Search results for: chemcial phase
3415 Synthesizing CuFe2O4 Spinel Powders by a Combustion-Like Process for Solid Oxide Fuel Cell Interconnects Coating
Authors: Seyedeh Narjes Hosseini, Mohammad Hossein Enayati, Fathallah Karimzadeh, Nigel Mark Sammes
Abstract:
The synthesis of CuFe2O4 spinel powders by an optimized combustion-like process followed by calcinations is described herein. The samples were characterized by X-ray diffraction (XRD), differential thermal analysis (TG/DTA), scanning electron microscopy (SEM), dilatometry and 4-probe DC methods. Different glycine to nitrate (G/N) ratios of 1 (fuel-deficient), 1.48 (stoichiometric) and 2 (fuel-rich) were employed. Calcining the as-prepared powders at 800 and 1000°C for 5 hours showed that the 2 ratio results in the formation of desired copper spinel single phase at both calcinations temperatures. For G/N=1, formation of CuFe2O4 takes place in three steps. First, iron and copper nitrates decomposes to iron oxide and pure copper. Then, copper transforms to copper oxide and finally, copper and iron oxides react to each other to form copper ferrite spinel phase. The electrical conductivity and the coefficient of thermal expansion of the sintered pelletized samples were obtained 2 S.cm-1 (800°C) and 11×10-6 °C-1 (25-800°C), respectively.Keywords: SOFC interconnect coatings, Copper ferrite, Spinels, electrical conductivity, Glycine–nitrate process
Procedia PDF Downloads 4793414 Effects of Acupuncture Treatment in Gait Parameters in Parkinson's Disease
Authors: Catarina Isabel Ramos Pereira, Jorge Machado, Begona Alonso Criado, Maria João Santos
Abstract:
Introduction: Gait disorders are one of the symptoms that have severe implications on the quality of life in Parkinson's disease (PD). Currently, there is no therapy to reverse or treat this condition. None of the drugs used in conventional medical treatment is entirely efficient, and all have a high incidence of side effects. Acupuncture treatment is believed to improve motor ability, but there is still little scientific evidence in individuals with PD. Aim: The aim of the study is to investigate the acute effect of acupuncture on gait parameters in Parkinson's disease. Methods: This is a randomized and controlled crossover study. The same individual patient was part of both the experimental (real acupuncture) and control group (false acupuncture/sham), and the sequence was randomized. Gait parameters were measured at two different moments, before and after treatment, using four force platforms as well as the collection of 3D markers positions taken by 11 cameras. Images were quantitatively analyzed using Qualisys Track Manager software that let us extract data related to the quality of gait and balance. Seven patients with the diagnosis of Parkinson's disease were included in the study. Results: Statistically significant differences were found in gait speed (p = 0.016), gait cadence (p = 0.006), support base width (p = 0.0001), medio-lateral oscillation (p = 0.017), left-right step length (p = 0.0002), and stride length: right-right (p = 0.0000) and left-left (p = 0.0018), time of left support phase (p = 0.029), right support phase (p = 0.025) and double support phase (p = 0.015), between the initial and final moments for the experimental group. Differences in right-left stride length were found for both groups. Conclusion: Our results show that acupuncture could enhance gait in Parkinson's disease patients. Deep research involving a larger number of volunteers should be accomplished to validate these encouraging findings.Keywords: acupuncture, traditional Chinese medicine, Parkinson's disease, gait
Procedia PDF Downloads 1703413 Gas-Liquid Flow Void Fraction Identification Using Slippage Number Froud Mixture Number Relation in Bubbly Flow
Authors: Jaber Masoud Alyami, Abdelsalam H. Alsrkhi
Abstract:
Characterizing and modeling multi-phase flow is a complicated scientific and technical phenomenon represented by a variety of interrelated elements. Yet, the introduction of dimensionless numbers used to grasp gas-liquid flow is a significant step in controlling and improving the multi-phase flow area. SL (Slippage number), for instance is a strong dimensionless number defined as a the ratio of the difference in gravitational forces between slip and no-slip conditions to the inertial force of the gas. The fact that plotting SL versus Frm provides a single acceptable curve for all of the data provided proves that SL may be used to realize the behavior of gas-liquid flow. This paper creates a numerical link between SL and Froud mixing number using vertical gas-liquid flow and then utilizes that relationship to validate its reliability in practice. An improved correlation in drift flux model generated from the experimental data and its rationality has been verified. The method in this paper is to approach for predicting the void fraction in bubbly flow through SL/Frm relation and the limitations of this method, as well as areas for development, are stated.Keywords: multiphase flow, gas-liquid flow, slippage, void farction
Procedia PDF Downloads 853412 Magnetic Solvent Extraction Using Nanoparticles Coated by Oleic Acid
Authors: Natália C. C. Lobato, Ângela M. Ferreira, Marcelo B. Mansur
Abstract:
In solvent extraction operations, large sedimentation areas in the mixer-settler are required when the disengagement of the aqueous and the organic phases is slow and/or difficult. The use of a magnetic organic liquid (also known as ferrofluid), consisting of magnetite nanoparticles coated by oleic acid dispersed in the organic diluent, has proven successful to speed up phase disengagement. The method, however, has never been used industrially; therefore, the aim of this study is to raise its main limitations. Tests were carried out using a ferrofluid containing 30 g/l of magnetite dissolved in commercial aliphatic kerosene Exxsol D80. The efficiency of cobalt extraction ([Co] = 1 g/l) with 10% v/v Cyanex 272 (bis-2,4,4-trimethylpentyl phosphinic acid) at changing pH of the aqueous phase (2 to 7) was found unaffected in the conditions studied. However, the chemical resistance of the ferrofluid in contact with deionized water at changing acidity (from 10-7 to 2 mol/l) revealed that the nanoparticles are not resistant when contacted to aqueous solutions with a pH ≤ 2. Such result represents a serious limitation to the applicability of the method mainly to hydrometallurgical systems because solvent extraction operations are normally done in acid conditions, therefore more effective strategies to coat the particles are required.Keywords: magnetic solvent extraction, oleic acid, magnetite nanoparticles, cyanex 272
Procedia PDF Downloads 3953411 Promoted Thermoelectric Properties of Polymers through Controlled Tie-Chain Incorporation
Authors: Wenjin Zhu, Ian E. Jacobs, Henning Sirringhaus
Abstract:
We have demonstrated a model system for the controlled incorporation of tie-chains into semicrystalline conjugated polymers using blends of different molecular weights that leads to a significant increase in electrical conductivity. Through careful assessment of the microstructural evolution upon tie chain incorporation we have demonstrated that no major changes in phase morphology or structural order in the crystalline domains occur and that the observed enhancement in electrical conductivity can only be explained consistently by tie chains facilitating the transport across grain boundaries between the crystalline domains. Here we studied the thermoelectric properties of aligned, ion exchange-doped ribbon phase PBTTT with blends of different molecular weight components. We demonstrate that in blended films higher electrical conductivities (up to 4810.1 S/cm), Seebeck coefficients and thermoelectric power factors of up to 172.6 μW m-1 K-2 can be achieved than in films with single component molecular weights. We investigate the underpinning thermoelectric transport physics, including structural and spectroscopic characterization, to better understand how controlled tie chain incorporation can be used to enhance the thermoelectric performance of aligned conjugated polymers.Keywords: organic electronics, thermoelectrics, conjugated polymers, tie chain
Procedia PDF Downloads 633410 Safeners, Tools for Artificial Manipulation of Herbicide Selectivity: A Zea mays Case Study
Authors: Sara Franco Ortega, Alina Goldberg Cavalleri, Nawaporn Onkokesung, Richard Dale, Melissa Brazier-Hicks, Robert Edwards
Abstract:
Safeners are agrochemicals that enhance the selective chemical control of wild grasses by increasing the ability of the crop to metabolise the herbicide. Although these compounds are widely used, their mode of action is not well understood. It is known that safeners enhance the metabolism of herbicides, by up-regulating the associated detoxification system we have termed the xenome. The xenome proteins involved in herbicide metabolism have been previously divided into four different phases, with cytochrome P450s (CYPs) playing a key role in phase I metabolism by catalysing hydroxylation and dealkylation reactions. Subsequently, glutathione S-transferases (GSTs) and UDP-glucosyltransferases lead to the formation of Phase II conjugates prior to their transport into the vacuole by ABCs transporters (Phase III). Maize (Zea mays), was been treated with different safeners to explore the selective induction of xenome proteins, with a special interest in the regulation of the CYP superfamily. Transcriptome analysis enabled the identification of key safener-inducible CYPs that were then functionally assessed to determine their role in herbicide detoxification. In order to do that, CYP’s were codon optimised, synthesised and inserted into the yeast expression vector pYES3 using in-fusion cloning. CYP’s expressed as recombinant proteins in a strain of yeast engineered to contain the P450 co-enzyme (cytochrome P450 reductase) from Arabidopsis. Microsomes were extracted and treated with herbicides of different chemical classes in the presence of the cofactor NADPH. The reaction products were then analysed by LCMS to identify any herbicide metabolites. The results of these studies will be presented with the key CYPs identified in maize used as the starting point to find orthologs in other crops and weeds to better understand their roles in herbicide selectivity and safening.Keywords: CYPs, herbicide detoxification, LCMS, RNA-Seq, safeners
Procedia PDF Downloads 1353409 Computing Continuous Skyline Queries without Discriminating between Static and Dynamic Attributes
Authors: Ibrahim Gomaa, Hoda M. O. Mokhtar
Abstract:
Although most of the existing skyline queries algorithms focused basically on querying static points through static databases; with the expanding number of sensors, wireless communications and mobile applications, the demand for continuous skyline queries has increased. Unlike traditional skyline queries which only consider static attributes, continuous skyline queries include dynamic attributes, as well as the static ones. However, as skyline queries computation is based on checking the domination of skyline points over all dimensions, considering both the static and dynamic attributes without separation is required. In this paper, we present an efficient algorithm for computing continuous skyline queries without discriminating between static and dynamic attributes. Our algorithm in brief proceeds as follows: First, it excludes the points which will not be in the initial skyline result; this pruning phase reduces the required number of comparisons. Second, the association between the spatial positions of data points is examined; this phase gives an idea of where changes in the result might occur and consequently enables us to efficiently update the skyline result (continuous update) rather than computing the skyline from scratch. Finally, experimental evaluation is provided which demonstrates the accuracy, performance and efficiency of our algorithm over other existing approaches.Keywords: continuous query processing, dynamic database, moving object, skyline queries
Procedia PDF Downloads 2103408 Ethyl Methane Sulfonate-Induced Dunaliella salina KU11 Mutants Affected for Growth Rate, Cell Accumulation and Biomass
Authors: Vongsathorn Ngampuak, Yutachai Chookaew, Wipawee Dejtisakdi
Abstract:
Dunaliella salina has great potential as a system for generating commercially valuable products, including beta-carotene, pharmaceuticals, and biofuels. Our goal is to improve this potential by enhancing growth rate and other properties of D. salina under optimal growth conditions. We used ethyl methane sulfonate (EMS) to generate random mutants in D. salina KU11, a strain classified in Thailand. In a preliminary experiment, we first treated D. salina cells with 0%, 0.8%, 1.0%, 1.2%, 1.44% and 1.66% EMS to generate a killing curve. After that, we randomly picked 30 candidates from approximately 300 isolated survivor colonies from the 1.44% EMS treatment (which permitted 30% survival) as an initial test of the mutant screen. Among the 30 survivor lines, we found that 2 strains (mutant #17 and #24) had significantly improved growth rates and cell number accumulation at stationary phase approximately up to 1.8 and 1.45 fold, respectively, 2 strains (mutant #6 and #23) had significantly decreased growth rates and cell number accumulation at stationary phase approximately down to 1.4 and 1.35 fold, respectively, while 26 of 30 lines had similar growth rates compared with the wild type control. We also analyzed cell size for each strain and found there was no significant difference comparing all mutants with the wild type. In addition, mutant #24 had shown an increase of biomass accumulation approximately 1.65 fold compared with the wild type strain on day 5 that was entering early stationary phase. From these preliminary results, it could be feasible to identify D. salina mutants with significant improved growth rate, cell accumulation and biomass production compared to the wild type for the further study; this makes it possible to improve this microorganism as a platform for biotechnology application.Keywords: Dunaliella salina, ethyl methyl sulfonate, growth rate, biomass
Procedia PDF Downloads 2413407 2,7-diazaindole as a Potential Photophysical Probe for Excited State Deactivation Processes
Authors: Simran Baweja, Bhavika Kalal, Surajit Maity
Abstract:
Photoinduced tautomerization reactions have been the centre of attention among scientific community over past several decades because of their significance in various biological systems. 7-azaindole (7AI) is considered as a model system for DNA base pairing and to understand the role of such tautomerization reactions in mutations. To the best of our knowledge, extensive studies have been carried on 7-azaindole and its solvent clusters exhibiting proton/ hydrogen transfer in both solution as well as gas phase. Derivatives of above molecule, like 2,7- and 2,6-diazaindoles are proposed to have even better photophysical properties due to the presence of -aza group on the 2nd position. However, there are a few studies in the solution phase which suggest the relevance of these molecules, but there are no experimental studies reported in the gas phase yet. In our current investigation, we present the first gas phase spectroscopic data of 2,7-diazaindole (2,7-DAI) and its solvent cluster (2,7-DAI-H2O). In this, we have employed state-of-the-art laser spectroscopic methods such as fluorescence excitation (LIF), dispersed fluorescence (DF), resonant two-photon ionization time of flight mass spectrometry (2C-R2PI), photoionization efficiency spectroscopy (PIE), IR-UV double resonance spectroscopy i.e. fluorescence-dip infrared spectroscopy (FDIR) and resonant ion-dip infrared spectroscopy (IDIR) to understand the electronic structure of the molecule. The origin band corresponding to S1 ← S0 transition of the bare 2,7-DAI is found to be positioned at 33910 cm-1 whereas the origin band corresponding to S1 ← S0 transition of the 2,7-DAI-H2O is positioned at 33074 cm-1. The red shifted transition in case of solvent cluster suggests the enhanced feasibility of excited state hydrogen/ proton transfer. The ionization potential for the 2,7-DAI molecule is found to be 8.92 eV, which is significantly higher that the previously reported 7AI (8.11 eV) molecule, making it a comparatively complex molecule to study. The ionization potential is reduced by 0.14 eV in case of 2,7-DAI-H2O (8.78 eV) cluster compared to that of 2,7-DAI. Moreover, on comparison with the available literature values of 7AI, we found the origin band of 2,7-DAI and 2,7-DAI-H2O to be red shifted by -729 and -280 cm-1 respectively. The ground and excited state N-H stretching frequencies of the 27DAI molecule were determined using fluorescence-dip infrared spectra (FDIR) and resonant ion dip infrared spectroscopy (IDIR), obtained at 3523 and 3467 cm-1, respectively. The lower value of vNH in the electronic excited state of 27DAI implies the higher acidity of the group compared to the ground state. Moreover, we have done extensive computational analysis, which suggests that the energy barrier in excited state reduces significantly as we increase the number of catalytic solvent molecules (S= H2O, NH3) as well as the polarity of solvent molecules. We found that the ammonia molecule is a better candidate for hydrogen transfer compared to water because of its higher gas-phase basicity. Further studies are underway to understand the excited state dynamics and photochemistry of such N-rich chromophores.Keywords: photoinduced tautomerization reactions, gas phse spectroscopy, ), IR-UV double resonance spectroscopy, resonant two-photon ionization time of flight mass spectrometry (2C-R2PI)
Procedia PDF Downloads 863406 Quantification of Global Cerebrovascular Reactivity in the Principal Feeding Arteries of the Human Brain
Authors: Ravinder Kaur
Abstract:
Introduction Global cerebrovascular reactivity (CVR) mapping is a promising clinical assessment for stress-testing the brain using physiological challenges, such as CO₂, to elicit changes in perfusion. It enables real-time assessment of cerebrovascular integrity and health. Conventional imaging approaches solely use steady-state parameters, like cerebral blood flow (CBF), to evaluate the integrity of the resting parenchyma and can erroneously show a healthy brain at rest, despite the underlying pathogenesis in the presence of cerebrovascular disease. Conversely, coupling CO₂ inhalation with phase-contrast MRI neuroimaging interrogates the capacity of the vasculature to respond to changes under stress. It shows promise in providing prognostic value as a novel health marker to measure neurovascular function in disease and to detect early brain vasculature dysfunction. Objective This exploratory study was established to:(a) quantify the CBF response to CO₂ in hypocapnia and hypercapnia,(b) evaluate disparities in CVR between internal carotid (ICA) and vertebral artery (VA), and (c) assess sex-specific variation in CVR. Methodology Phase-contrast MRI was employed to measure the cerebrovascular reactivity to CO₂ (±10 mmHg). The respiratory interventions were presented using the prospectively end-tidal targeting RespirActTM Gen3 system. Post-processing and statistical analysis were conducted. Results In 9 young, healthy subjects, the CBF increased from hypocapnia to hypercapnia in all vessels (4.21±0.76 to 7.20±1.83 mL/sec in ICA, 1.36±0.55 to 2.33±1.31 mL/sec in VA, p < 0.05). The CVR was quantitatively higher in ICA than VA (slope of linear regression: 0.23 vs. 0.07 mL/sec/mmHg, p < 0.05). No statistically significant effect was observed in CVR between male and female (0.25 vs 0.20 mL/sec/mmHg in ICA, 0.09 vs 0.11 mL/sec/mmHg in VA, p > 0.05). Conclusions The principal finding in this investigation validated the modulation of CBF by CO₂. Moreover, it has indicated that regional heterogeneity in hemodynamic response exists in the brain. This study provides scope to standardize the quantification of CVR prior to its clinical translation.Keywords: cerebrovascular disease, neuroimaging, phase contrast MRI, cerebrovascular reactivity, carbon dioxide
Procedia PDF Downloads 1483405 Enhancement of Hardness and Corrosion Resistance of Plasma Nitrided Low Alloy Tool Steel
Authors: Kalimi Trinadh, Corinne Nouveau, A. S. Khanna, Karanveer S. Aneja, K. Ram Mohan Rao
Abstract:
This study concerns improving the corrosion resistance of low alloy steel after plasma nitriding performed at variable time and temperature. Nitriding carried out in the temperature range of 450-550ᵒC for a various time period of 1-8 hrs. at 500Pa in a glow discharge plasma of H₂ and N₂ (80:20). The substrate was kept biased negatively at 250V. Following nitriding the X-ray diffraction studies shown that the phases formed were mainly γ′ (Fe₄N) and ε (Fe₂₋₃N). The ε (Fe₂₋₃N) phase found to be the dominating phase. Cross sections of the samples under scanning electron microscope point analyses revealed the presence of nitrogen in the surface region. For the assessment of corrosion resistance property, potentiodynamic polarization tests were performed in 3.5% NaCl solution. It has been shown that the plasma nitriding significantly improved the corrosion resistance when compared to the as-received steel. Furthermore, it has also been found that nitriding for 6h has more corrosion resistance than nitriding for the 8h duration. The hardness of the nitrided samples was measured by Vicker’s microhardness tester. The hardness of the nitrided steel was found to be improved much above the hardness of the steel in the as-received condition. It was found to be around two-fold of the initial hardness.Keywords: corrosion, steel, plasma nitriding, X-ray diffraction
Procedia PDF Downloads 1983404 Agile Software Effort Estimation Using Regression Techniques
Authors: Mikiyas Adugna
Abstract:
Effort estimation is among the activities carried out in software development processes. An accurate model of estimation leads to project success. The method of agile effort estimation is a complex task because of the dynamic nature of software development. Researchers are still conducting studies on agile effort estimation to enhance prediction accuracy. Due to these reasons, we investigated and proposed a model on LASSO and Elastic Net regression to enhance estimation accuracy. The proposed model has major components: preprocessing, train-test split, training with default parameters, and cross-validation. During the preprocessing phase, the entire dataset is normalized. After normalization, a train-test split is performed on the dataset, setting training at 80% and testing set to 20%. We chose two different phases for training the two algorithms (Elastic Net and LASSO) regression following the train-test-split. In the first phase, the two algorithms are trained using their default parameters and evaluated on the testing data. In the second phase, the grid search technique (the grid is used to search for tuning and select optimum parameters) and 5-fold cross-validation to get the final trained model. Finally, the final trained model is evaluated using the testing set. The experimental work is applied to the agile story point dataset of 21 software projects collected from six firms. The results show that both Elastic Net and LASSO regression outperformed the compared ones. Compared to the proposed algorithms, LASSO regression achieved better predictive performance and has acquired PRED (8%) and PRED (25%) results of 100.0, MMRE of 0.0491, MMER of 0.0551, MdMRE of 0.0593, MdMER of 0.063, and MSE of 0.0007. The result implies LASSO regression algorithm trained model is the most acceptable, and higher estimation performance exists in the literature.Keywords: agile software development, effort estimation, elastic net regression, LASSO
Procedia PDF Downloads 713403 A Comparison of Sulfur Mustard Cytotoxic Effects on the Two Human Lung Origin Cell Lines
Authors: P. Jost, L. Muckova, M. Matula, J. Pejchal, D. Jun, R. Stetina
Abstract:
Sulfur mustard (bis(2-chlorethyl) sulfide) is highly toxic, chemical warfare agent that has been used in the past in several armed conflicts. Except for the skin, respiratory tract is one of the important routes of exposure. The elucidation and understanding of the mechanism of toxicity of SM have been effort intensive research. The multiple targets character of SM caused cellular damage resulted in activation of many different mechanisms which contribute to cellular response and participate in the final cytopathology effect. In our present work, we compared time-dependent changes in sulfur mustard exposed adult human lung fibroblasts NHLF and lung epithelial alveolar cell line A-549. Cell viability (MTT assay, Calcein-AM assay, and xCELLigence - real-time cell analysis), apoptosis (flow cytometry), mitochondrial membrane potential (Δψm, flow cytometry), reactive oxygen species induction (DC and cell cycle distribution (flow cytometry) were studied. We observed significantly decreased mitochondrial membrane potential and subsequent induction of apoptosis correlating with decreased cellular viability in the sulfur mustard exposed cells. In low concentrations, sulfur mustard-induced S-phase cell cycle arrest, on the other hand, high concentrations, cell cycle phase distribution of sulfur mustard exposed cells resembled cell cycle phase distribution of control group, which implies nonspecific cell cycle inhibition. Epithelial cells A-549 was found as more sensible to sulfur mustard toxicity. Acknowledgements: This work was supported by a long-term organization development plan Medical Aspects of Weapons of Mass Destruction of the Faculty of Military Health Sciences, University of Defence.Keywords: apoptosis, cell cycle, cytotoxicity, sulfur mustard
Procedia PDF Downloads 1923402 Enhanced Photocatalytic Activities of TiO2/Ag2O Heterojunction Nanotubes Arrays Obtained by Electrochemical Method
Authors: Magdalena Diaka, Paweł Mazierski, Joanna Żebrowska, Michał Winiarski, Tomasz Klimczuk, Adriana Zaleska-Medynska
Abstract:
During the last years, TiO2 nanotubes have been widely studied due to their unique highly ordered array structure, unidirectional charge transfer and higher specific surface area compared to conventional TiO2 powder. These photoactive materials, in the form of thin layer, can be activated by low powered and low cost irradiation sources (such as LEDs) to remove VOCs, microorganism and to deodorize air streams. This is possible due to their directly growth on a support material and high surface area, which guarantee enhanced photon absorption together with an extensive adsorption of reactant molecules on the photocatalyst surface. TiO2 nanotubes exhibit also lots of other attractive properties, such as potential enhancement of electron percolation pathways, light conversion, and ion diffusion at the semiconductor-electrolyte interface. Pure TiO2 nanotubes were previously used to remove organic compounds from the gas phase as well as in water splitting reaction. The major factors limiting the use of TiO2 nanotubes, which have not been fully overcome, are their relatively large band gap (3-3,2 eV) and high recombination rate of photogenerated electron–hole pairs. Many different strategies were proposed to solve this problem, however titania nanostructures containing incorporated metal oxides like Ag2O shows very promising, new optical and photocatalytic properties. Unfortunately, there is still very limited number of reports regarding application of TiO2/MxOy nanostructures. In the present work, we prepared TiO2/Ag2O nanotubes obtained by anodization of Ti-Ag alloys containing 5, 10 and 15 wt. % Ag. Photocatalysts prepared in this way were characterized by X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), luminescence spectroscopy and UV-Vis spectroscopy. The activities of new TiO2/Ag2O were examined by photocatalytic degradation of toluene in gas phase reaction and phenol in aqueous phase using 1000 W Xenon lamp (Oriel) and light emitting diodes (LED) as a irradiation sources. Additionally efficiency of bacteria (Pseudomonas aeruginosa) removal from the gas phase was estimated. The number of surviving bacteria was determined by the serial twofold dilution microtiter plate method, in Tryptic Soy Broth medium (TSB, GibcoBRL).Keywords: photocatalysis, antibacterial properties, titania nanotubes, new TiO2/MxOy nanostructures
Procedia PDF Downloads 2933401 Design of Liquid Crystal Based Tunable Reflectarray Antenna Using Slot Embedded Patch Element Configurations
Authors: M. Y. Ismail, M. Inam
Abstract:
This paper presents the design and analysis of Liquid Crystal (LC) based tunable reflect array antenna with different design configurations within X-band frequency range. The effect of LC volume used for unit cell element on frequency tunability and reflection loss performance has been investigated. Moreover different slot embedded patch element configurations have been proposed for LC based tunable reflect array antenna design with enhanced performance. The detailed fabrication and measurement procedure for different LC based unit cells has been presented. The waveguide scattering parameter measured results demonstrated that by using the circular slot embedded patch elements, the frequency tunability and dynamic phase range can be increased from 180 MHz to 200 MHz and 120° to 124° respectively. Furthermore the circular slot embedded patch element can be designed at 10 GHz resonant frequency with a patch volume of 2.71 mm3 as compared to 3.47 mm3 required for rectangular patch without slot.Keywords: liquid crystal, tunable reflect array, frequency tunability, dynamic phase range
Procedia PDF Downloads 5203400 Survey of Corrosion and Scaling of Urban Drinking Water Supply Reservoirs (Case Study: Ilam City)
Authors: Ehsan Derikvand, Hamid Kaykha, Rooholah Mansoori Yekta, Taleb Javanmard, Mohsen Mehdi Zadeh
Abstract:
Corrosion and scaling are one of the most complicated and costly problems of drinking water supply. Corrosion has adverse effect on general health and public acceptance of water source and drinking water supply costs. The present study aimed to determine the potentials of corrosion and scaling of potable water supply reservoirs of Ilam city in June 2013 and August 2014 by Langelier Index (LI) and Reynar. The results of experiments and calculations show that the mean index of LSI in the first and second sampling stages is 0.34, 0.2, respectively and the mean index RSI in the first and second stages of sampling is 7.15 and 7.22, respectively. Based on LSI index of reservoirs water in the first phase, none of stations are corrosive and only one station in the second sampling phase has corrosive tendency. According to RSI index, there is no corrosive tendency in two phases. Based on the results, the water of drinking water reservoirs in Ilam city has no corrosion tendency and the analyses and results of Langelier Index (LI) and Ryznar are in relatively good condition.Keywords: corrosion, scaling, water reservoirs, langelier and ryznar indices, Ilam city
Procedia PDF Downloads 4093399 Time and Wavelength Division Multiplexing Passive Optical Network Comparative Analysis: Modulation Formats and Channel Spacings
Authors: A. Fayad, Q. Alqhazaly, T. Cinkler
Abstract:
In light of the substantial increase in end-user requirements and the incessant need of network operators to upgrade the capabilities of access networks, in this paper, the performance of the different modulation formats on eight-channels Time and Wavelength Division Multiplexing Passive Optical Network (TWDM-PON) transmission system has been examined and compared. Limitations and features of modulation formats have been determined to outline the most suitable design to enhance the data rate and transmission reach to obtain the best performance of the network. The considered modulation formats are On-Off Keying Non-Return-to-Zero (NRZ-OOK), Carrier Suppressed Return to Zero (CSRZ), Duo Binary (DB), Modified Duo Binary (MODB), Quadrature Phase Shift Keying (QPSK), and Differential Quadrature Phase Shift Keying (DQPSK). The performance has been analyzed by varying transmission distances and bit rates under different channel spacing. Furthermore, the system is evaluated in terms of minimum Bit Error Rate (BER) and Quality factor (Qf) without applying any dispersion compensation technique, or any optical amplifier. Optisystem software was used for simulation purposes.Keywords: BER, DuoBinary, NRZ-OOK, TWDM-PON
Procedia PDF Downloads 1493398 A Collaborative Problem Driven Approach to Design an HR Analytics Application
Authors: L. Atif, C. Rosenthal-Sabroux, M. Grundstein
Abstract:
The requirements engineering process is a crucial phase in the design of complex systems. The purpose of our research is to present a collaborative problem-driven requirements engineering approach that aims at improving the design of a Decision Support System as an Analytics application. This approach has been adopted to design a Human Resource management DSS. The Requirements Engineering process is presented as a series of guidelines for activities that must be implemented to assure that the final product satisfies end-users requirements and takes into account the limitations identified. For this, we know that a well-posed statement of the problem is “a problem whose crucial character arises from collectively produced estimation and a formulation found to be acceptable by all the parties”. Moreover, we know that DSSs were developed to help decision-makers solve their unstructured problems. So, we thus base our research off of the assumption that developing DSS, particularly for helping poorly structured or unstructured decisions, cannot be done without considering end-user decision problems, how to represent them collectively, decisions content, their meaning, and the decision-making process; thus, arise the field issues in a multidisciplinary perspective. Our approach addresses a problem-driven and collaborative approach to designing DSS technologies: It will reflect common end-user problems in the upstream design phase and in the downstream phase these problems will determine the design choices and potential technical solution. We will thus rely on a categorization of HR’s problems for a development mirroring the Analytics solution. This brings out a new data-driven DSS typology: Descriptive Analytics, Explicative or Diagnostic Analytics, Predictive Analytics, Prescriptive Analytics. In our research, identifying the problem takes place with design of the solution, so, we would have to resort a significant transformations of representations associated with the HR Analytics application to build an increasingly detailed representation of the goal to be achieved. Here, the collective cognition is reflected in the establishment of transfer functions of representations during the whole of the design process.Keywords: DSS, collaborative design, problem-driven requirements, analytics application, HR decision making
Procedia PDF Downloads 2953397 Constructability Driven Engineering in Oil and Gas Projects
Authors: Srikanth Nagarajan, P. Parthasarathy, Frits Lagers
Abstract:
Lower crude oil prices increased the pressure on oil and gas projects. Being competitive becomes very important and critical for the success in any industry. Increase in size of the project multiplies the magnitude of the issue. Timely completion of projects within the budget and schedule is very important for any project to succeed. A simple idea makes a larger impact on the total cost of the plant. In this robust world, the phases of engineering right from licensing technology, feed, different phases of detail engineering, procurement and construction has been so much compressed that they overlap with each other. Hence constructability techniques have become very important. Here in this paper, the focus will be on how these techniques can be implemented and reduce cost with the help of a case study. Constructability is a process driven by the need to impact project’s construction phase resulting in improved project delivery, costs and schedule. In construction phase of one of our fast-track mega project, it was noticed that there was an opportunity to reduce significant amount of cost and schedule by implementing Constructability study processes. In this case study, the actual methodology adopted during engineering and construction and the way for doing it better by implementing Constructability techniques with collaborative engineering efforts will be explained.Keywords: being competitive, collaborative engineering, constructability, cost reduction
Procedia PDF Downloads 4203396 Knowledge of Strategies to Teach Reading Components Among Teachers of Hard of Hearing Students
Authors: Khalid Alasim
Abstract:
This study investigated Saudi Arabian elementary school teachers’ knowledge of strategies to teach reading components to hard-of-hearing students. The study focused on four of the five reading components the National Reading Panel (NPR, 2000) identified: phonemic awareness; phonics; vocabulary, and reading comprehension, and explored the relationship between teachers’ demographic characteristics and their knowledge of the strategies as well. An explanatory sequential mixed methods design was used that included two phases. The quantitative phase examined the knowledge of these Arabic reading components among 89 elementary school teachers of hard-of-hearing students, and the qualitative phase consisted of interviews with 10 teachers. The results indicated that the teachers have a great deal of knowledge (above the mean score) of strategies to teach reading components. Specifically, teachers’ knowledge of strategies to teach the vocabulary component was the highest. The results also showed no significant association between teachers’ demographic characteristics and their knowledge of strategies to teach reading components. The qualitative analysis revealed two themes: 1) teachers’ lack of basic knowledge of strategies to teach reading components, and 2) the absence of in-service courses and training programs in reading for teachers.Keywords: knowledge, reading, components, hard-of-hearing, phonology, vocabulary
