Search results for: Wave Scattering Coefficients.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2619

Search results for: Wave Scattering Coefficients.

1599 Wideband Performance Analysis of C-FDTD Based Algorithms in the Discretization Impoverishment of a Curved Surface

Authors: Lucas L. L. Fortes, Sandro T. M. Gonçalves

Abstract:

In this work, it is analyzed the wideband performance with the mesh discretization impoverishment of the Conformal Finite Difference Time-Domain (C-FDTD) approaches developed by Raj Mittra, Supriyo Dey and Wenhua Yu for the Finite Difference Time-Domain (FDTD) method. These approaches are a simple and efficient way to optimize the scattering simulation of curved surfaces for Dielectric and Perfect Electric Conducting (PEC) structures in the FDTD method, since curved surfaces require dense meshes to reduce the error introduced due to the surface staircasing. Defined, on this work, as D-FDTD-Diel and D-FDTD-PEC, these approaches are well-known in the literature, but the improvement upon their application is not quantified broadly regarding wide frequency bands and poorly discretized meshes. Both approaches bring improvement of the accuracy of the simulation without requiring dense meshes, also making it possible to explore poorly discretized meshes which bring a reduction in simulation time and the computational expense while retaining a desired accuracy. However, their applications present limitations regarding the mesh impoverishment and the frequency range desired. Therefore, the goal of this work is to explore the approaches regarding both the wideband and mesh impoverishment performance to bring a wider insight over these aspects in FDTD applications. The D-FDTD-Diel approach consists in modifying the electric field update in the cells intersected by the dielectric surface, taking into account the amount of dielectric material within the mesh cells edges. By taking into account the intersections, the D-FDTD-Diel provides accuracy improvement at the cost of computational preprocessing, which is a fair trade-off, since the update modification is quite simple. Likewise, the D-FDTD-PEC approach consists in modifying the magnetic field update, taking into account the PEC curved surface intersections within the mesh cells and, considering a PEC structure in vacuum, the air portion that fills the intersected cells when updating the magnetic fields values. Also likewise to D-FDTD-Diel, the D-FDTD-PEC provides a better accuracy at the cost of computational preprocessing, although with a drawback of having to meet stability criterion requirements. The algorithms are formulated and applied to a PEC and a dielectric spherical scattering surface with meshes presenting different levels of discretization, with Polytetrafluoroethylene (PTFE) as the dielectric, being a very common material in coaxial cables and connectors for radiofrequency (RF) and wideband application. The accuracy of the algorithms is quantified, showing the approaches wideband performance drop along with the mesh impoverishment. The benefits in computational efficiency, simulation time and accuracy are also shown and discussed, according to the frequency range desired, showing that poorly discretized mesh FDTD simulations can be exploited more efficiently, retaining the desired accuracy. The results obtained provided a broader insight over the limitations in the application of the C-FDTD approaches in poorly discretized and wide frequency band simulations for Dielectric and PEC curved surfaces, which are not clearly defined or detailed in the literature and are, therefore, a novelty. These approaches are also expected to be applied in the modeling of curved RF components for wideband and high-speed communication devices in future works.

Keywords: accuracy, computational efficiency, finite difference time-domain, mesh impoverishment

Procedia PDF Downloads 134
1598 Computational Fluid Dynamics Design and Analysis of Aerodynamic Drag Reduction Devices for a Mazda T3500 Truck

Authors: Basil Nkosilathi Dube, Wilson R. Nyemba, Panashe Mandevu

Abstract:

In highway driving, over 50 percent of the power produced by the engine is used to overcome aerodynamic drag, which is a force that opposes a body’s motion through the air. Aerodynamic drag and thus fuel consumption increase rapidly at speeds above 90kph. It is desirable to minimize fuel consumption. Aerodynamic drag reduction in highway driving is the best approach to minimize fuel consumption and to reduce the negative impacts of greenhouse gas emissions on the natural environment. Fuel economy is the ultimate concern of automotive development. This study aims to design and analyze drag-reducing devices for a Mazda T3500 truck, namely, the cab roof and rear (trailer tail) fairings. The aerodynamic effects of adding these append devices were subsequently investigated. To accomplish this, two 3D CAD models of the Mazda truck were designed using the Design Modeler. One, with these, append devices and the other without. The models were exported to ANSYS Fluent for computational fluid dynamics analysis, no wind tunnel tests were performed. A fine mesh with more than 10 million cells was applied in the discretization of the models. The realizable k-ε turbulence model with enhanced wall treatment was used to solve the Reynold’s Averaged Navier-Stokes (RANS) equation. In order to simulate the highway driving conditions, the tests were simulated with a speed of 100 km/h. The effects of these devices were also investigated for low-speed driving. The drag coefficients for both models were obtained from the numerical calculations. By adding the cab roof and rear (trailer tail) fairings, the simulations show a significant reduction in aerodynamic drag at a higher speed. The results show that the greatest drag reduction is obtained when both devices are used. Visuals from post-processing show that the rear fairing minimized the low-pressure region at the rear of the trailer when moving at highway speed. The rear fairing achieved this by streamlining the turbulent airflow, thereby delaying airflow separation. For lower speeds, there were no significant differences in drag coefficients for both models (original and modified). The results show that these devices can be adopted for improving the aerodynamic efficiency of the Mazda T3500 truck at highway speeds.

