Search results for: blast furnace iron slag
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1403

Search results for: blast furnace iron slag

383 Simultaneous Removal of Arsenic and Toxic Metals from Contaminated Soil: a Pilot-Scale Demonstration

Authors: Juan Francisco Morales Arteaga, Simon Gluhar, Anela Kaurin, Domen Lestan

Abstract:

Contaminated soils are recognized as one of the most pressing global environmental problems. As is one of the most hazardous elements: chronic exposure to arsenic has devastating effects on health, cardiovascular diseases, cancer, and eventually death. Pb, Zn and Cd are very highly toxic metals that affect almost every organ in the body. With this in mind, new technologies for soil remediation processes are urgently needed. Calcareous artificially contaminated soil containing 231 mg kg-1 As and historically contaminated with Pb, Zn and Cd was washed with a 1:1.5 solid-liquid ratio of 90 mM EDTA, 100 mM oxalic acid, and 50 mM sodium dithionite to remove 59, 75, 29, and 53% of As, Pb, Zn, and Cd, respectively. To reduce emissions of residual EDTA and chelated metals from the remediated soil, zero valent iron (ZVI) was added (1% w/w) to the slurry of the washed soil immediately prior to rinsing. Experimental controls were conducted without the addition of ZVI after remediation. The use of ZVI reduced metal leachability and minimized toxic emissions 21 days after remediation. After this time, NH4NO3 extraction was performed to determine the mobility of toxic elements in the soil. In addition, Unified Human BioaccessibilityMethod (UBM) was performed to quantify the bioaccessibility levels of metals in stimulated human gastric and gastrointestinal phases.

Keywords: soil remediation, soil science, soil washing, toxic metals removal

Procedia PDF Downloads 171
382 Characterization of a Novel Hemin-Binding Protein, HmuX, in Porphyromonas gingivalis W50

Authors: Kah Yan How, Peh Fern Ong, Keang Peng Song

Abstract:

Porphyromonas gingivalis is a black-pigmented, anaerobic Gram-negative bacterium that is important in the progression of chronic and severe periodontitis. This organism has an essential requirement for iron, which is usually obtained from hemin, using specific membrane receptors, proteases, and lipoproteins. In this study, we report the characterization of a novel 24 kDa hemin-binding protein, HmuX, in P. gingivalis W50. The hmuX gene is 651 bp long which encodes for a 217 amino acid protein. HmuX was found to be identical at the C-terminus to the previously reported HmuY protein, differing by an additional 74 amino acids at the N-terminus. Recombinant HmuX demonstrated hemin-binding ability by LDS- PAGE and TMBZ staining. Sequence analysis of HmuX revealed a putative lipoprotein attachment site, suggesting its possible role as a lipoprotein. HmuX was also localized to the outer cell surface by transmission electron microscopy. Northern analysis showed hmuX to be transcribed as a single gene and that hmuX mRNA was tightly regulated by the availability of extra-cellular hemin. P. gingivalis isogenic mutant deficient in hmuX gene exhibited significant growth retardation under hemin-limited conditions. Taken together, these results suggest that HmuX is a hemin-binding lipoprotein, important in hemin utilization for the growth of P. gingivalis.

Keywords: Porphyromonas gingivalis, periodontal diseases, HmuX, protein characterization

Procedia PDF Downloads 215
381 Ceramic Glazes from Recycled Bottle Glass

Authors: Suraphan Rattanavadi

Abstract:

This research was a study based on an application of used glass in producing glaze on ceramics. The aim was to identify the factors in the production process that affected ceramic product property when used glass was applied as the ceramic glaze. The study factors included appropriate materials, appropriate temperature used in fusion process, percentage of water absorption, fluidity, crazing and appropriate proportion in glaze production by Biaxial Blend Technique and use of oxide in glaze coloring both on test and real product. The test of fluidity revealed that the glazes number 15 and 16 had appropriate fluidity ratio for use as basic glaze. When each glaze was mixed with oxide at different proportion, it was discovered that the glaze number 16 showed glossy brown with beautiful but not clear crazing, due to its dark shade. This was from the mixture of kaolin and pieces of glass at the ratio of 1:3 (kaolin : pieces of glass), affecting at 10% with iron oxide. When 0.5% of copper carbonate and 0.1% of tin oxide were added, the result was the glaze with glossy, Muzo emerald (green- blue) color with beautiful and clear crazing. Lastly, 0.4% of cobalt carbonate was added, ending in the glaze with glossy, bright blue with beautiful but not clear, due to its dark shade.

Keywords: glaze, recycled, bottle glass, ceramic

Procedia PDF Downloads 302
380 Effect of Heat Treatment on Mechanical Properties and Wear Behavior of Al7075 Alloy Reinforced with Beryl and Graphene Hybrid Metal Matrix Composites

Authors: Shanawaz Patil, Mohamed Haneef, K. S. Narayanaswamy

Abstract:

In the recent years, aluminum metal matrix composites were most widely used, which are finding wide applications in various field such as automobile, aerospace defense etc., due to their outstanding mechanical properties like low density, light weight, exceptional high levels of strength, stiffness, wear resistance, high temperature resistance, low coefficient of thermal expansion and good formability. In the present work, an effort is made to study the effect of heat treatment on mechanical properties of aluminum 7075 alloy reinforced with constant weight percentage of naturally occurring mineral beryl and varying weight percentage of graphene. The hybrid composites are developed with 0.5 wt. %, 1wt.%, 1.5 wt.% and 2 wt.% of graphene and 6 wt.% of beryl  by stir casting liquid metallurgy route. The cast specimens of unreinforced aluminum alloy and hybrid composite samples were prepared for heat treatment process and subjected to solutionizing treatment (T6) at a temperature of 490±5 oC for 8 hours in a muffle furnace followed by quenching in boiling water. The microstructure analysis of as cast and heat treated hybrid composite specimens are examined by scanning electron microscope (SEM). The tensile test and hardness test of unreinforced aluminum alloy and hybrid composites are examined. The wear behavior is examined by pin-on disc apparatus. The results of as cast specimens and heat treated specimens were compared. The heat treated Al7075-Beryl-Graphene hybrid composite had better properties and significantly improved the ultimate tensile strength, hardness and reduced wear loss when compared to aluminum alloy and  as cast hybrid composites.

