four variables (optimal preventive maintenance level, preventive maintenance frequency, replacement timing, age of replacement product) to find minimal cost requirement. Based on analysis of the variables using the expected total final cost model, it was found that the purchasing price and length of ownership were directly related. Also, consumers should choose the secondhand product with the higher usage for replacement. Products with higher initial usage upon acquisition require an earlier replacement schedule. In this case, replacements should be made with a secondhand product with less usage. In addition, preventative maintenance also significantly reduces cost. Consumers that plan to use products for longer periods of time replace their products later. Hence these consumers should choose the secondhand product with lesser initial usage for replacement. Preventative maintenance also creates significant total cost savings in this case. This study provides consumers with a method of calculating both the ideal amount of usage of the products they should purchase as well as the frequency and level of preventative maintenance that should be conducted in order to minimize cost and maintain product function.

Keywords: finite planning horizon, second hand product, replacement, preventive maintenance, minimal repair

Procedia PDF Downloads 470
10193 Generation of 3d Models Obtained with Low-Cost RGB and Thermal Sensors Mounted on Drones

Authors: Julio Manuel De Luis Ruiz, Javier Sedano Cibrián, RubéN Pérez Álvarez, Raúl Pereda García, Felipe Piña García

Abstract:

Nowadays it is common to resort to aerial photography to carry out the prospection and/or exploration of archaeological sites. In this sense, the classic 3D models are being applied to investigate the direction towards which the generally subterranean structures of an archaeological site may continue and therefore, to help in making the decisions that define the location of new excavations. In recent years, Unmanned Aerial Vehicles (UAVs) have been applied as the vehicles that carry the sensor. This implies certain advantages, such as the possibility of including low-cost sensors, given that these vehicles can carry the sensor at relatively low altitudes. Due to this, low-cost dual sensors have recently begun to be used. This new equipment can collaborate with classic Digital Elevation Models (DEMs) in the exploration of archaeological sites, but this entails the need for a methodological setting to optimise the acquisition, processing and exploitation of the information provided by low-cost dual sensors. This research focuses on the design of an appropriate workflow to obtain 3D models with low-cost sensors carried on UAVs, both in the RGB and thermal domains. All the foregoing has been applied to the archaeological site of Juliobriga, located in Cantabria (Spain).

Keywords: process optimization, RGB models, thermal models, , UAV, workflow

Procedia PDF Downloads 134
10192 Factors Affecting the Quality of Life of Residents in Low-Cost Housing in Thailand

Authors: Bundit Pungnirund

Abstract:

The objectives of this research were to study the factors affecting life quality of residents who lived in the low-cost housing in Thailand. This study employed by quantitative research and the questionnaire was used to collect the data from 400 sampled of the residents in low-cost housing projects in Thailand. The descriptive statistics and multiple regression analysis were used to analyze data. The research results revealed that economic status of residents, government’s policy on dwelling places, leadership of community leaders, environmental condition of the community, and the quality of life were rated at the good level, while the participation of residents, and the knowledge and understanding of community members were rated at the high level. Furthermore, the environmental condition, the government’s policy on dwelling places, knowledge and understanding of residents, leadership of community leaders, economic status of the residents, and participation of community members had significantly affected the quality of life of residents in the low-cost housing.

Keywords: quality of life, community leadership, community participation, low-cost housing

Procedia PDF Downloads 349
10191 Development of a Mechanical Ventilator Using A Manual Artificial Respiration Unit

Authors: Isomar Lima da Silva, Alcilene Batalha Pontes, Aristeu Jonatas Leite de Oliveira, Roberto Maia Augusto

Abstract:

Context: Mechanical ventilators are medical devices that help provide oxygen and ventilation to patients with respiratory difficulties. This equipment consists of a manual breathing unit that can be operated by a doctor or nurse and a mechanical ventilator that controls the airflow and pressure in the patient's respiratory system. This type of ventilator is commonly used in emergencies and intensive care units where it is necessary to provide breathing support to critically ill or injured patients. Objective: In this context, this work aims to develop a reliable and low-cost mechanical ventilator to meet the demand of hospitals in treating people affected by Covid-19 and other severe respiratory diseases, offering a chance of treatment as an alternative to mechanical ventilators currently available in the market. Method: The project presents the development of a low-cost auxiliary ventilator with a controlled ventilatory system assisted by integrated hardware and firmware for respiratory cycle control in non-invasive mechanical ventilation treatments using a manual artificial respiration unit. The hardware includes pressure sensors capable of identifying positive expiratory pressure, peak inspiratory flow, and injected air volume. The embedded system controls the data sent by the sensors. It ensures efficient patient breathing through the operation of the sensors, microcontroller, and actuator, providing patient data information to the healthcare professional (system operator) through the graphical interface and enabling clinical parameter adjustments as needed. Results: The test data of the developed mechanical ventilator presented satisfactory results in terms of performance and reliability, showing that the equipment developed can be a viable alternative to commercial mechanical ventilators currently available, offering a low-cost solution to meet the increasing demand for respiratory support equipment.