Keywords: aerodynamic drag, computation fluid dynamics, fluent, fuel consumption

Procedia PDF Downloads 138
1597 Manifestations of Moral Imagination during the COVID-19 Pandemic in the Debates of Lithuanian Parliament

Authors: Laima Zakaraite, Vaidas Morkevicius

Abstract:

The COVID-19 pandemic brought important and pressing challenges for politicians around the world. Governments, parliaments, and political leaders had to make quick decisions about containment of the pandemic, usually without clear knowledge about the factual spread of the virus, the possible expected speed of spread, and levels of mortality. Opinions of experts were also divided, as some advocated for ‘herd immunity’ without closing down the economy and public life, and others supported the idea of strict lockdown. The debates about measures of pandemic containment were heated and involved strong moral tensions with regard to the possible outcomes. This paper proposes to study the manifestations of moral imagination in the political debates regarding the COVID-19 pandemic. Importantly, moral imagination is associated with twofold abilities of a decision-making actor: the ability to discern the moral aspects embedded within a situation and the ability to envision a range of possibilities alternative solutions to the situation from a moral perspective. The concept was most thoroughly investigated in business management studies. However, its relevance for the study of political decision-making is also rather clear. The results of the study show to what extent politicians are able to discern the wide range of moral issues related to a situation (in this case, consequences of COVID-19 pandemic in a country) and how broad (especially, from a moral perspective) are discussions of the possible solutions proposed for solving the problem (situation). Arguably, political discussions and considerations are broader and affected by a wider and more varied range of actors and ideas compared to decision making in the business management sector. However, the debates and ensuing solutions may also be restricted by ideological maxims and advocacy of special interests. Therefore, empirical study of policy proposals and their debates might reveal the actual breadth of moral imagination in political discussions. For this purpose, we carried out the qualitative study of the parliamentary debates related to the COVID-19 pandemic in Lithuania during the first wave (containment of which was considered very successful) and at the beginning and consequent acceleration of the second wave (when the spread of the virus became uncontrollable).

Keywords: decision making, moral imagination, political debates, political decision

Procedia PDF Downloads 147
1596 Deep Learning Based Polarimetric SAR Images Restoration

Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo ferraioli

Abstract:

In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring . SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.

Keywords: SAR image, deep learning, convolutional neural network, deep neural network, SAR polarimetry

Procedia PDF Downloads 90
1595 A Method of Detecting the Difference in Two States of Brain Using Statistical Analysis of EEG Raw Data

Authors: Digvijaysingh S. Bana, Kiran R. Trivedi

Abstract:

This paper introduces various methods for the alpha wave to detect the difference between two states of brain. One healthy subject participated in the experiment. EEG was measured on the forehead above the eye (FP1 Position) with reference and ground electrode are on the ear clip. The data samples are obtained in the form of EEG raw data. The time duration of reading is of one minute. Various test are being performed on the alpha band EEG raw data.The readings are performed in different time duration of the entire day. The statistical analysis is being carried out on the EEG sample data in the form of various tests.

Keywords: electroencephalogram(EEG), biometrics, authentication, EEG raw data

Procedia PDF Downloads 464
1594 A Simplified Distribution for Nonlinear Seas

Authors: M. A. Tayfun, M. A. Alkhalidi

Abstract:

The exact theoretical expression describing the probability distribution of nonlinear sea-surface elevations derived from the second-order narrowband model has a cumbersome form that requires numerical computations, not well-disposed to theoretical or practical applications. Here, the same narrowband model is re-examined to develop a simpler closed-form approximation suitable for theoretical and practical applications. The salient features of the approximate form are explored, and its relative validity is verified with comparisons to other readily available approximations, and oceanic data.

Keywords: ocean waves, probability distributions, second-order nonlinearities, skewness coefficient, wave steepness

Procedia PDF Downloads 432
1593 Comparison of Developed Statokinesigram and Marker Data Signals by Model Approach

Authors: Boris Barbolyas, Kristina Buckova, Tomas Volensky, Cyril Belavy, Ladislav Dedik

Abstract:

Background: Based on statokinezigram, the human balance control is often studied. Approach to human postural reaction analysis is based on a combination of stabilometry output signal with retroreflective marker data signal processing, analysis, and understanding, in this study. The study shows another original application of Method of Developed Statokinesigram Trajectory (MDST), too. Methods: In this study, the participants maintained quiet bipedal standing for 10 s on stabilometry platform. Consequently, bilateral vibration stimuli to Achilles tendons in 20 s interval was applied. Vibration stimuli caused that human postural system took the new pseudo-steady state. Vibration frequencies were 20, 60 and 80 Hz. Participant's body segments - head, shoulders, hips, knees, ankles and little fingers were marked by 12 retroreflective markers. Markers positions were scanned by six cameras system BTS SMART DX. Registration of their postural reaction lasted 60 s. Sampling frequency was 100 Hz. For measured data processing were used Method of Developed Statokinesigram Trajectory. Regression analysis of developed statokinesigram trajectory (DST) data and retroreflective marker developed trajectory (DMT) data were used to find out which marker trajectories most correlate with stabilometry platform output signals. Scaling coefficients (λ) between DST and DMT by linear regression analysis were evaluated, too. Results: Scaling coefficients for marker trajectories were identified for all body segments. Head markers trajectories reached maximal value and ankle markers trajectories had a minimal value of scaling coefficient. Hips, knees and ankles markers were approximately symmetrical in the meaning of scaling coefficient. Notable differences of scaling coefficient were detected in head and shoulders markers trajectories which were not symmetrical. The model of postural system behavior was identified by MDST. Conclusion: Value of scaling factor identifies which body segment is predisposed to postural instability. Hypothetically, if statokinesigram represents overall human postural system response to vibration stimuli, then markers data represented particular postural responses. It can be assumed that cumulative sum of particular marker postural responses is equal to statokinesigram.