Procedia PDF Downloads 803395 Fused Salt Electrolysis of Rare-Earth Materials from the Domestic Ore and Preparation of Rare-Earth Hydrogen Storage Alloys
Authors: Jeong-Hyun Yoo, Hanjung Kwon, Sung-Wook Cho
Abstract:
Fused salt electrolysis was studied to make the high purity rare-earth metals using domestic rare-earth ore. The target metals of the fused salt electrolysis were Mm (Misch metal), La, Ce, Nd, etc. Fused salt electrolysis was performed with the supporting salt such as chloride and fluoride at the various temperatures and ampere. The metals made by fused salt electrolysis were analyzed to identify the phase and composition using the methods of XRD and ICP. As a result, the acquired rare-earth metals were the high purity ones which had more than 99% purity. Also, VIM (vacuum induction melting) was studied to make the kg level rare-earth alloy for the use of secondary battery and hydrogen storage. In order to indentify the physicochemical properties such as phase, impurity gas, alloy composition and hydrogen storage, the alloys were investigated. The battery characteristics were also analyzed through the various tests in the real production line of a battery company.Keywords: domestic rare-earth ore, fused salt electrolysis, rare-earth materials, hydrogen storage alloy, secondary battery
Procedia PDF Downloads 5333394 The Touch Sensation: Ageing and Gender Influences
Authors: A. Abdouni, C. Thieulin, M. Djaghloul, R. Vargiolu, H. Zahouani
Abstract:
A decline in the main sensory modalities (vision, hearing, taste, and smell) is well reported to occur with advancing age, it is expected a similar change to occur with touch sensation and perception. In this study, we have focused on the touch sensations highlighting ageing and gender influences with in vivo systems. The touch process can be divided into two main phases: The first phase is the first contact between the finger and the object, during this contact, an adhesive force has been created which is the needed force to permit an initial movement of the finger. In the second phase, the finger mechanical properties with their surface topography play an important role in the obtained sensation. In order to understand the age and gender effects on the touch sense, we develop different ideas and systems for each phase. To better characterize the contact, the mechanical properties and the surface topography of human finger, in vivo studies on the pulp of 40 subjects (20 of each gender) of four age groups of 26±3, 35+-3, 45+-2 and 58±6 have been performed. To understand the first touch phase a classical indentation system has been adapted to measure the finger contact properties. The normal force load, the indentation speed, the contact time, the penetration depth and the indenter geometry have been optimized. The penetration depth of a glass indenter is recorded as a function of the applied normal force. Main assessed parameter is the adhesive force F_ad. For the second phase, first, an innovative approach is proposed to characterize the dynamic finger mechanical properties. A contactless indentation test inspired from the techniques used in ophthalmology has been used. The test principle is to blow an air blast to the finger and measure the caused deformation by a linear laser. The advantage of this test is the real observation of the skin free return without any outside influence. Main obtained parameters are the wave propagation speed and the Young's modulus E. Second, negative silicon replicas of subject’s fingerprint have been analyzed by a probe laser defocusing. A laser diode transmits a light beam on the surface to be measured, and the reflected signal is returned to a set of four photodiodes. This technology allows reconstructing three-dimensional images. In order to study the age and gender effects on the roughness properties, a multi-scale characterization of roughness has been realized by applying continuous wavelet transform. After determining the decomposition of the surface, the method consists of quantifying the arithmetic mean of surface topographic at each scale SMA. Significant differences of the main parameters are shown with ageing and gender. The comparison between men and women groups reveals that the adhesive force is higher for women. The results of mechanical properties show a Young’s modulus higher for women and also increasing with age. The roughness analysis shows a significant difference in function of age and gender.Keywords: ageing, finger, gender, touch
Procedia PDF Downloads 2653393 Digital Holographic Interferometric Microscopy for the Testing of Micro-Optics
Authors: Varun Kumar, Chandra Shakher
Abstract:
Micro-optical components such as microlenses and microlens array have numerous engineering and industrial applications for collimation of laser diodes, imaging devices for sensor system (CCD/CMOS, document copier machines etc.), for making beam homogeneous for high power lasers, a critical component in Shack-Hartmann sensor, fiber optic coupling and optical switching in communication technology. Also micro-optical components have become an alternative for applications where miniaturization, reduction of alignment and packaging cost are necessary. The compliance with high-quality standards in the manufacturing of micro-optical components is a precondition to be compatible on worldwide markets. Therefore, high demands are put on quality assurance. For quality assurance of these lenses, an economical measurement technique is needed. For cost and time reason, technique should be fast, simple (for production reason), and robust with high resolution. The technique should provide non contact, non-invasive and full field information about the shape of micro- optical component under test. The interferometric techniques are noncontact type and non invasive and provide full field information about the shape of the optical components. The conventional interferometric technique such as holographic interferometry or Mach-Zehnder interferometry is available for characterization of micro-lenses. However, these techniques need more experimental efforts and are also time consuming. Digital holography (DH) overcomes the above described problems. Digital holographic microscopy (DHM) allows one to extract both the amplitude and phase information of a wavefront transmitted through the transparent object (microlens or microlens array) from a single recorded digital hologram by using numerical methods. Also one can reconstruct the complex object wavefront at different depths due to numerical reconstruction. Digital holography provides axial resolution in nanometer range while lateral resolution is limited by diffraction and the size of the sensor. In this paper, Mach-Zehnder based digital holographic interferometric microscope (DHIM) system is used for the testing of transparent microlenses. The advantage of using the DHIM is that the distortions due to aberrations in the