Keywords: beryl, graphene, heat treatment, mechanical properties

Procedia PDF Downloads 142
379 Utilization of Solid Waste Materials to Produce Glass-Ceramic Tiles

Authors: Sonjida Mustafia

Abstract:

Glass-ceramic is a material that contains both the properties of glass and ceramic within. They always contain a residual glassy phase and one or more embedded crystalline phases. Ceramic tiles are very popular in the world because of their high structural strength, low absorption, increased hygiene, and hot and cold insulation. Glass-ceramic materials are used to produce marble-like floor and wall tiles. There are a huge amount of waste materials like rice husk ash (RHA), waste iron, waste glass, and other industrial solid waste in Bangladesh, which can be used to produce glass-ceramic floor and wall tiles. The raw materials (rice husk ash, waste glass, and k-feldspar) are a mixture, and the mixture is melted to form glass frit at 1175°C. The frits are grained to require fine particle size. The powder is moistened in 7-8% water with sodium silicate. The green glass-ceramic tiles were fired at different temperatures (800–1100°C) for a soaking time of 1 hour to form glass-ceramic tiles and to study the sintering-crystallization process. The results reveal that the modulus of rupture increases with increasing sintering temperature and reaches the highest value (95.25Mpa) at 925°C. Glossiness and linear shrinkage increase with increasing temperature.

Keywords: rice husk ash, waste glass, glass-ceramic, modulus of rupture, glossiness, linear shrinkage, micro-structure

Procedia PDF Downloads 86
378 Complete Chloroplast DNA Sequences of Georgian Endemic Polyploid Wheats

Authors: M. Gogniashvili, I. Maisaia, A. Kotorashvili, N. Kotaria, T. Beridze

Abstract:

Three types of plasmon (A, B and G) is typical for genus Triticum. In polyploid species - Triticum turgidum L. and Triticum aestivum L. plasmon B is detected. In the forthcoming paper, complete nucleotide sequence of chloroplast DNA of 11 representatives of Georgian wheat polyploid species, carrying plasmon B was determined. Sequencing of chloroplast DNA was performed on an Illumina MiSeq platform. Chloroplast DNA molecules were assembled using the SOAPdenovo computer program. All contigs were aligned to the reference chloroplast genome sequence using BLASTN. For detection of SNPs and Indels and phylogeny tree construction computer programs Mafft and Blast were used. Using Triticum aestivum L. subsp. macha (Dekapr. & Menabde) Mackey var. paleocolchicum Dekapr. et Menabde as a reference, 5 SNPs can be identified in chloroplast DNA of Georgian endemic polyploid wheat. The number of noncoding substitutions is 2, coding substitutions - 3. In comparison with reference DNA two - 38 bp and 56 bp inversions were observed in paleocolchicum subspecies. There were six 1 bp indels detected in Georgian polyploid wheats, all of them at microsatellite stretches. The phylogeny tree shows that subspecies macha, carthlicum and paleocolchicum occupy different positions. According to the simplified scheme based on SNP and indel data, the ancestral, female parent of the all studied polyploid wheat is unknown X predecesor, from which four lines were formed. 1 SNP and two inversions (38 bp and 56 bp) caused the formation of subsp. paleocolchicum. Three other lines are macha, durum and carthlicum lines. Macha line is further divided into two sublines (M_1 and M_4). Carthlicum line includes subsp.carthlicum and T.aestivum - C_1 - C_2 - A_1. One of the central question of wheat domestication is which people(s) participated in wheat domestication? It is proposed that the predecessors of Georgian peoples (Proto-Kartvelians) must be placed, on the evidence of archaic lexical and toponymic data, in the mountainous regions of the western and central part of the Little Caucasus (the Transcaucasian foothills) at least 4,000 years ago. One of the possibility to explain the ‘wheat puzzle’ is that Kartvelian speakers brought domesticated wheat species and subspecis from Fertile Crescent further north to South Caucasus.

Keywords: chloroplast DNA, sequencing, SNP, triticum

Procedia PDF Downloads 150
377 Improved Intracellular Protein Degradation System for Rapid Screening and Quantitative Study of Essential Fungal Proteins in Biopharmaceutical Development

Authors: Patarasuda Chaisupa, R. Clay Wright

Abstract:

The selection of appropriate biomolecular targets is a crucial aspect of biopharmaceutical development. The Auxin-Inducible Degron Degradation (AID) technology has demonstrated remarkable potential in efficiently and rapidly degrading target proteins, thereby enabling the identification and acquisition of drug targets. The AID system also offers a viable method to deplete specific proteins, particularly in cases where the degradation pathway has not been exploited or when the adaptation of proteins, including the cell environment, occurs to compensate for the mutation or gene knockout. In this study, we have engineered an improved AID system tailored to deplete proteins of interest. This AID construct combines the auxin-responsive E3 ubiquitin ligase binding domain, AFB2, and the substrate degron, IAA17, fused to the target genes. Essential genes of fungi with the lowest percent amino acid similarity to human and plant orthologs, according to the Basic Local Alignment Search Tool (BLAST), were cloned into the AID construct in S. cerevisiae (AID-tagged strains) using a modular yeast cloning toolkit for multipart assembly and direct genetic modification. Each E3 ubiquitin ligase and IAA17 degron was fused to a fluorescence protein, allowing for real-time monitoring of protein levels in response to different auxin doses via cytometry. Our AID system exhibited high sensitivity, with an EC50 value of 0.040 µM (SE = 0.016) for AFB2, enabling the specific promotion of IAA17::target protein degradation. Furthermore, we demonstrate how this improved AID system enhances quantitative functional studies of various proteins in fungi. The advancements made in auxin-inducible protein degradation in this study offer a powerful approach to investigating critical target protein viability in fungi, screening protein targets for drugs, and regulating intracellular protein abundance, thus revolutionizing the study of protein function underlying a diverse range of biological processes.