Keywords: center of pressure (CoP), method of developed statokinesigram trajectory (MDST), model of postural system behavior, retroreflective marker data

Procedia PDF Downloads 350
1592 Nanoscale Photo-Orientation of Azo-Dyes in Glassy Environments Using Polarized Optical Near-Field

Authors: S. S. Kharintsev, E. A. Chernykh, S. K. Saikin, A. I. Fishman, S. G. Kazarian

Abstract:

Recent advances in improving information storage performance are inseparably linked with circumvention of fundamental constraints such as the supermagnetic limit in heat assisted magnetic recording, charge loss tolerance in solid-state memory and the Abbe’s diffraction limit in optical storage. A substantial breakthrough in the development of nonvolatile storage devices with dimensional scaling has been achieved due to phase-change chalcogenide memory, which nowadays, meets the market needs to the greatest advantage. A further progress is aimed at the development of versatile nonvolatile high-speed memory combining potentials of random access memory and archive storage. The well-established properties of light at the nanoscale empower us to use them for recording optical information with ultrahigh density scaled down to a single molecule, which is the size of a pit. Indeed, diffraction-limited optics is able to record as much information as ~1 Gb/in2. Nonlinear optical effects, for example, two-photon fluorescence recording, allows one to decrease the extent of the pit even more, which results in the recording density up to ~100 Gb/in2. Going beyond the diffraction limit, due to the sub-wavelength confinement of light, pushes the pit size down to a single chromophore, which is, on average, of ~1 nm in length. Thus, the memory capacity can be increased up to the theoretical limit of 1 Pb/in2. Moreover, the field confinement provides faster recording and readout operations due to the enhanced light-matter interaction. This, in turn, leads to the miniaturization of optical devices and the decrease of energy supply down to ~1 μW/cm². Intrinsic features of light such as multimode, mixed polarization and angular momentum in addition to the underlying optical and holographic tools for writing/reading, enriches the storage and encryption of optical information. In particular, the finite extent of the near-field penetration, falling into a range of 50-100 nm, gives the possibility to perform 3D volume (layer-to-layer) recording/readout of optical information. In this study, we demonstrate a comprehensive evidence of isotropic-to-homeotropic phase transition of the azobenzene-functionalized polymer thin film exposed to light and dc electric field using near-field optical microscopy and scanning capacitance microscopy. We unravel a near-field Raman dichroism of a sub-10 nm thick epoxy-based side-chain azo-polymer films with polarization-controlled tip-enhanced Raman scattering. In our study, orientation of azo-chromophores is controlled with a bias voltage gold tip rather than light polarization. Isotropic in-plane and homeotropic out-of-plane arrangement of azo-chromophores in glassy environment can be distinguished with transverse and longitudinal optical near-fields. We demonstrate that both phases are unambiguously visualized by 2D mapping their local dielectric properties with scanning capacity microscopy. The stability of the polar homeotropic phase is strongly sensitive to the thickness of the thin film. We make an analysis of α-transition of the azo-polymer by detecting a temperature-dependent phase jump of an AFM cantilever when passing through the glass temperature. Overall, we anticipate further improvements in optical storage performance, which approaches to a single molecule level.

Keywords: optical memory, azo-dye, near-field, tip-enhanced Raman scattering

Procedia PDF Downloads 177
1591 Fold and Thrust Belts Seismic Imaging and Interpretation

Authors: Sunjay

Abstract:

Plate tectonics is of very great significance as it represents the spatial relationships of volcanic rock suites at plate margins, the distribution in space and time of the conditions of different metamorphic facies, the scheme of deformation in mountain belts, or orogens, and the association of different types of economic deposit. Orogenic belts are characterized by extensive thrust faulting, movements along large strike-slip fault zones, and extensional deformation that occur deep within continental interiors. Within oceanic areas there also are regions of crustal extension and accretion in the backarc basins that are located on the landward sides of many destructive plate margins.Collisional orogens develop where a continent or island arc collides with a continental margin as a result of subduction. collisional and noncollisional orogens can be explained by differences in the strength and rheology of the continental lithosphere and by processes that influence these properties during orogenesis.Seismic Imaging Difficulties-In triangle zones, several factors reduce the effectiveness of seismic methods. The topography in the central part of the triangle zone is usually rugged and is associated with near-surface velocity inversions which degrade the quality of the seismic image. These characteristics lead to low signal-to-noise ratio, inadequate penetration of energy through overburden, poor geophone coupling with the surface and wave scattering. Depth Seismic Imaging Techniques-Seismic processing relates to the process of altering the seismic data to suppress noise, enhancing the desired signal (higher signal-to-noise ratio) and migrating seismic events to their appropriate location in space and depth. Processing steps generally include analysis of velocities, static corrections, moveout corrections, stacking and migration. Exploration seismology Bow-tie effect -Shadow Zones-areas with no reflections (dead areas). These are called shadow zones and are common in the vicinity of faults and other discontinuous areas in the subsurface. Shadow zones result when energy from a reflector is focused on receivers that produce other traces. As a result, reflectors are not shown in their true positions. Subsurface Discontinuities-Diffractions occur at discontinuities in the subsurface such as faults and velocity discontinuities (as at “bright spot” terminations). Bow-tie effect caused by the two deep-seated synclines. Seismic imaging of thrust faults and structural damage-deepwater thrust belts, Imaging deformation in submarine thrust belts using seismic attributes,Imaging thrust and fault zones using 3D seismic image processing techniques, Balanced structural cross sections seismic interpretation pitfalls checking, The seismic pitfalls can originate due to any or all of the limitations of data acquisition, processing, interpretation of the subsurface geology,Pitfalls and limitations in seismic attribute interpretation of tectonic features, Seismic attributes are routinely used to accelerate and quantify the interpretation of tectonic features in 3D seismic data. Coherence (or variance) cubes delineate the edges of megablocks and faulted strata, curvature delineates folds and flexures, while spectral components delineate lateral changes in thickness and lithology. Carbon capture and geological storage leakage surveillance because fault behave as a seal or a conduit for hydrocarbon transportation to a trap,etc.