optical system are avoided by the interferometric comparison of reconstructed phase with and without the object (microlens array). In the experiment, first a digital hologram is recorded in the absence of sample (microlens array) as a reference hologram. Second hologram is recorded in the presence of microlens array. The presence of transparent microlens array will induce a phase change in the transmitted laser light. Complex amplitude of object wavefront in presence and absence of microlens array is reconstructed by using Fresnel reconstruction method. From the reconstructed complex amplitude, one can evaluate the phase of object wave in presence and absence of microlens array. Phase difference between the two states of object wave will provide the information about the optical path length change due to the shape of the microlens. By the knowledge of the value of the refractive index of microlens array material and air, the surface profile of microlens array is evaluated. The Sag of microlens and radius of curvature of microlens are evaluated and reported. The sag of microlens agrees well within the experimental limit as provided in the specification by the manufacturer.Keywords: micro-optics, microlens array, phase map, digital holographic interferometric microscopy
Procedia PDF Downloads 4983392 Rauvolfine B Isolated from the Bark of Rauvolfia reflexa (Apocynaceae) Induces Apoptosis through Activation of Caspase-9 Coupled with S Phase Cell Cycle Arrest
Authors: Mehran Fadaeinasab, Hamed Karimian, Najihah Mohd Hashim, Hapipah Mohd Ali
Abstract:
In this study, three indole alkaloids namely; rauvolfine B, macusine B, and isoreserpiline have been isolated from the dichloromethane crude extract of Rauvolfia reflexa bark (Apocynaceae). The structural elucidation of the isolated compounds has been performed using spectral methods such as UV, IR, MS, 1D, and 2D NMR. Rauvolfine B showed anti proliferation activity on HCT-116 cancer cell line, its cytotoxicity induction was observed using MTT assay in eight different cell lines. Annexin-V is serving as a marker for apoptotic cells and the Annexin-V-FITC assay was carried out to observe the detection of cell-surface Phosphatidylserine (PS). Apoptosis was confirmed by using caspase-8 and -9 assays. Cell cycle arrest was also investigated using flowcytometric analysis. rauvolfine B had exhibited significantly higher cytotoxicity against HCT-116 cell line. The treatment significantly arrested HCT-116 cells in the S phase. Together, the results presented in this study demonstrated that rauvolfine B inhibited the proliferation of HCT-116 cells and programmed cell death followed by cell cycle arrest.Keywords: apocynacea, indole alkaloid, apoptosis, cell cycle arrest
Procedia PDF Downloads 3343391 Synthesis, Characterization and Electrical Studies of Solid Polymer Electrolyte (1-x) PANI-KAg₄I₅.xAl₂O₃
Authors: Rafiuddin
Abstract:
Solid polymer electrolytes have emerged as an area of interest in the field of solid state chemistry owing to their facile and cost-effective synthesis and number of applications in different areas of chemistry, extending over a wide range of temperatures. In the present work, polymer composite solid electrolyte comprising of Polyaniline (PANI) as polymer and potassium silver iodide (KAg4I5) using alumina (Al2O3) of different compositions having the formula (1-x) PANI- KAg4I5. x Al2O3 with x ranging from 0.0 to 0.5 was prepared by solid state reaction method. The structural elucidation and characterization was done by X- Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric- Differential Thermal Analysis (TG-DTA) and Impedance Spectroscopy. The thermal analysis shows a phase transition at 147°C attributed to β-α phase transition of AgI due to the disproportionation of KAg4I5 to AgI and KAg2I3 at temperatures higher than 36°C. The X Ray diffraction analysis also confirms the presence of both AgI and KAg2I3 in the samples. The conductivities recorded over a temperature range of 40-250° C lie in the range of 10-1 to 10-3 S cm-1. Maximum conductivity was seen in the compositon x = 0.4 i.e. 1.84 × 10-2 Scm-1 at 313 K and 1.38 × 10-1 Scm-1 at 513 K, with a minimum activation energy of 0.14 eV.Keywords: polymer solid electrolytes, XRD, DTA, electrical conductivity, impedance spectroscopy
Procedia PDF Downloads 3023390 Self-Assembling Layered Double Hydroxide Nanosheets on β-FeOOH Nanorods for Reducing Fire Hazards of Epoxy Resin
Abstract:
Epoxy resins (EP), one of the most important thermosetting polymers, is widely applied in various fields due to its desirable properties, such as excellent electrical insulation, low shrinkage, outstanding mechanical stiffness, satisfactory adhesion and solvent resistance. However, like most of the polymeric materials, EP has the fatal drawbacks including inherent flammability and high yield of toxic smoke, which restricts its application in the fields requiring fire safety. So, it is still a challenge and an interesting subject to develop new flame retardants which can not only remarkably improve the flame retardancy, but also render modified resins low toxic gases generation. In recent work, polymer nanocomposites based on nanohybrids that contain two or more kinds of nanofillers have drawn intensive interest, which can realize performance enhancements. The realization of previous hybrids of carbon nanotubes (CNTs) and molybdenum disulfide provides us a novel route to decorate layered double hydroxide (LDH) nanosheets on the surface of β-FeOOH nanorods; the deposited LDH nanosheets can fill the network and promote the work efficiency of β-FeOOH nanorods. Moreover, the synergistic effects between LDH and β-FeOOH can be anticipated to have potential applications in reducing fire hazards of EP composites for the combination of condense-phase and gas-phase mechanism. As reported, β-FeOOH nanorods can act as a core to prepare hybrid nanostructures combining with other nanoparticles through electrostatic attraction through layer-by-layer assembly technique. In this work, LDH nanosheets wrapped β-FeOOH nanorods (LDH-β-FeOOH) hybrids was synthesized by a facile method, with the purpose of combining the characteristics of one dimension (1D) and two dimension (2D), to improve the fire resistance of epoxy resin. The hybrids showed a well dispersion in EP matrix and had no obvious aggregation. Thermogravimetric analysis and cone calorimeter tests confirmed that LDH-β-FeOOH hybrids into EP matrix with a loading of 3% could obviously improve the fire safety of EP composites. The plausible flame retardancy mechanism was explored by thermogravimetric infrared (TG-IR) and X-ray photoelectron spectroscopy. The reasons were concluded: condense-phase and gas-phase. Nanofillers were transferred to the surface of matrix during combustion, which could not only shield EP matrix from external radiation and heat feedback from the fire zone, but also efficiently retard transport of oxygen and flammable pyrolysis.Keywords: fire hazards, toxic gases, self-assembly, epoxy
Procedia PDF Downloads 1733389 Optimized Simultaneous Determination of Theobromine and Caffeine in Fermented and Unfermented Cacao Beans and in Cocoa Products Using Step Gradient Solvent System in Reverse Phase HPLC
Authors: Ian Marc G. Cabugsa, Kim Ryan A. Won
Abstract:
Fast, reliable and simultaneous HPLC analysis of theobromine and caffeine in cacao and cocoa products was optimized in this study. The samples tested were raw, fermented, and roasted cacao beans as well as commercially available cocoa products. The HPLC analysis was carried out using step gradient solvent system with acetonitrile and water buffered with H3PO4 as the mobile phase. The HPLC system was optimized using 273 nm wavelength at 35 °C for the column temperature with a flow rate of 1.0 mL/min. Using this method, the theobromine percent recovery mean, Limit of Detection (LOD) and Limit of Quantification (LOQ) is 118.68(±3.38)%, 0.727 and 1.05 respectively. The percent recovery mean, LOD and LOQ for caffeine is 105.53(±3.25)%, 2.42 and 3.50 respectively. The inter-day and intra-day precision for theobromine is 4.31% and 4.48% respectively, while 7.02% and 7.03% was for caffeine respectively. Compared to the standard method in AOAC using methanol in isocratic solvent system, the results of the study produced lesser chromatogram noise with emphasis on theobromine and caffeine. The method is readily usable for cacao and cocoa substances analyses using HPLC with step gradient capability.Keywords: cacao, caffeine, HPLC, step gradient solvent system, theobromine
Procedia PDF Downloads 2813388 3D Numerical Modelling of a Pulsed Pumping Process of a Large Dense Non-Aqueous Phase Liquid Pool: In situ Pilot-Scale Case Study of Hexachlorobutadiene in a Keyed Enclosure
Authors: Q. Giraud, J. Gonçalvès, B. Paris
Abstract:
Remediation of dense non-aqueous phase liquids (DNAPLs) represents a challenging issue because of their persistent behaviour in the environment. This pilot-scale study investigates, by means of in situ experiments and numerical modelling, the feasibility of the pulsed pumping process of a large amount of a DNAPL in an alluvial aquifer. The main compound of the DNAPL is hexachlorobutadiene, an emerging organic pollutant. A low-permeability keyed enclosure was built at the location of the DNAPL source zone in order to isolate a finite undisturbed volume of soil, and a 3-month pulsed pumping process was applied inside the enclosure to exclusively extract the DNAPL. The water/DNAPL interface elevation at both the pumping and observation wells and the cumulated pumped volume of DNAPL were also recorded. A total volume of about 20m³ of purely DNAPL was recovered since no water was extracted during the process. The three-dimensional and multiphase flow simulator TMVOC was used, and a conceptual model was elaborated and generated with the pre/post-processing tool mView. Numerical model consisted of 10 layers of variable thickness and 5060 grid cells. Numerical simulations reproduce the pulsed pumping process and show an excellent match between simulated, and field data of DNAPL cumulated pumped volume and a reasonable agreement between modelled and observed data for the evolution of the water/DNAPL interface elevations at the two wells. This study offers a new perspective in remediation since DNAPL pumping system optimisation may be performed where a large amount of DNAPL is encountered.Keywords: dense non-aqueous phase liquid (DNAPL), hexachlorobutadiene, in situ pulsed pumping, multiphase flow, numerical modelling, porous media
Procedia PDF Downloads 1743387 Role of Zinc Adminstration in Improvement of Faltering Growth in Egyption Children at Risk of Environmental Enteric Dysfunction
Authors: Ghada Mahmoud El Kassas, Maged Atta El Wakeel
Abstract:
Background: Environmental enteric dysfunction (EED) is impending trouble that flared up in the last decades to be pervasive in infants and children. EED is asymptomatic villous atrophy of the small bowel that is prevalent in the developing world and is associated with altered intestinal function and integrity. Evidence has suggested that supplementary zinc might ameliorate this damage by reducing gastrointestinal inflammation and may also benefit cognitive development. Objective: We tested whether zinc supplementation improves intestinal integrity, growth, and cognitive function in stunted children predicted to have EED. Methodology: This case–control prospective interventional study was conducted on 120 Egyptian Stunted children aged 1-10 years who recruited from the Nutrition clinic, the National research center, and 100 age and gender-matched healthy children as controls. At the primary phase of the study, Full history taking, clinical examination, and anthropometric measurements were done. Standard deviation score (SDS) for all measurements were calculated. Serum markers as Zonulin, Endotoxin core antibody (EndoCab), highly sensitive C-reactive protein (hsCRP), alpha1-acid glycoprotein (AGP), Tumor necrosis factor (TNF), and fecal markers such as myeloperoxidase (MPO), neopterin (NEO), and alpha-1-anti-trypsin (AAT) (as predictors of EED) were measured. Cognitive development was assessed (Bayley or Wechsler scores). Oral zinc at a dosage of 20 mg/d was supplemented to all cases and followed up for 6 months, after which the 2ry phase of the study included the previous clinical, laboratory, and cognitive assessment. Results: Serum and fecal inflammatory markers were significantly higher in cases compared to controls. Zonulin (P < 0.01), (EndoCab) (P < 0.001) and (AGP) (P < 0.03) markedly decreased in cases at the end of 2ry phase. Also (MPO), (NEO), and (AAT) showed a significant decline in cases at the end of the study (P < 0.001 for all). A significant increase in mid-upper arm circumference (MUAC) (P < 0.01), weight for age z-score, and skinfold thicknesses (P< 0.05 for both) was detected at end of the study, while height was not significantly affected. Cases also showed significant improvement of cognitive function at phase 2 of the study. Conclusion: Intestinal inflammatory state related to EED showed marked recovery after zinc supplementation. As a result, anthropometric and cognitive parameters showed obvious improvement with zinc supplementation.Keywords: stunting, cognitive function, environmental enteric dysfunction, zinc
Procedia PDF Downloads 1903386 Efficacy of Music for Improving Language in Children with Special Needs
Authors: Louisa Han Lin Tan, Poh Sim Kang, Wei Ming Loi, Susan Jane Rickard Liow
Abstract:
The efficacy of music for improving speech and language has been shown across ages and diagnoses. Across the world, the wide range of therapy settings and increasing number of children diagnosed with special needs demand more cost and time effective service delivery. However, research exploring co-treatment models on children other than those with Autism Spectrum Disorder remains sparse. The aim of this research was to determine the efficacy of music for improving language in children with special needs, and generalizability of therapy effects. 25 children (7 to 12 years) were split into three groups – A, B and control. A cross-over design with direct therapy (storytelling) with or without music, and indirect therapy was applied with two therapy phases lasting 6 sessions each. Therapy targeted three prepositions in each phase. Baseline language abilities were assessed, with re-assessment after each phase. The introduction of music in therapy led to significantly greater improvement (p=.046, r=.53) in associated language abilities, with case studies showing greater effectiveness in developmentally appropriate target prepositions. However, improvements were not maintained once direct therapy ceased. As such, the incorporation of music could lead to greater efficiency and effectiveness of language therapy in children with special needs, but sustainability and generalizability of therapy effects both require further exploration.Keywords: music, language therapy, children, special needs
Procedia PDF Downloads 465