Keywords: mechanical fans, breathing, medical equipment, COVID-19, intensive care units

Procedia PDF Downloads 60
10190 Research on Adaptable Development Strategy of Medical Architecture Based on the Background of Current Era

Authors: Jiani Gao, Qingping Luo, Xinlei Fang

Abstract:

In order to try to achieve better rights and interests for both doctors and patients in the new medical environment, the paper will focus on the renewal and development of medical buildings. In today's highly developed society, many factors have a profound guiding significance for the development of medical buildings. By doing social research, the paper has found that these factors come from all aspects. These factors include the optimization of traditional medical model, rapid alternation of medical technology and equipment, the reform of the social, medical security system, changes in the age structure of the population, the birth of intelligent medical care under the Internet, and the deepening of the concept of green sustainable building development, etc. The purpose of this paper is to capture sensitively these various factors that may affect the evolution of medical buildings in the context of the current era, and to put forward, by using an adaptable development strategy, some feasible suggestions on the design of medical buildings when facing these changes and challenges. Specifically speaking, the adaptable development strategy includes some basic principles and methods, such as using modular design, adopting scalable streamline, selecting a long-span structural system and using replaceable materials and components, etc.

Keywords: medical architecture, adaptable development, medical model, space design

Procedia PDF Downloads 152
10189 Comparative Economic Evaluation of Additional Respiratory Resources Utilized after Methylxanthine Initiation for the Treatment of Apnea of Prematurity in a South Asian Country

Authors: Shivakumar M, Leslie Edward S Lewis, Shashikala Devadiga, Sonia Khurana

Abstract:

Introduction: Methylxanthines are used for the treatment of AOP, to facilitate extubation and as a prophylactic agent to prevent apnea. Though the popularity of Caffeine has risen, it is expensive in a resource constrained developing countries like India. Objective: To evaluate the cost-effectiveness of Caffeine compared with Aminophylline treatment for AOP with respect to additional ventilatory resource utilized in different birth weight categorization. Design, Settings and Participants – Single centered, retrospective economic evaluation was done. Participants included preterm newborns with < 34 completed weeks of gestation age that were recruited under an Indian Council of Medical Research funded randomized clinical trial. Per protocol data was included from Neonatal Intensive Care Unit, Kasturba Hospital, Manipal, India between April 2012 and December 2014. Exposure: Preterm neonates were randomly allocated to either Caffeine or Aminophylline as per the trial protocol. Outcomes and Measures – We assessed surfactant requirement, duration of Invasive and Non-Invasive Ventilation, Total Methylxanthine cost and additional cost for respiratory support bared by the payers per day during hospital stay. For the purpose of this study Newborns were stratified as Category A – < 1000g, Category B – 1001 to 1500g and Category C – 1501 to 2500g. Results: Total 146 (Caffeine -72 and Aminophylline – 74) babies with Mean ± SD gestation age of 29.63 ± 1.89 weeks were assessed. 32.19% constitute of Category A, 55.48% were B and 12.33% were C. The difference in median duration of additional NIV and IMV support was statistically insignificant. However 60% of neonates who received Caffeine required additional surfactant therapy (p=0.02). The total median (IQR) cost of Caffeine was significantly high with Rs.10535 (Q3-6317.50, Q1-15992.50) where against Aminophylline cost was Rs.352 (Q3-236, Q1-709) (p < 0.001). The additional costs spent on respiratory support per day in neonates on either Methylxanthines were found to be statistically insignificant in the entire weight based category of our study. Whereas in Category B, the median O2 charges per day were found to have more in Caffeine treated newborns (p=0.05) with border line significance. In category A, providing one day NIV or IMV support significantly increases the unit log cost of Caffeine by 13.6% (CI – 95% ranging from 4 to 24; p=0.005) over log cost of Aminophylline. Conclusion: Cost of Caffeine is expensive than Aminophylline. It was found to be equally efficacious in reducing the number duration of NIV or IMV support. However adjusted with the NIV and IMV days of support, neonates fall in category A and category B who were on Caffeine pays excess amount of respiratory charges per day over aminophylline. In perspective of resource poor settings Aminophylline is cost saving and economically approachable.