Keywords: tectonics, seismic imaging, fold and thrust belts, seismic interpretation

Procedia PDF Downloads 70
1590 Development of Starch Nanoparticles as Vehicles for Curcumin Delivery

Authors: Fernando G. Torres, Omar P. Troncoso

Abstract:

Starch is a highly biocompatible, non-toxic, and biodegradable polymer. It is widely used in biomedical applications, including drug delivery systems and tissue engineering scaffolds. Curcumin, a phenolic compound found in the dried root of Curcuma longa, has been used as a nutritional supplement due to its antimicrobial, anti-inflammatory, and antioxidant effects. However, the major problem with ingesting curcumin by itself is its poor bioavailability due to its poor absorption and rapid metabolism. In this study, we report a novel methodology to prepare starch nanoparticles loaded with curcumin. The nanoparticles were synthesized via nanoprecipitation of starch granules extracted from native Andean potatoes (Solanum tuberosum ssp. and Andigena var Huamantanga varieties). The nanoparticles were crosslinked and stabilized by using sodium tripolyphosphate and Tween®80, respectively. The characterization of the nanoparticles loaded with curcumin was assessed by Fourier Transform Infrared Spectroscopy, Dynamic Light Scattering, Zeta potential, and Differential scanning calorimetry. UV-vis spectrophotometry was used to evaluate the loading efficiency and capacity of the samples. The results showed that native starch nanoparticles could be used to prepare promising nanocarriers for the controlled release of curcumin.

Keywords: starch nanoparticle, nanoprecipitation, curcumin, biomedical applications

Procedia PDF Downloads 127
1589 Effect of Fabrication Errors on High Frequency Filter Circuits

Authors: Wesam Ali

Abstract:

This paper provides useful guidelines to the circuit designers on the magnitude of fabrication errors in multilayer millimeter-wave components that are acceptable and presents data not previously reported in the literature. A particularly significant error that was quantified was that of skew between conductors on different layers, where it was found that a skew angle of only 0.1° resulted in very significant changes in bandwidth and insertion loss. The work was supported by a detailed investigation on a 35GHz, multilayer edge-coupled band-pass filter, which was fabricated on alumina substrates using photoimageable thick film process.

Keywords: fabrication errors, multilayer, high frequency band, photoimagable technology

Procedia PDF Downloads 472
1588 A Strategy Therapy for Retinitis Pigmentosa Induced by Argon Laser in Rabbits by High Dose Adult Stem Cells

Authors: Hager E. Amer, Hany El Saftawy, Laila Rashed, Ahmed M. Ata, Fatma Metwally, Hesham Mettawei, Hossam E. Sayed, Tamer Adel, Kareem M. El Sawah

Abstract:

Aim: The purpose of this study is to regenerate the damaged photoreceptor cells as a result of argon laser as a model of Retinitis Pigmentosa in rabbits' retina by using adult stem cells from rabbits' bone marrow. Background: Retinitis pigmentosa (RP) is a group of inherited disorders that primarily affect photoreceptor and pigment epithelium function. RP leads to loss of the rod outer segment and shorten the photoreceptor layer and expose the photoreceptor cell body to high-pressure levels in oxygen (oxidative stress) leads to apoptosis to the rod and cone cells. In particular, there is no specific treatment for retinitis pigmentosa. Materials and Methods: Forty Two Giant (Rex) rabbits were used in this experiment divided into 3 groups: Group 1: Control (6 rabbits), Group 2: Argon laser radiated as a model of retinitis pigmentosa (12 rabbits), Group 3: Laser radiated and treated by 6 million stem cells (12 rabbits). The last two groups are divided each into two subgroups each subgroup contains 6 rabbits, the ophthalmological examination was performed on rabbits, blood samples and retina samples were taken after 25 days and after 36 days from the laser radiation (10 days and 21 days after stem cells insertion in group 3) to perform the biochemical analysis. Results: Compared to control Group, a decrease of ERG wave amplitude and antioxidant substances (Glutathione) in blood and retina in group 2, and an increase of oxidative stress substances (Nitric oxide, Malonaldehyde, and carponyl protein) and apoptotic substances (Advanced glycation end product and M-metalloproteinase) in blood and retina. Compared to group 2, mostly increases of antioxidant substances and ERG wave amplitude in group 3, and mostly decreases in oxidative stress substances and apoptotic substances. Conclusion: Insertion of 6 million stem cells intravitreous gives good results in regeneration of the damaged photoreceptor cells after 21 days.

Keywords: retinitis pigmentosa, stem cells, argon laser, oxidative stress, apoptosis

Procedia PDF Downloads 198
1587 Existence of Nano-Organic Carbon Particles below the Size Range of 10 nm in the Indoor Air Environment

Authors: Bireswar Paul, Amitava Datta

Abstract:

Indoor air environment is a big concern in the last few decades in the developing countries, with increased focus on monitoring the air quality. In this work, an experimental study has been conducted to establish the existence of carbon nanoparticles below the size range of 10 nm in the non-sooting zone of a LPG/air partially premixed flame. Mainly, four optical techniques, UV absorption spectroscopy, fluorescence spectroscopy, dynamic light scattering and TEM have been used to characterize and measure the size of carbon nanoparticles in the sampled materials collected from the inner surface of the flame front. The existence of the carbon nanoparticles in the sampled material has been confirmed with the typical nature of the absorption and fluorescence spectra already reported in the literature. The band gap energy shows that the particles are made up of three to six aromatic rings. The size measurement by DLS technique also shows that the particles below the size range of 10 nm. The results of DLS are also corroborated by the TEM image of the same material. 

Keywords: indoor air, carbon nanoparticle, lpg, partially premixed flame, optical techniques

Procedia PDF Downloads 277
1586 Measurement of Viscosity and Moisture of Oil in Supradistribution Transformers Using Ultrasonic Waves

Authors: Ehsan Kadkhodaie, Shahin Parvar, Soroush Senemar, Mostafa Shriat, Abdolrasoul Malekpour

Abstract:

The role of oil in supra distribution transformers is so critical and, several standards in determining the quality of oil have been offered. So far, moisture, viscosity and insulation protection of the oil have been measured based on mechanical and chemical methods and systems such as kart fisher, falling ball and TDM 4000 that most of these techniques are destructive and have many problems such as pollution. In this study, due to the properties of oil and also physical behavior of ultrasound wave new method was designed to in the determination of oil indicators including viscosity and moisture. The results show the oil viscosity can be found from the relationship μ = 42.086/√EE and moisture from (PLUS+) = −15.65 (PPM) + 26040 relationship.