Keywords: synthetic biology, bioengineering, molecular biology, biotechnology

Procedia PDF Downloads 82
376 Transformation of ectA Gene From Halomonas elongata in Tomato Plant

Authors: Narayan Moger, Divya B., Preethi Jambagi, Krishnaveni C. K., Apsana M. R., B. R. Patil, Basvaraj Bagewadi

Abstract:

Salinity is one of the major threats to world food security. Considering the requirement for salt tolerant crop plants in the present study was undertaken to clone and transferred the salt tolerant ectA gene from marine ecosystem into agriculture crop system to impart salinity tolerance. Ectoine is the compatible solute which accumulates in the cell membrane, is known to be involved in salt tolerance activity in most of the Halophiles. The present situation is insisting to development of salt tolerant transgenic lines to combat abiotic stress. In this background, the investigation was conducted to develop transgenic tomato lines by cloning and transferring of ectA gene is an ectoine derivative capable of enzymatic action for the production of acetyl-diaminobutyric acid. The gene ectA is involved in maintaining the osmotic balance of plants. The PCR amplified ectA gene (579bp) was cloned into T/A cloning vector (pTZ57R/T). The construct pDBJ26 containing ectA gene was sequenced by using gene specific forward and reverse primers. Sequence was analyzed using BLAST algorithm to check similarity of ectA gene with other isolates. Highest homology of 99.66 per cent was found with ectA gene sequences of isolates Halomonas elongata with the available sequence information in NCBI database. The ectA gene was further sub cloned into pRI101-AN plant expression vector and transferred into E. coli DH5α for its maintenance. Further pDNM27 was mobilized into A. tumefaciens LBA4404 through tri-parental mating system. The recombinant Agrobacterium containing pDNM27 was transferred into tomato plants through In planta plant transformation method. Out of 300 seedlings, co-cultivated only twenty-seven plants were able to well establish under the greenhouse condition. Among twenty-seven transformants only twelve plants showed amplification with gene specific primers. Further work must be extended to evaluate the transformants at T1 and T2 generations for ectoine accumulation, salinity tolerance, plant growth and development and yield.

Keywords: salinity, computable solutes, ectA, transgenic, in planta transformation

Procedia PDF Downloads 76
375 Durability of Functionally Graded Concrete

Authors: Prasanna Kumar Acharya, Mausam Kumari Yadav

Abstract:

Cement concrete has emerged as the most consumed construction material. It has also dominated all other construction materials because of its versatility. Apart from numerous advantages it has a disadvantage concerning durability. The large structures constructed with cement concrete involving the consumption of huge natural materials remain in serviceable condition for 5 – 7 decades only while structures made with stones stand for many centuries. The short life span of structures not only affects the economy but also affects the ecology greatly. As such, the improvement of durability of cement concrete is a global concern and scientists around the globe are trying for this purpose. Functionally graded concrete (FGC) is an exciting development. In contrast to conventional concrete, FGC demonstrates different characteristics depending on its thickness, which enables it to conform to particular structural specifications. The purpose of FGC is to improve the performance and longevity of conventional concrete structures with cutting-edge building materials. By carefully distributing various kinds and amounts of reinforcements, additives, mix designs and/or aggregates throughout the concrete matrix, this variety is produced. A key component of functionally graded concrete's performance is its durability, which affects the material's capacity to tolerate aggressive environmental influences and load-bearing circumstances. This paper reports the durability of FGC made using Portland slag cement (PSC). For this purpose, control concretes (CC) of M20, M30 and M40 grades were designed. Single-layered samples were prepared using each grade of concrete. Further using combinations of M20 + M30, M30 + M40 and M40 + M20, doubled layered concrete samples in a depth ratio of 1:1 was prepared those are herein called FGC samples. The efficiency of FGC samples was compared with that of the higher-grade concrete of parent materials in terms of compressive strength, water absorption, sorptivity, acid resistance, sulphate resistance, chloride resistance and abrasion resistance. The properties were checked at the age of 28 and 91 days. Apart from strength and durability parameters, the microstructure of CC and FGC were studied in terms of X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray. The result of the study revealed that there is an increase in the efficiency of concrete evaluated in terms of strength and durability when it is made functionally graded using a layered technology having different grades of concrete in layers. The results may help to enhance the efficiency of structural concrete and its durability.

Keywords: fresh on compacted, functionally graded concrete, acid, chloride, sulphate test, sorptivity, abrasion, water absorption test

Procedia PDF Downloads 6
374 Development of an Energy Independant DC Building Demonstrator for Insulated Island Site

Authors: Olivia Bory Devisme, Denis Genon-Catalot, Frederic Alicalapa, Pierre-Olivier Lucas De Peslouan, Jean-Pierre Chabriat

Abstract:

In the context of climate change, it is essential that island territories gain energy autonomy. Currently mostly dependent on fossil fuels, the island of Reunion lo- cated in the Indian Ocean nevertheless has a high potential for solar energy. As the market for photovoltaic panels has been growing in recent years, the issues of energy losses linked to the multiple conversions from direct current to alternating current are emerging. In order to quantify these advantages and disadvantages by a comparative study, this document present the measurements carried out on a direct current test bench, particularly for lighting, ventilation, air condi- tioning and office equipment for the tertiary sector. All equipment is supplied with DC power from energy produced by photovoltaic panels. A weather sta- tion, environmental indoor sensors, and drivers are also used to control energy. Self-consumption is encouraged in order to manage different priorities between user consumption and energy storage in a lithium iron phosphate battery. The measurements are compared to a conventional electrical architecture (DC-AC- DC) for energy consumption, equipment overheating, cost, and life cycle analysis.

Keywords: DC microgrids, solar energy, smart buildings, storage

Procedia PDF Downloads 158
373 Ultrasonic Extraction of Phenolics from Leaves of Shallots and Peels of Potatoes for Biofortification of Cheese

Authors: Lila Boulekbache-Makhlouf, Brahmi Fatiha

Abstract:

This study was carried out with the aim of enriching fresh cheese with the food by-products, which are the leaves of shallots and the peels of potatoes. Firstly, the conditions for extracting the total polyphenols (TPP) using ultrasound are optimized. Then, the contents of PPT, flavonoids, and antioxidant activity were evaluated for the extracts obtained by adopting the optimal parameter. On the other hand, we have carried out some physico-chemical, microbiological, and sensory analyzes of the cheese produced. The maximum PPT value of 70.44 mg GAE/g DM of shallot leaves was reached with 40% (v/v) ethanol, an extraction time of 90 min, and a temperature of 10°C. Meanwhile, the maximum TPP content of potato peels of 45.03 ± 4.16 mg GAE/g DM was obtained using an ethanol/water mixture (40%, v/v), a time of 30 min, and a temperature of 60°C and the flavonoid contents were 13.99 and 7.52 QE/g DM, respectively. From the antioxidant tests, we deduced that the potato peels present a higher antioxidant power with IC50s of 125.42 ± 2.78 μg/mL for DPPH, of 87.21 ± 7.72 μg/mL for phosphomolybdate and 200.77 ± 13.38 μg/mL for iron chelation, compared with the results obtained for shallot leaves which were 204.29 ± 0.09, 45.85 ± 3,46 and 1004.10 ± 145.73 μg/mL, respectively. The results of the physico-chemical analyzes have shown that the formulated cheese was compliant with standards. Microbiological analyzes show that the hygienic quality of the cheese produced was satisfactory. According to the sensory analyzes, the experts liked the cheese enriched with the powder and pieces of the leaves of the shallots.