Keywords: methylxanthines include caffeine and aminophylline, AOP (apnea of prematurity), IMV (invasive mechanical ventilation), NIV (non invasive ventilation), category a – <1000g, category b – 1001 to 1500g and category c – 1501 to 2500g

Procedia PDF Downloads 426
10188 Characterization and Evaluation of LD Slag and Fly Ash Mixture for Their Possible Utilization in Different Sectors

Authors: Jagdeep Nayak, Biswajit Paul, Anup Gupta

Abstract:

Characterization of coal refuses to fly ash, and steel slag from steel industries have been performed to develop a mixture of both these materials to enhance strength properties of their utilization in other sectors like mine fill, construction work, etc. A large amount of Linz-Donawitz (LD) slag and fly ash waste are generated from steel and thermal power industries respectively. Management of these wastes is problematic, and their reutilization may provide a sustainable waste management option. LD slag and fly ash mixed in different proportions were tested to analyse the micro structural improvement and hardening rate of the matrix. Mixing of activators such as sodium hydroxide and potassium silicate with silica-alumina of LD slag-fly ash mixture, geopolymeric structure were found to be developed. The effect of geo-polymerization behaviour and subsequent structural rearrangement has been studied using compressibility; shear strength and permeability tests followed by micro-graphical analysis. Densification in the mixture was observed along with an improvement of geotechnical properties due to the addition of LD slag. Due to suitable strength characteristics of these two waste materials as mixture, it can be used in the various construction field or may be used as a filling material in mine voids.

Keywords: LD slag, fly-ash, geopolymer, strength property, compressibility

Procedia PDF Downloads 386
10187 The Integrated Urban Regeneration Implemented through the Reuse, Enhancement and Transformation of Disused Industrial Areas

Authors: Sara Piccirillo

Abstract:

The integrated urban regeneration represents a great opportunity to deliver correct management of the territory if implemented through the reuse, enhancement, and transformation of abandoned industrial areas, according to sustainability strategies. In environmental terms, recycling abandoned sites by demolishing buildings and regenerating the urban areas means promoting adaptation to climate change and a new sensitivity towards city living. The strategic vision of 'metabolism' can be implemented through diverse actions made on urban settlements, and planning certainly plays a primary role. Planning an urban transformation in a sustainable way is more than auspicable. It is necessary to introduce innovative urban soil management actions to mitigate the environmental costs associated with current land use and to promote projects for the recovery/renaturalization of urban or non-agricultural soils. However, by freeing up these through systematic demolition of the disused heritage, new questions open up in terms of environmental costs deriving from the inevitable impacts caused by the disposal of waste. The mitigation of these impacts involves serious reflection on the recycling supply chains aimed at the production and reuse of secondary raw materials in the construction industry. The recent developments in R&D of recycling materials are gradually becoming more and more pivotal in consideration of environmental issues such as increasing difficulties in exploiting natural quarries or strict regulations for the management and disposal of waste sites. Therefore, this contribution, set as a critical essay, presents the reconstruction outputs of the regulatory background on the material recycling chain up to the 'end of waste' stage, both at a national and regional scale. This extended approach to this urban design practice goes beyond the cultural dimension that has relegated urban regeneration to pure design only. It redefines its processes through an interdisciplinary system that affects human, environmental and financial resources.

Keywords: waste management, C&D waste, recycling, urban trasformation

Procedia PDF Downloads 202
10186 Cost-Effectiveness of a Certified Service or Hearing Dog Compared to a Regular Companion Dog

Authors: Lundqvist M., Alwin J., Levin L-A.

Abstract:

Background: Assistance dogs are dogs trained to assist persons with functional impairment or chronic diseases. The assistance dog concept includes different types: guide dogs, hearing dogs, and service dogs. The service dog can further be divided into subgroups of physical services dogs, diabetes alert dogs, and seizure alert dogs. To examine the long-term effects of health care interventions, both in terms of resource use and health outcomes, cost-effectiveness analyses can be conducted. This analysis can provide important input to decision-makers when setting priorities. Little is known when it comes to the cost-effectiveness of assistance dogs. The study aimed to assess the cost-effectiveness of certified service or hearing dogs in comparison to regular companion dogs. Methods: The main data source for the analysis was the “service and hearing dog project”. It was a longitudinal interventional study with a pre-post design that incorporated fifty-five owners and their dogs. Data on all relevant costs affected by the use of a service dog such as; municipal services, health care costs, costs of sick leave, and costs of informal care were collected. Health-related quality of life was measured with the standardized instrument EQ-5D-3L. A decision-analytic Markov model was constructed to conduct the cost-effectiveness analysis. Outcomes were estimated over a 10-year time horizon. The incremental cost-effectiveness ratio expressed as cost per gained quality-adjusted life year was the primary outcome. The analysis employed a societal perspective. Results: The result of the cost-effectiveness analysis showed that compared to a regular companion dog, a certified dog is cost-effective with both lower total costs [-32,000 USD] and more quality-adjusted life-years [0.17]. Also, we will present subgroup results analyzing the cost-effectiveness of physicals service dogs and diabetes alert dogs. Conclusions: The study shows that a certified dog is cost-effective in comparison with a regular companion dog for individuals with functional impairments or chronic diseases. Analyses of uncertainty imply that further studies are needed.

Keywords: service dogs, hearing dogs, health economics, Markov model, quality-adjusted, life years

Procedia PDF Downloads 143