Keywords: oil, viscosity, moisture, ultrasonic waves

Procedia PDF Downloads 581
1585 Inbreeding Study Using Runs of Homozygosity in Nelore Beef Cattle

Authors: Priscila A. Bernardes, Marcos E. Buzanskas, Luciana C. A. Regitano, Ricardo V. Ventura, Danisio P. Munari

Abstract:

The best linear unbiased predictor (BLUP) is a method commonly used in genetic evaluations of breeding programs. However, this approach can lead to higher inbreeding coefficients in the population due to the intensive use of few bulls with higher genetic potential, usually presenting some degree of relatedness. High levels of inbreeding are associated to low genetic viability, fertility, and performance for some economically important traits and therefore, should be constantly monitored. Unreliable pedigree data can also lead to misleading results. Genomic information (i.e., single nucleotide polymorphism – SNP) is a useful tool to estimate the inbreeding coefficient. Runs of homozygosity have been used to evaluate homozygous segments inherited due to direct or collateral inbreeding and allows inferring population selection history. This study aimed to evaluate runs of homozygosity (ROH) and inbreeding in a population of Nelore beef cattle. A total of 814 animals were genotyped with the Illumina BovineHD BeadChip and the quality control was carried out excluding SNPs located in non-autosomal regions, with unknown position, with a p-value in the Hardy-Weinberg equilibrium lower than 10⁻⁵, call rate lower than 0.98 and samples with the call rate lower than 0.90. After the quality control, 809 animals and 509,107 SNPs remained for analyses. For the ROH analysis, PLINK software was used considering segments with at least 50 SNPs with a minimum length of 1Mb in each animal. The inbreeding coefficient was calculated using the ratio between the sum of all ROH sizes and the size of the whole genome (2,548,724kb). A total of 25.711 ROH were observed, presenting mean, median, minimum, and maximum length of 3.34Mb, 2Mb, 1Mb, and 80.8Mb, respectively. The number of SNPs present in ROH segments varied from 50 to 14.954. The longest ROH length was observed in one animal, which presented a length of 634Mb (24.88% of the genome). Four bulls were among the 10 animals with the longest extension of ROH, presenting 11% of ROH with length higher than 10Mb. Segments longer than 10Mb indicate recent inbreeding. Therefore, the results indicate an intensive use of few sires in the studied data. The distribution of ROH along the chromosomes showed that chromosomes 5 and 6 presented a large number of segments when compared to other chromosomes. The mean, median, minimum, and maximum inbreeding coefficients were 5.84%, 5.40%, 0.00%, and 24.88%, respectively. Although the mean inbreeding was considered low, the ROH indicates a recent and intensive use of few sires, which should be avoided for the genetic progress of breed.

Keywords: autozygosity, Bos taurus indicus, genomic information, single nucleotide polymorphism

Procedia PDF Downloads 150
1584 Retrieval of Aerosol Optical Depth and Correlation Analysis of PM2.5 Based on GF-1 Wide Field of View Images

Authors: Bo Wang

Abstract:

This paper proposes a method that can estimate PM2.5 by the images of GF-1 Satellite that called WFOV images (Wide Field of View). AOD (Aerosol Optical Depth) over land surfaces was retrieved in Shanghai area based on DDV (Dark Dense Vegetation) method. PM2.5 information, gathered from ground monitoring stations hourly, was fitted with AOD using different polynomial coefficients, and then the correlation coefficient between them was calculated. The results showed that, the GF-1 WFOV images can meet the requirement of retrieving AOD, and the correlation coefficient between the retrieved AOD and PM2.5 was high. If more detailed and comprehensive data is provided, the accuracy could be improved and the parameters can be more precise in the future.

Keywords: remote sensing retrieve, PM 2.5, GF-1, aerosol optical depth

Procedia PDF Downloads 244
1583 Network Analysis to Reveal Microbial Community Dynamics in the Coral Reef Ocean

Authors: Keigo Ide, Toru Maruyama, Michihiro Ito, Hiroyuki Fujimura, Yoshikatu Nakano, Shoichiro Suda, Sachiyo Aburatani, Haruko Takeyama

Abstract:

Understanding environmental system is one of the important tasks. In recent years, conservation of coral environments has been focused for biodiversity issues. The damage of coral reef under environmental impacts has been observed worldwide. However, the casual relationship between damage of coral and environmental impacts has not been clearly understood. On the other hand, structure/diversity of marine bacterial community may be relatively robust under the certain strength of environmental impact. To evaluate the coral environment conditions, it is necessary to investigate relationship between marine bacterial composition in coral reef and environmental factors. In this study, the Time Scale Network Analysis was developed and applied to analyze the marine environmental data for investigating the relationship among coral, bacterial community compositions and environmental factors. Seawater samples were collected fifteen times from November 2014 to May 2016 at two locations, Ishikawabaru and South of Sesoko in Sesoko Island, Okinawa. The physicochemical factors such as temperature, photosynthetic active radiation, dissolved oxygen, turbidity, pH, salinity, chlorophyll, dissolved organic matter and depth were measured at the coral reef area. Metagenome and metatranscriptome in seawater of coral reef were analyzed as the biological factors. Metagenome data was used to clarify marine bacterial community composition. In addition, functional gene composition was estimated from metatranscriptome. For speculating the relationships between physicochemical and biological factors, cross-correlation analysis was applied to time scale data. Even though cross-correlation coefficients usually include the time precedence information, it also included indirect interactions between the variables. To elucidate the direct regulations between both factors, partial correlation coefficients were combined with cross correlation. This analysis was performed against all parameters such as the bacterial composition, the functional gene composition and the physicochemical factors. As the results, time scale network analysis revealed the direct regulation of seawater temperature by photosynthetic active radiation. In addition, concentration of dissolved oxygen regulated the value of chlorophyll. Some reasonable regulatory relationships between environmental factors indicate some part of mechanisms in coral reef area.