Keywords: shallots leaves, potato peels, ultrasound extraction, phenolic, cheese

Procedia PDF Downloads 177
372 The Chromitites of the Collo Ultramafic Rocks (NE Algeria): Two Generations Evidenced From Petrological, Mineralogical and Isotopic Studies

Authors: Rabah Laouar, Yahia Boudra, Adel Satouh, Adrian Boyce

Abstract:

The ultramafic rocks of the Collo region crop out as « stratified » masses that cross-cut older metamorphic formation of the basement. These rocks are mainly peridotites and serpentinites. The peridotites are composed of olivine, orthopyroxene, clinopyroxene and spinel (chromite). The chemical composition of these lherzolites show a magnesian character with high MgO contents (34.4 to 37.5%), high Cr (0.14 to 0.27%), Ni (0.14 to 0.26%) and Co (34 to 133 ppm) and low CaO and Al₂O₃ (0.02 to 2.2 and 0.5 to 2.8 % respectively). They represent a residue (restite) of a mantle magmas partial melting. The chromite which represents about 2 to 3% of the rock is a ubiquitous mineral and shows two different generations: primary idiomorphic millimetric crystals and secondary very fine, xenomorphic and interstitial aggregates. The primary chromites are alumino-ferro-magnesian crystals. They show high Al₂O₃ (25.77% to 27.36%) and MgO (10.70% to 13.36%). Cr# (100*Cr/ (Al+Cr)) varies between 45 and 48, and Mg# (100*Mg/Mg+Fe₂+) varies between 49 and 59. On the other hand, the secondary interstitial grains are iron-rich chromites; they show low Al₂O₃ (4.67% to 9.54%) and MgO (4.60% to 4.65%). Cr# is relatively high (77 to 88) whereas Mg# show relatively low values, varying between 22 and 25. Oxygen isotopic composition of both types of chromites is consistent with their derivation from a mantle source (ð¹⁸O vary between +3.9 and +5.2‰), though a contribution of ¹⁶O-rich component to the secondary chromites is not ruled out.

Keywords: peridotites, serpentinites, chromite, partial melting, collo, Algeria

Procedia PDF Downloads 84
371 Balance Transfer of Heavy Metals in Marine Environments Subject to Natural and Anthropogenic Inputs: A Case Study on the Mejerda River Delta

Authors: Mohamed Amine Helali, Walid Oueslati, Ayed Added

Abstract:

Sedimentation rates and total fluxes of heavy metals (Fe, Mn, Pb, Zn and Cu) was measured in three different depths (10m, 20m and 40m) during March and August 2012, offshore of the Mejerda River outlet (Gulf of Tunis, Tunisia). The sedimentation rates are estimated from the fluxes of the suspended particulate matter at 7.32, 5.45 and 4.39 mm y⁻¹ respectively at 10m, 20m and 40m depth. Heavy metals sequestration in sediments was determined by chemical speciation and the total metal contents in each core collected from 10, 20 and 40m depth. Heavy metals intake to the sediment was measured also from the suspended particulate matter, while the fluxes from the sediment to the water column was determined using the benthic chambers technique and from the diffusive fluxes in the pore water. Results shown that iron is the only metal for which the balance transfer between intake/uptake (45 to 117 / 1.8 to 5.8 g m² y⁻¹) and sequestration (277 to 378 g m² y⁻¹) was negative, at the opposite of the Lead which intake fluxes (360 to 480 mg m² y⁻¹) are more than sequestration fluxes (50 to 92 mg m² y⁻¹). The balance transfer is neutral for Mn, Zn, and Cu. These clearly indicate that the contributions of Mejerda have consistently varied over time, probably due to the migration of the River mouth and to the changes in the mining activity in the Mejerda catchment and the recent human activities which affect the delta area.

Keywords: delta, fluxes, heavy metals, sediments, sedimentation rates

Procedia PDF Downloads 199
370 The Ancient Port of Gaza 'Anthedon' and Relationship with Mediterranean Basin Ports

Authors: Ayman Hassouna

Abstract:

Gaza was famous in the history of trade, because it lies at the end of overland trade route, then the goods transferred by Gazzian merchants to different places around the Mediterranean, so it is described as ‘Mediterranean port of Arabs’, but Gaza is not located directly at the sea shore, so it is fortified by two ports: the first is Anthedon, and second is Maiomas. It is possible to dig in Anthedon but it is too difficult to do that in Maiomas because the site is full of modern buildings. Archaeological excavations at Anthedon's port provided us much archaeological and historical information about cooperation between Anthedon's port and different places at the Mediterranean basin. This research speaks about the roots of Anthedon's name, and it is related with other names in Greek land, by use different dictionaries language, and produce historical introduction were covering the ages beginning from the Iron Age to Greek, Roman and Byzantine periods. Then the study reviewed the most important architectural discoveries in the site, and highlighted the relationship with the civilizations' ports of the Mediterranean basin by studying number of artefacts pottery were imported from different places as Cyprus, Greece, Italy, North Africa, Carthage and Tripoli workshops. On the other hand, the archaeologists discovered some of local pottery made in Gaza at different sites on the Mediterranean basin which confirms the relationship of Gaza merchants with those areas. At the end of this study, there are some conclusions and recommendations about the site.

Keywords: ancient port of Gaza, pottery typology, Mediterranean basin ports, Palestine archaeology

Procedia PDF Downloads 346
369 Structural and Magnetic Properties of Calcium Mixed Ferrites Prepared by Co-Precipitation Method

Authors: Sijo S. Thomas, S. Hridya, Manoj Mohan, Bibin Jacob, Hysen Thomas

Abstract:

Ferrites are iron based oxides with technologically significant magnetic properties and have widespread applications in medicine, technology, and industry. There has been a growing interest in the study of magnetic, electrical and structural properties of mixed ferrites. In the present work, structural and magnetic properties of Nickel and Calcium substituted Fe₃O₄ nanoparticles were investigated. NiₓCa₁₋ₓFe₂O₄ nanoparticles (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9) were synthesized by chemical co-precipitation method and the samples were subsequently sintered at 900°C. The magnetic and structural properties of NiₓCa₁₋ₓFe₂O₄ were investigated using Vibrating Sample Magnetometer and X-Ray diffraction. The XRD results revealed that the synthesized particles have nanometer size and it varies from 46-72 nm as the calcium concentration diminishes. The variation is explained based on the increase in the reaction rate with Ni concentration which favors the formation of ultrafine particles of mixed ferrites. VSM results show pure CaFe₂O₄ exhibit paramagnetic behavior with low saturation value. As the concentration of Ca decreases, a transition occurs from paramagnetic state to ferromagnetic state. When the concentration of Ni becomes dominant, magnetic saturation, coercivity, and retentivity become high, indicating near ferromagnetic behavior of the compound.