Keywords: coral environment, marine microbiology, network analysis, omics data analysis

Procedia PDF Downloads 254
1582 Utilizing Google Earth for Internet GIS

Authors: Alireza Derambakhsh

Abstract:

The objective of this examination is to explore the capability of utilizing Google Earth for Internet GIS applications. The study particularly analyzes the utilization of vector and characteristic information and the capability of showing and preparing this information in new ways utilizing the Google Earth stage. It has progressively been perceived that future improvements in GIS will fixate on Internet GIS, and in three noteworthy territories: GIS information access, spatial data scattering and GIS displaying/preparing. Google Earth is one of the group of geobrowsers that offer a free and simple to utilize administration that empower information with a spatial part to be overlain on top of a 3-D model of the Earth. This examination makes a methodological structure to accomplish its objective that comprises of three noteworthy parts: A database level, an application level and a customer level. As verification of idea a web model has been produced, which incorporates a differing scope of datasets and lets clients direst inquiries and make perceptions of this custom information. The outcomes uncovered that both vector and property information can be successfully spoken to and imagined utilizing Google Earth. In addition, the usefulness to question custom information and envision results has been added to the Google Earth stage.

Keywords: Google earth, internet GIS, vector, characteristic information

Procedia PDF Downloads 308
1581 Television Commercial Ideation: Considerations for the Future

Authors: Rashid Farooq, Moazzam Naseer, Rehan Hasan

Abstract:

Increasing challenges posed to the creativity in the discipline of advertising during time’s movement towards the maturity of The Third Wave – a concept of change by Toffler, have to be the major theme of this study. Creative concepts for the changing media landscape are becoming a challenge for the creative industry as Stein says that the usefulness is a dimension no creative work could avoid. Furthermore, Spencer points out that the global capitalist society provides a base for the development of digital technologies. Innovation within the discipline of creativity is reshaping this process. In this review article, the role of creativity and innovation in the development and delivery of the message has to be examined.

Keywords: advertising, creativity, ideation, new media

Procedia PDF Downloads 218
1580 To Remit or not to Remit: It is a Question of Interpersonal Trust

Authors: Kasmaoui Kamal, Makhlouf farid

Abstract:

This article seeks to assess the role of the level of interpersonal trust in a country in the remittance landscape. Using historical data from the 2010-2014 wave of the World Value Survey (WVS) for interpersonal trust, our findings underline the substitution role played by the interpersonal trust with remittances. More accurately, remittances tend to drop when the rate of interpersonal trust in the country of origin is high. Overall, a rise in trust is likely to underpin social cohesion, limiting, therefore, the need for remittances. These results are still fairly solid and unambiguous after controlling for confounding factors and possible reverse causality.

Keywords: interpersonal trust, remittances, social capital, social cohesion

Procedia PDF Downloads 102
1579 Numerical Modeling of Storm Swells in Harbor by Boussinesq Equations Model

Authors: Mustapha Kamel Mihoubi, Hocine Dahmani

Abstract:

The purpose of work is to study the phenomenon of agitation of storm waves at basin caused by different directions of waves relative to the current provision thrown numerical model based on the equation in shallow water using Boussinesq model MIKE 21 BW. According to the diminishing effect of penetration of a wave optimal solution will be available to be reproduced in reduced model. Another alternative arrangement throws will be proposed to reduce the agitation and the effects of the swell reflection caused by the penetration of waves in the harbor.

Keywords: agitation, Boussinesq equations, combination, harbor

Procedia PDF Downloads 389
1578 Stability Analysis of Three-Lobe Journal Bearing Lubricated with a Micropolar Fluids

Authors: Boualem Chetti

Abstract:

The dynamic characteristics of a three-lobe journal bearing lubricated with micropolar fluids are determined by the linear stability theory. Lubricating oil containing additives and contaminants is modeled as micropolar fluid. The modified Reynolds equation is obtained using the micropolar lubrication theory and the finite difference technique has been used to solve it. The dynamic characteristics in terms of stiffness, damping coefficients, the critical mass and whirl ratio are determined for various values of size of material characteristic length and the coupling number. The computed results show compared with Newtonian fluids, that micropolar fluid exhibits better stability.

Keywords: three-lobe bearings, micropolar fluid, dynamic characteristics, stability analysis

Procedia PDF Downloads 361
1577 Seismic History and Liquefaction Resistance: A Comparative Study of Sites in California

Authors: Tarek Abdoun, Waleed Elsekelly

Abstract:

Introduction: Liquefaction of soils during earthquakes can have significant consequences on the stability of structures and infrastructure. This study focuses on comparing two liquefaction case histories in California, namely the response of the Wildlife site in the Imperial Valley to the 2010 El-Mayor Cucapah earthquake (Mw = 7.2, amax = 0.15g) and the response of the Treasure Island Fire Station (F.S.) site in the San Francisco Bay area to the 1989 Loma Prieta Earthquake (Mw = 6.9, amax = 0.16g). Both case histories involve liquefiable layers of silty sand with non-plastic fines, similar shear wave velocities, low CPT cone penetration resistances, and groundwater tables at similar depths. The liquefaction charts based on shear wave velocity field predict liquefaction at both sites. However, a significant difference arises in their pore pressure responses during the earthquakes. The Wildlife site did not experience liquefaction, as evidenced by piezometer data, while the Treasure Island F.S. site did liquefy during the shaking. Objective: The primary objective of this study is to investigate and understand the reason for the contrasting pore pressure responses observed at the Wildlife site and the Treasure Island F.S. site despite their similar geological characteristics and predicted liquefaction potential. By conducting a detailed analysis of similarities and differences between the two case histories, the objective is to identify the factors that contributed to the higher liquefaction resistance exhibited by the Wildlife site. Methodology: To achieve this objective, the geological and seismic data available for both sites were gathered and analyzed. Then their soil profiles, seismic characteristics, and liquefaction potential as predicted by shear wave velocity-based liquefaction charts were analyzed. Furthermore, the seismic histories of both regions were examined. The number of previous earthquakes capable of generating significant excess pore pressures for each critical layer was assessed. This analysis involved estimating the total seismic activity that the Wildlife and Treasure Island F.S. critical layers experienced over time. In addition to historical data, centrifuge and large-scale experiments were conducted to explore the impact of prior seismic activity on liquefaction resistance. These findings served as supporting evidence for the investigation. Conclusions: The higher liquefaction resistance observed at the Wildlife site and other sites in the Imperial Valley can be attributed to preshaking by previous earthquakes. The Wildlife critical layer was subjected to a substantially greater number of seismic events capable of generating significant excess pore pressures over time compared to the Treasure Island F.S. layer. This crucial disparity arises from the difference in seismic activity between the two regions in the past century. In conclusion, this research sheds light on the complex interplay between geological characteristics, seismic history, and liquefaction behavior. It emphasizes the significant impact of past seismic activity on liquefaction resistance and can provide valuable insights for evaluating the stability of sandy sites in other seismic regions.

Keywords: liquefaction, case histories, centrifuge, preshaking

Procedia PDF Downloads 75
1576 Numerical Simulation Using Lattice Boltzmann Technique for Mass Transfer Characteristics in Liquid Jet Ejector

Authors: K. S. Agrawal

Abstract:

The performance of jet ejector was studied in detail by different authors. Several authors have studied mass transfer characteristics like interfacial area, mass transfer coefficients etc. In this paper, we have made an attempt to develop PDE model by considering bubble properties and apply Lattice-Boltzmann technique for PDE model. We may present the results for the interfacial area which we have obtained from our numerical simulation. Later the results are compared with previous work.

Keywords: jet ejector, mass transfer characteristics, numerical simulation, Lattice-Boltzmann technique

Procedia PDF Downloads 369
1575 Analysis of Active Compounds in Thai Herbs by near Infrared Spectroscopy

Authors: Chaluntorn Vichasilp, Sutee Wangtueai

Abstract:

This study aims to develop a new method to detect active compounds in Thai herbs (1-deoxynojirimycin (DNJ) in mulberry leave, anthocyanin in Mao and curcumin in turmeric) using near infrared spectroscopy (NIRs). NIRs is non-destructive technique that rapid, non-chemical involved and low-cost determination. By NIRs and chemometrics technique, it was found that the DNJ prediction equation conducted with partial least square regression with cross-validation had low accuracy R2 (0.42) and SEP (31.87 mg/100g). On the other hand, the anthocyanin prediction equation showed moderate good results (R2 and SEP of 0.78 and 0.51 mg/g) with Multiplication scattering correction at wavelength of 2000-2200 nm. The high absorption could be observed at wavelength of 2047 nm and this model could be used as screening level. For curcumin prediction, the good result was obtained when applied original spectra with smoothing technique. The wavelength of 1400-2500 nm was created regression model with R2 (0.68) and SEP (0.17 mg/g). This model had high NIRs absorption at a wavelength of 1476, 1665, 1986 and 2395 nm, respectively. NIRs showed prospective technique for detection of some active compounds in Thai herbs.

Keywords: anthocyanin, curcumin, 1-deoxynojirimycin (DNJ), near infrared spectroscopy (NIRs)

Procedia PDF Downloads 382
1574 Experimental Investigation of the Thermal Conductivity of Neodymium and Samarium Melts by a Laser Flash Technique

Authors: Igor V. Savchenko, Dmitrii A. Samoshkin

Abstract:

The active study of the properties of lanthanides has begun in the late 50s of the last century, when methods for their purification were developed and metals with a relatively low content of impurities were obtained. Nevertheless, up to date, many properties of the rare earth metals (REM) have not been experimentally investigated, or insufficiently studied. Currently, the thermal conductivity and thermal diffusivity of lanthanides have been studied most thoroughly in the low-temperature region and at moderate temperatures (near 293 K). In the high-temperature region, corresponding to the solid phase, data on the thermophysical characteristics of the REM are fragmentary and in some cases contradictory. Analysis of the literature showed that the data on the thermal conductivity and thermal diffusivity of light REM in the liquid state are few in number, little informative (only one point corresponds to the liquid state region), contradictory (the nature of the thermal conductivity change with temperature is not reproduced), as well as the results of measurements diverge significantly beyond the limits of the total errors. Thereby our experimental results allow to fill this gap and to clarify the existing information on the heat transfer coefficients of neodymium and samarium in a wide temperature range from the melting point up to 1770 K. The measurement of the thermal conductivity of investigated metallic melts was carried out by laser flash technique on an automated experimental setup LFA-427. Neodymium sample of brand NM-1 (99.21 wt % purity) and samarium sample of brand SmM-1 (99.94 wt % purity) were cut from metal ingots and then ones were annealed in a vacuum (1 mPa) at a temperature of 1400 K for 3 hours. Measuring cells of a special design from tantalum were used for experiments. Sealing of the cell with a sample inside it was carried out by argon-arc welding in the protective atmosphere of the glovebox. The glovebox was filled with argon with purity of 99.998 vol. %; argon was additionally cleaned up by continuous running through sponge titanium heated to 900–1000 K. The general systematic error in determining the thermal conductivity of investigated metallic melts was 2–5%. The approximation dependences and the reference tables of the thermal conductivity and thermal diffusivity coefficients were developed. New reliable experimental data on the transport properties of the REM and their changes in phase transitions can serve as a scientific basis for optimizing the industrial processes of production and use of these materials, as well as ones are of interest for the theory of thermophysical properties of substances, physics of metals, liquids and phase transformations.