Keywords: co-precipitation, ferrites, magnetic behavior, structure

Procedia PDF Downloads 236
368 Chemical Partitioning of Trace Metals in Sub-Surface Sediments of Lake Acigol, Denizli, Turkey

Authors: M. Budakoglu, M. Karaman, D. Kiran, Z. Doner, B. Zeytuncu, B. Tanç, M. Kumral

Abstract:

Lake Acıgöl is one of the large saline lacustrine environment in Turkey. Eleven trace metals (Cr, Mn, Fe, Al, Co, Ni, Cu, Zn, Cd, Pb and As) in 9 surface and subsurface sediment samples from the Lake Acıgöl were analyzed with the bulk and sequential extraction analysis methods by ICP-MS to obtain the metal distribution patterns in this extreme environment. Five stepped sequential extraction technique (1- exchangeable, 2- bond to carbonates, 3- bond to iron and manganese oxides/hydroxides, 4- bond to organic matter and sulphides, and 5- residual fraction incorporated into clay and silicate mineral lattices) was used to characterize the various forms of metals in the <63μ size sediments. The metal contents (ppm) and their percentages for each extraction step were reported and compared with the results obtained from the total digestion. Results indicate that sum of the four fraction are in good agreement with the total digestion results of Ni, Cd, As, Zn, Cu and Fe with the satisfactory recoveries (94.04–109.0%) and the method used is reliable and repeatable for these elements. It was found that there were high correlations between Fe vs. Ni loads in the fraction of F2 and F4 with R2= 0,91 and 0,81, respectively. Comparison of totally 135 chemical analysis results in three sampling location and for 5 fraction between Fe-Co, Co-Ni and Fe-Ni element couples were presented elevated correlations with R2=0,98, 0,92 and 0,91, respectively.

Keywords: Lake Acigol, sequancial extraction, recent lake sediment, geochemical speciation of heavy metals

Procedia PDF Downloads 407
367 Synthetic, Characterization and Biological Studies of Bis(Tetrathiomolybdate) Compounds of Pt (II), Pd (II) and Ni (II)

Authors: V. K. Srivastava

Abstract:

The chemistry of compounds containing transition metals bound to sulfur containing ligands has been actively studied. Interest in these compounds arises from the identification of the biological importance of iron-sulfur containing proteins as well as the unusual behaviour of several types of synthetic metal-sulfur complexes. Metal complexes (C₆H₅)₄P)₂ Pt(Mos₄)₂, (C₆H₅)₄P)₂ Pd(MoS₄)₂, (C₆H₅)₄P)₂ Ni(MoS₄)₂ of bioinorganic relevance were investigated. The complexes [M(M'S₄)₂]²⁻ were prepared with high yield and purity as salts of the variety of organic cations. The diamagnetism and spectroscopic properties of these complexes confirmed that their structures are essentially equivalent with two bidentate M'S₄²⁻ ligands coordinated to the central d⁸ metal in a square planer geometry. The interaction of the complexes with CT-DNA was studied. Results showed that metal complexes increased DNA's relative viscosity and quench the fluorescence intensity of EB bound to DNA. In antimicrobial activities, all complexes showed good antimicrobial activity higher than ligand against gram positive, gram negative bacteria and fungi. The antitumor properties have been tested in vitro against two tumor human cell lines, Hela (derived from cervical cancer) and MCF-7 (derived from breast cancer) using metabolic activity tests. Result showed that the complexes are promising chemotherapeutic alternatives in the search of anticancer agents.

Keywords: anti cancer, biocidal, DNA binding, spectra

Procedia PDF Downloads 156
366 Transformation of Aluminum Unstable Oxyhydroxides in Ultrafine α-Al2O3 in Presence of Various Seeds

Authors: T. Kuchukhidze, N. Jalagonia, Z. Phachulia, R. Chedia

Abstract:

Ceramic obtained on the base of aluminum oxide has wide application range, because it has unique properties, for example, wear-resistance, dielectric characteristics, exploitation ability at high temperatures and in corrosive atmosphere. Low temperature synthesis of α-Al2O3 is energo-economical process and it is actual for developing technologies of corundum ceramics fabrication. In the present work possibilities of low temperature transformation of oxyhydroxides in α-Al2O3, during a presence of small amount of rare–earth elements compounds (also Th, Re), have been discussed. Aluminium unstable oxyhydroxides have been obtained by hydrolysis of aluminium isopropoxide, nitrates, sulphate, chloride in alkaline environment at 80-90ºC tempertures. β-Al(OH)3 has been received from aluminium powder by ultrasonic development. Drying of oxyhydroxide sol has been conducted with presence of various types seeds, which amount reaches 0,1-0,2% (mas). Neodymium, holmium, thorium, lanthanum, cerium, gadolinium, disprosium nitrates and rhenium carbonyls have been used as seeds and they have been added to the sol specimens in amount of 0.1-0.2% (mas) calculated on metals. Annealing of obtained gels is carried out at 70 – 1100ºC for 2 hrs. The same specimen transforms in α-Al2O3 at 1100ºC. At this temperature in case of presence of lanthanum and gadolinium transformation takes place by 70-85%. In case of presence of thorium stabilization of γ-and θ-phases takes place. It is established, that thorium causes inhibition of α-phase generation at 1100ºC, at the time in all other doped specimens α-phase is generated at lower temperatures (1000-1050ºC). During the work the following devices have been used: X-ray difractometer DRON-3M (Cu-Kα, Ni filter, 2º/min), High temperature vacuum furnace OXY-GON, electronic scanning microscopes Nikon ECLIPSE LV 150, NMM-800TRF, planetary mill Pulverisette 7 premium line, SHIMADZU Dynamic Ultra Micro Hardness Tester, DUH-211S, Analysette 12 Dyna sizer.