Keywords: high temperatures, laser flash technique, liquid state, metallic melt, rare earth metals, thermal conductivity, thermal diffusivity

Procedia PDF Downloads 198
1573 Multi-Scale Spatial Difference Analysis Based on Nighttime Lighting Data

Authors: Qinke Sun, Liang Zhou

Abstract:

The ‘Dragon-Elephant Debate’ between China and India is an important manifestation of global multipolarity in the 21st century. The two rising powers have carried out economic reforms one after another in the interval of more than ten years, becoming the fastest growing developing country and emerging economy in the world. At the same time, the development differences between China and India have gradually attracted wide attention of scholars. Based on the continuous annual night light data (DMSP-OLS) from 1992 to 2012, this paper systematically compares and analyses the regional development differences between China and India by Gini coefficient, coefficient of variation, comprehensive night light index (CNLI) and hot spot analysis. The results show that: (1) China's overall expansion from 1992 to 2012 is 1.84 times that of India, in which China's change is 2.6 times and India's change is 2 times. The percentage of lights in unlighted areas in China dropped from 92% to 82%, while that in India from 71% to 50%. (2) China's new growth-oriented cities appear in Hohhot, Inner Mongolia, Ordos, and Urumqi in the west, and the declining cities are concentrated in Liaoning Province and Jilin Province in the northeast; India's new growth-oriented cities are concentrated in Chhattisgarh in the north, while the declining areas are distributed in Uttar Pradesh. (3) China's differences on different scales are lower than India's, and regional inequality of development is gradually narrowing. Gini coefficients at the regional and provincial levels have decreased from 0.29, 0.44 to 0.24 and 0.38, respectively, while regional inequality in India has slowly improved and regional differences are gradually widening, with Gini coefficients rising from 0.28 to 0.32. The provincial Gini coefficient decreased slightly from 0.64 to 0.63. (4) The spatial pattern of China's regional development is mainly east-west difference, which shows the difference between coastal and inland areas; while the spatial pattern of India's regional development is mainly north-south difference, but because the southern states are sea-dependent, it also reflects the coastal inland difference to a certain extent. (5) Beijing and Shanghai present a multi-core outward expansion model, with an average annual CNLI higher than 0.01, while New Delhi and Mumbai present the main core enhancement expansion model, with an average annual CNLI lower than 0.01, of which the average annual CNLI in Shanghai is about five times that in Mumbai.

Keywords: spatial pattern, spatial difference, DMSP-OLS, China, India

Procedia PDF Downloads 155
1572 Design of Liquid Crystal Based Tunable Reflectarray Antenna Using Slot Embedded Patch Element Configurations

Authors: M. Y. Ismail, M. Inam

Abstract:

This paper presents the design and analysis of Liquid Crystal (LC) based tunable reflect array antenna with different design configurations within X-band frequency range. The effect of LC volume used for unit cell element on frequency tunability and reflection loss performance has been investigated. Moreover different slot embedded patch element configurations have been proposed for LC based tunable reflect array antenna design with enhanced performance. The detailed fabrication and measurement procedure for different LC based unit cells has been presented. The waveguide scattering parameter measured results demonstrated that by using the circular slot embedded patch elements, the frequency tunability and dynamic phase range can be increased from 180 MHz to 200 MHz and 120° to 124° respectively. Furthermore the circular slot embedded patch element can be designed at 10 GHz resonant frequency with a patch volume of 2.71 mm3 as compared to 3.47 mm3 required for rectangular patch without slot.

Keywords: liquid crystal, tunable reflect array, frequency tunability, dynamic phase range

Procedia PDF Downloads 520
1571 Design of Chaos Algorithm Based Optimal PID Controller for SVC

Authors: Saeid Jalilzadeh

Abstract:

SVC is one of the most significant devices in FACTS technology which is used in parallel compensation, enhancing the transient stability, limiting the low frequency oscillations and etc. designing a proper controller is effective in operation of svc. In this paper the equations that describe the proposed system have been linearized and then the optimum PID controller has been designed for svc which its optimal coefficients have been earned by chaos algorithm. Quick damping of oscillations of generator is the aim of designing of optimum PID controller for svc whether the input power of generator has been changed suddenly. The system with proposed controller has been simulated for a special disturbance and the dynamic responses of generator have been presented. The simulation results showed that a system composed with proposed controller has suitable operation in fast damping of oscillations of generator.

Keywords: chaos, PID controller, SVC, frequency oscillation

Procedia PDF Downloads 441
1570 Self-Assembled Nano Aggregates Based On Polyaspartamide Graft Copolymers for pH-Controlled Release of Doxorubicin

Authors: Van Tran Thi Thuy, Cheol Won Lim, Dukjoon Kim

Abstract:

A series of biodegradable copolymers based on polyaspartamide (PASPAM) were synthesized by grafting hydrophilic O-(2-aminoethyl)-O'-methylpoly(ethylene glycol) (MPEG), hydrophobic cholic acid (CA), and pH-sensitive hydrazine (Hyd) segments on a PASPAM backbone. The hydrazine group was effectively cleaved to release doxorubicin (DOX) conjugated on PASPAM in an acidic environment. The chemical structure of the polymer and the degree of substitution of each graft segment were analyzed using FT-IR and 1H-NMR spectroscopy. The size of the MPEG/Hyd/CA-g-PASPAM copolymer self-aggregates was examined by dynamic light scattering (DLS) and transmission electron microscope (TEM). The mean diameter of the self - aggregates increased from 125 to 200 nm at pH 7.4, as the degree of substitution of CA increased from 10 to 20 %. The release kinetics of DOX was strongly affected by the pH of the releasing medium. While less than 30% of the DOX-loaded was released in about 30 h at pH 7.4, more than 60% was released at pH 5.0 within the same time. The viability tests of human breast cancer cells (MCF-7) and human embryonic kidney cells (293T) show the potential application of MPEG/Hyd/CA-g-PASPAM copolymer self-aggregates in the controlled intracellular delivery for cancer treatments.

Keywords: pH-sensitive, drug delivery, polyaspartamide, self-assembly, nano-aggregates

Procedia PDF Downloads 358