Keywords: α-Alumina, combustion, phase transformation, seeding

Procedia PDF Downloads 388
365 The Mineralogy of Shales from the Pilbara and How Chemical Weathering Affects the Intact Strength

Authors: Arturo Maldonado

Abstract:

In the iron ore mining industry, the intact strength of rock units is defined using the uniaxial compressive strength (UCS). This parameter is very important for the classification of shale materials, allowing the split between rock and cohesive soils based on the magnitude of UCS. For this research, it is assumed that UCS less than or equal to 1 MPa is representative of soils. Several researchers have anticipated that the magnitude of UCS reduces with weathering progression, also since UCS is a directional property, its magnitude depends upon the rock fabric orientation. Thus, the paper presents how the UCS of shales is affected by both weathering grade and bedding orientation. The mineralogy of shales has been defined using Hyper-spectral and chemical assays to define the mineral constituents of shale and other non-shale materials. Geological classification tools have been used to define distinct lithological types, and in this manner, the author uses mineralogical datasets to recognize and isolate shales from other rock types and develop tertiary plots for fresh and weathered shales. The mineralogical classification of shales has reduced the contamination of lithology types and facilitated the study of the physical factors affecting the intact strength of shales, like anisotropic strength due to bedding orientation. The analysis of mineralogical characteristics of shales is perhaps the most important contribution of this paper to other researchers who may wish to explore similar methods.

Keywords: rock mechanics, mineralogy, shales, weathering, anisotropy

Procedia PDF Downloads 50
364 Improving Carbon Fiber Structural Battery Performance with Polymer Interface

Authors: Kathleen Moyer, Nora Ait Boucherbil, Murtaza Zohair, Janna Eaves-Rathert, Cary Pint

Abstract:

This study demonstrates the significance of interface engineering in the field of structural energy by being the first case where the performance of the system with the structural battery is greater than the performance of the same system with a battery separate from the system. The benefits of improving the interface in the structural battery were tested by creating carbon fiber composite batteries (and independent graphite electrodes and lithium iron phosphate electrodes) with and without an improved interface. Mechanical data on the structural batteries were collected using tensile tests and electrochemical data was collected using scanning electron microscopy equipment. The full-cell lithium-ion structural batteries had capacity retention of over 80% exceeding 100 cycles with an average energy density of 52 W h kg−1 and a maximum energy density of 58 W h kg−1. Most scientific developments in the field of structural energy have been done with supercapacitors. Most scientific developments with structural batteries have been done where batteries are simply incorporated into the structural element. That method has limited advantages and can create mechanical disadvantages. This study aims to show that a large improvement in structure energy research can be made by improving the interface between the structural device and the battery.

Keywords: composite materials, electrochemical performance, mechanical properties, polymer interface, structural batteries

Procedia PDF Downloads 100
363 Transient Response of Rheological Properties of a CI-Water Based Magnetorheological Fluid under Different Operating Modes

Authors: Chandra Shekhar Maurya, Chiranjit Sarkar

Abstract:

The transient response of rheological properties of a carbonyl iron (CI)-water-based magnetorheological fluid (MRF) was studied under shear rate, shear stress, and shear strain working mode subjected to step-change in an applied magnetic field. MR fluid is a kind of smart material whose rheological properties change under an applied magnetic field. We prepared an MR fluid comprising of CI 65 weight %, water 35 weight %, and OPTIGEL WX used as an additive by changing the weight %. It was found that the MR effect of the CI/water suspension was enhanced by using an additive. A transient shear stress response was observed by switched on and switched off of the magnetic field to see the stability, relaxation behavior, and resulting change in rheological properties. When the magnetic field is on, a sudden increase in the shear stress was observed due to the fast motion of magnetic structures that describe the transition from the liquidlike state to the solid-like state due to an increase in dipole-dipole interaction of magnetic particles. Simultaneously, the complete reverse transition occurs due to instantaneous breakage of the chain structure once the magnetic field is switched off.

Keywords: magnetorheological fluid, rheological properties, shears stress, shears strain, viscosity

Procedia PDF Downloads 171
362 Photocatalytic Degradation of Naproxen in Water under Solar Irradiation over NiFe₂O₄ Nanoparticle System

Authors: H. Boucheloukh, S. Rouissa, N. Aoun, M. Beloucifa, T. Sehili, F. Parrino, V. Loddo

Abstract:

To optimize water purification and wastewater treatment by heterogeneous photocatalysis, we used NiFe₂O₄ as a catalyst and solar irradiation as a source of energy. In this concept, an organic substance present in many industrial effluents was chosen: naproxen ((S)-6-methoxy-α-methyl-2-naphthaleneacetic acid or 2-(6-methoxynaphthalenyl) propanoic), a non-steroidal anti-inflammatory drug. The main objective of this study is to degrade naproxen by an iron and nickel catalyst, the degradation of this organic pollutant by nickel ferrite has been studied in a heterogeneous aqueous medium, with the study of the various factors influencing photocatalysis such as the concentration of matter and the acidity of the medium. The photocatalytic activity was followed by HPLC-UV andUV-Vis spectroscopy. A first-order kinetic model appropriately fitted the experimental data. The degradation of naproxen was also studied in the presence of H₂O₂ as well as in an aqueous solution. The new hetero-system NiFe₂O₄/oxalic acid is also discussed. The fastest naproxen degradation was obtained with NiFe₂O₄/H₂O₂. In a first-place, we detailed the characteristics of the material NiFe₂O₄, which was synthesized by the sol-gel methods, using various analytical techniques: visible UV spectrophotometry, X-ray diffraction, FTIR, cyclic voltammetry, luminescent discharge optical emission spectroscopy.

Keywords: naproxen, nickelate, photocatalysis, oxalic acid

Procedia PDF Downloads 198
361 Energy Conversion for Sewage Sludge by Microwave Heating Pyrolysis and Gasification

Authors: Young Nam Chun, Soo Hyuk Yun, Byeo Ri Jeong

Abstract:

The recent gradual increase in the energy demand is mostly met by fossil fuel, but the research on and development of new alternative energy sources is drawing much attention due to the limited fossil fuel supply and the greenhouse gas problem. Biomass is an eco-friendly renewable energy that can achieve carbon neutrality. The conversion of the biomass sludge wastes discharged from a wastewater treatment plant to clean energy is an important green energy technology in an eco-friendly way. In this NRF study, a new type of microwave thermal treatment was developed to apply the biomass-CCS technology to sludge wastes. For this, the microwave dielectric heating characteristics were examined to investigate the energy conversion mechanism for the combined drying-pyrolysis/gasification of the dewatered wet sludge. The carbon dioxide gasification was tested using the CO2 captured from the pre-combustion capture process. In addition, the results of the pyrolysis and gasification test with the wet sludge were analyzed to compare the microwave energy conversion results with the results of the use of the conventional heating method. Gas was the largest component of the product of both pyrolysis and gasification, followed by sludge char and tar. In pyrolysis, the main components of the producer gas were hydrogen and carbon monoxide, and there were some methane and hydrocarbons. In gasification, however, the amount of carbon monoxide was greater than that of hydrogen. In microwave gasification, a large amount of heavy tar was produced. The largest amount of benzene among light tar was produced in both pyrolysis and gasification. NH3 and HCN which are the precursors of NOx, generated as well. In microwave heating, the sludge char had a smooth surface, like that of glass, and in the conventional heating method with an electric furnace, deep cracks were observed in the sludge char. This indicates that the gas obtained from the microwave pyrolysis and gasification of wet sewage sludge can be used as fuel, but the heavy tar and NOx precursors in the gas must be treated. Sludge char can be used as solid fuel or as a tar reduction adsorbent in the process if necessary. This work supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2015R1R1A2A2A03003044).

Keywords: microwave heating, pyrolysis gasification, precombustion CCS, sewage sludge, biomass energy

Procedia PDF Downloads 316
360 Smart Forms and Intelligent Transportation Network Patterns, an Integrated Spatial Approach to Smart Cities and Intelligent Transport Systems in India Cities

Authors: Geetanjli Rani

Abstract:

The physical forms and network pattern of the city is expected to be enhanced with the advancement of technology. Reason being, the era of virtualisation and digital urban realm convergence with physical development. By means of comparative Spatial graphics and visuals of cities, the present paper attempts to revisit the very base of efficient physical forms and patterns to sync the emergence of virtual activities. Thus, the present approach to integrate spatial Smartness of Cities and Intelligent Transportation Systems is a brief assessment of smart forms and intelligent transportation network pattern to the dualism of physical and virtual urban activities. Finally, the research brings out that the grid iron pattern, radial, ring-radial, orbital etc. stands to be more efficient, effective and economical transit friendly for users, resource optimisation as well as compact urban and regional systems. Moreover, this paper concludes that the idea of flow and contiguity hidden in such smart forms and intelligent transportation network pattern suits to layering, deployment, installation and development of Intelligent Transportation Systems of Smart Cities such as infrastructure, facilities and services.

Keywords: smart form, smart infrastructure, intelligent transportation network pattern, physical and virtual integration

Procedia PDF Downloads 152
359 Structural, Magnetic and Magnetocaloric Properties of Iron-Doped Nd₀.₆Sr₀.₄MnO₃ Perovskite

Authors: Ismail Al-Yahmadi, Abbasher Gismelseed, Fatma Al-Mammari, Ahmed Al-Rawas, Ali Yousif, Imaddin Al-Omari, Hisham Widatallah, Mohamed Elzain

Abstract:

The influence of Fe-doping on the structural, magnetic and magnetocaloric properties of Nd₀.₆Sr₀.₄FeₓMn₁₋ₓO₃ (0≤ x ≤0.5) were investigated. The samples were synthesized by auto-combustion Sol-Gel method. The phase purity, crystallinity, and the structural properties for all prepared samples were examined by X-ray diffraction. XRD refinement indicates that the samples are crystallized in the orthorhombic single-phase with Pnma space group. Temperature dependence of magnetization measurements under a magnetic applied field of 0.02 T reveals that the samples with (x=0.0, 0.1, 0.2 and 0.3) exhibit a paramagnetic (PM) to ferromagnetic (FM) transition with decreasing temperature. The Curie temperature decreased with increasing Fe content from 256 K for x =0.0 to 80 K for x =0.3 due to increasing of antiferromagnetic superexchange (SE) interaction coupling. Moreover, the magnetization as a function of applied magnetic field (M-H) curves was measured at 2 K, and 300 K. the results of such measurements confirm the temperature dependence of magnetization measurements. The magnetic entropy change|∆SM | was evaluated using Maxwell's relation. The maximum values of the magnetic entropy change |-∆SMax |for x=0.0, 0.1, 0.2, 0.3 are found to be 15.35, 5.13, 3.36, 1.08 J/kg.K for an applied magnetic field of 9 T. Our result on magnetocaloric properties suggests that the parent sample Nd₀.₆Sr₀.₄MnO₃ could be a good refrigerant for low-temperature magnetic refrigeration.

Keywords: manganite perovskite, magnetocaloric effect, X-ray diffraction, relative cooling power

Procedia PDF Downloads 154
358 Dietary Nutrient Consumption Patterns by the Pregnant Mother in Dhaka City, Bangladesh

Authors: Kazi Muhammad Rezaul Karim, Tasmia Tasnim

Abstract:

Introduction: Pregnancy is a condition of higher nutrient requirement but in developing countries like Bangladesh most of the pregnant women can not meet their nutrient requirement and sometimes they are neglected in the family. The purpose of the study was to assess the nutritional status and dietary nutrient intake by the pregnant women, in Dhaka city, Bangladesh. Methods: The study population comprised of pregnant women from urban or semi-urban, aged between 18 to 35 and free of pregnancy related complication and other diseases. Under a cross-sectional design, 30 healthy non-pregnant as well as 130 pregnant women, at 3 different trimesters of pregnancy were assessed. A questionnaire was developed to obtain demographic, socio-economic, anthropometric, drug and medical history. Three day consecutive 24-hour food recalls were used to assess food intake and then converted to nutrient intake. Results: The average BMI of the nonpregnant women was 22.89 ± 3.4 kg/m2 and that of pregnant women was 23.52 ± 3.71 kg/m2. The mean dietary nutrient intake of dietary fiber, calorie, protein, fat, carbohydrate, calcium, iron, thiamine, riboflavin, vitamin C, Vitamin A, folate, vitamin B6 and Vitamin B12 of the pregnant mothers were 4.38 g, 1619 kcal, 60.05 g, 30.38 g, 268.79 g, 537.21 mg, 21.53 mg, 1.15 mg, 0.94 mg, 97.36 mg, 647.6 µg, 153.93 µg, 1.41 mg and 4.09 µg respectively. Most of pregnant women (more than 90%) can not meet their energy, calcium and folate requirements. Conclusion: Most of the pregnant mother in Bangladesh can not meet their dietary requirements during pregnancy.

Keywords: pregnancy, dietary nutrient, nutritional status, BMI

Procedia PDF Downloads 436
357 Simultaneous Analysis of 25 Trace Elements in Micro Volume of Human Serum by Inductively Coupled Plasma–Mass Spectrometry

Authors: Azmawati Mohammed Nawi, Siok-Fong Chin, Shamsul Azhar Shah, Rahman Jamal

Abstract:

In recent years, trace elements have gained importance as biomarkers in many chronic diseases. Unfortunately, the requirement for sample volume increases according to the extent of investigation for diagnosis or elucidating the mechanism of the disease. Here, we describe the method development and validation for simultaneous determination of 25 trace elements (lithium (Li), beryllium (Be), magnesium (Mg), aluminium (Al), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), gallium (Ga), arsenic (As), selenium (Se), rubidium (Rb), strontium (Sr), silver (Ag), cadmium (Cd), caesium (Cs), barium (Ba), mercury (Hg), thallium (Tl), lead (Pb), uranium (U)) using just 20 µL of human serum. Serum samples were digested with nitric acid and hydrochloric acid (ratio 1:1, v/v) and analysed using inductively coupled plasma–mass spectrometry (ICP-MS). Seronorm®, a human-derived serum control material was used as quality control samples. The intra-day and inter-day precisions were consistently < 15% for all elements. The validated method was later applied to 30 human serum samples to evaluate its suitability. In conclusion, we have successfully developed and validated a precise and accurate analytical method for determining 25 trace elements requiring very low volume of human serum.

Keywords: acid digestion, ICP-MS, trace element, serum

Procedia PDF Downloads 178
356 Corrosive Bacteria Attached to Carbon Steel Used in Oil and Gas Company

Authors: Hadjer Didouh, Mohammed Hadj Melliani, Izzeddine Sameut Bouhaik

Abstract:

Microbiologically influenced corrosion (MIC) is a major cause of pipeline failure in the oil and gas industry, particularly affecting carbon steel, which is widely used for its cost-effectiveness and mechanical properties. This study investigates the adhesion of sulfate-reducing bacteria (SRB) and other corrosive microbial species on API 5L X52 carbon steel in crude oil and injection water environments. Experimental results showed that after 72 hours of exposure, biofilm formed extensively, leading to significant corrosion rates. Weight loss measurements indicated a corrosion rate of 0.39 mm/year, with localized pitting observed at depths reaching 120 μm. Electrochemical impedance spectroscopy (EIS) revealed a drastic decrease in charge transfer resistance, from 1200 Ω/cm² for sterile samples to 240 Ω/cm² in the presence of SRB biofilm. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analyses confirmed the presence of iron sulfide deposits, indicating active bacterial colonization and biofilm-induced pitting corrosion. This study highlights the severe impact of MIC on pipeline infrastructure, emphasizing the need for efficient microbial control strategies. Furthermore, the results provide a framework for the development of enhanced protective coatings and environmentally friendly biocides to mitigate the economic and environmental risks associated with MIC in oilfield operations in Algeria.

Keywords: MIC, corrosion, bacteria, API 5L X52

Procedia PDF Downloads 13
355 Associated Mycoflora AF Mucuna Sloanei Seeds and Their Effects on Nutritional and Phytochemical Contents of the Seeds

Authors: U.N. Emiri, E. Moroyei

Abstract:

Mycoflora associated with the seed rot disease of Mucuna sloanei and their effects on nutrient and phytochemical composition of the seeds were investigated. The fungal pathogens implicated in the seed rot disease were Rhizopus stolonifer, Aspergillus flavus, Aspergillus niger, and Fusarium oxysporum. The fungal isolates were aseptically inoculated into healthy M. Sloanei seeds and incubated for 7 days at room temperature of 25 ± 30c. The results of the proximate and mineral analysis in mg/100g of fungal infected and non-infected (control) seeds that were carried out revealed that there was an increase in Moisture and Carbohydrate content of the fungal infected seeds relative to the non-infected seeds (control). However, there was a decrease in Ash, Fibre, Lipid, and Protein content of the fungal infected seeds relative to the non-infected (control). It was observed that moisture had increased from 10.50 ± 0.16 in the non-infected seeds to 17.60 ± 0.20 in the infected samples and Carbohydrate content had also increased from 49.6 ± 0.25 in the non-infected to 52.50 ± 0.29 in the infected seeds. The following parameters decreased in the infected than in the non-infected seeds. They include Ash 2.60 ± 0.12, Crude fibre 1.9 ± 0.08, Lipid 6.50 ± 0.16, and Protein content 18.50 ± 0.06. Similarly, Calcium 2.50 ± 0.12, Phosphorus 1.80 + 0.12 and Potassium 1.80 + 0.09 increased in the infected than in the non-infected seed, while iron 0.20 ± 0.05, Sodium 0.02 ± 0.01 and Magnesium 0.06 ± 0.02 decreased in the infected seeds. All phytochemical contents analyzed increased in the infected seeds viz Tannim 0.50 ± 0.12, Oxalate 1.60 ± 0.05, Hydrogen cyanide 1.82 ± 0.06, and Saponin 2.50+0.28. However, the nutrient compositions and Phytochemical between the infected and non-infected seeds are not significantly different (p > 0.05).

Keywords: Mycoflora, mucuna sloanei, seeds, phytochemical, nutrient composition

Procedia PDF Downloads 151
354 Variations in Water Supply and Quality in Selected Groundwater Sources in a Part of Southwest Nigeria

Authors: Samuel Olajide Babawale, O. O. Ogunkoya

Abstract:

The study mapped selected wells in Inisa town, Osun state, in the guinea savanna region of southwest Nigeria, and determined the water quality considering certain elements. It also assessed the variation in the elevation of the water table surface to depth of the wells in the months of August and November. This is with a view to determine the level of contamination of the water with respect to land use and anthropogenic activities, and also to determine the variation that occurs in the quantity of well water in the rainy season and the start of the dry season. Results show a random pattern of the distribution of the mapped wells and shows that there is a shallow water table in the study area. The temporal changes in the elevation show that there are no significant variations in the depth of the water table surface over the period of study implying that there is a sufficient amount of water available to the town all year round. It also shows a high concentration of sodium in the water sample analyzed compared to other elements that were considered, which include iron, copper, calcium, and lead. This is attributed majorly to anthropogenic activities through the disposal of waste in landfill sites. There is a low concentration of lead which is a good indication of a reduced level of pollution.

Keywords: anthropogenic activities, land use, temporal changes, water quality

Procedia PDF Downloads 130