Search results for: Water pump
7869 Energy Matrices of Partially Covered Photovoltaic Thermal Flat Plate Water Collectors
Authors: Shyam, G. N. Tiwari
Abstract:
Energy matrices of flate plate water collectors partially covered by PV module have been estimated in the present study. Photovoltaic thermal (PVT) water collector assembly is consisting of 5 water collectors having 2 m^2 area which are partially covered by photovoltaic module at its lower portion (inlet) and connected in series. The annual overall thermal energy and exergy are computed by using climatic data of New Delhi provided by Indian Meteorological Department (IMD) Pune, India. The Energy payback time on overall thermal and exergy basis are found to be 1.6 years and 17.8 years respectively. For 25 years of life time of system the energy production factor and life cycle conversion efficiency are estimated to be 15.8 and 0.04 respectively on overall thermal energy basis whereas for the same life time the energy production factor and life cycle conversion efficiency on exergy basis are obtained as 1.4 and 0.001.Keywords: overall thermal energy, exergy, energy payback time, PVT water collectors
Procedia PDF Downloads 3747868 Numerical Simulation of Ultraviolet Disinfection in a Water Reactor
Authors: H. Shokouhmand, H. Sobhani, B. Sajadi, M. Degheh
Abstract:
In recent years, experimental and numerical investigation of water UV reactors has increased significantly. The main drawback of experimental methods is confined and expensive survey of UV reactors features. In this study, a CFD model utilizing the eulerian-lagrangian framework is applied to analysis the disinfection performance of a closed conduit reactor which contains four UV lamps perpendicular to the flow. A discrete ordinates (DO) model was employed to evaluate the UV irradiance field. To investigate the importance of each of lamps on the inactivation performance, in addition to the reference model (with 4 bright lamps), several models with one or two bright lamps in various arrangements were considered. All results were reported in three inactivation kinetics. The results showed that the log inactivation of the two central bright lamps model was between 88-99 percent, close to the reference model results. Also, whatever the lamps are closer to the main flow region, they have more effect on microbial inactivation. The effect of some operational parameters such as water flow rate, inlet water temperature, and lamps power were also studied.Keywords: Eulerian-Lagrangian framework, inactivation kinetics, log inactivation, water UV reactor
Procedia PDF Downloads 2517867 Development of Carrageenan-Psyllium/Montmorillonite Clay Hybrid Hydrogels for Agriculture Purpose
Authors: D. Aydinoglu, N. Karaca, O. Ceylan
Abstract:
Limited water resources on the earth come first among the most alarming issues. In this respect, several solutions from treatment of waste water to water management have been proposed. Recently, use of hydrogels as soil additive, which is one of the water management ways in agriculture, has gained increasing interest. In traditional agriculture applications, water used with irrigation aim, rapidly flows down between the pore structures in soil, without enough useful for soil. To overcome this fact and increase the abovementioned limit values, recently, several natural based hydrogels have been suggested and tested to find out their efficiency in soil. However, most of these researches have dealt with grafting of synthetic acrylate based monomers on natural gelling agents, most probably due to reinforced of the natural gels. These results motivated us to search a natural based hydrogel formulations, not including any synthetic component, and strengthened with montmorillonite clay instead of any grafting polymerization with synthetic monomer and examine their potential in this field, as well as characterize of them. With this purpose, carrageenan-psyllium/ montmorillonite hybrid hydrogels have been successively prepared. Their swelling capacities were determined both in deionized and tap water and were found to be dependent on the carrageenan, psyllium and montmorillonite ratios, as well as the water type. On the other hand, mechanical tests revealed that especially carrageenan and montmorillonite contents have a great effect on gel strength, which is one of the essential features, preventing the gels from cracking resulted in readily outflow of all the water in the gel without beneficial for soil. They found to reach 0.23 MPa. The experiments carried out with soil indicated that hydrogels significantly improved the water uptake capacities and water retention degrees of the soil from 49 g to 85 g per g of soil and from 32 to 67%, respectively, depending on the ingredient ratios. Also, biodegradation tests demonstrated that all the hydrogels undergo biodegradation, as expected from their natural origin. The overall results suggested that these hybrid hydrogels have a potential for use as soil additive and can be safely used owing to their totally natural structure.Keywords: carrageenan, hydrogel, montmorillonite, psyllium
Procedia PDF Downloads 1157866 Assessment of Heavy Metal Contamination in Ground Water in the Coastal Part of Cauvery Deltaic Region, South India
Authors: Gnanachandrasamy G., Zhou Y., Ramkumar T., Venkatramanan S., Wang S., Mo Liping, Jingru Zhang
Abstract:
In order to assess the heavy metal contamination totally fourty five groundwater samples were collected from the coastal part of Cauvery deltaic region, South India, during monsoon season in the year of 2017. The study area lies between longitudes 79º15’ to 79º 50’ E and latitudes 10º10’ to 11º20’ N with total area of 2,569 km². The concentration of As, Ba, Cd, Cr, Co, Cu, Ni, Pb, Se, and Zn were analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The heavy metals ranged between 0.007-117.8 µg/l for As, 8.503-1281 µg/l for Ba, 0.006-0.12 µg/l for Cd, 0.23-5.572µg/l for Cr, 0.44-17.9 µg/l for Co, 0.633-11.56 µg/l for Cu, 0.467-29.34 µg/l for Ni, 0.008-5.756 µg/l for Pb, 0.979 to 45.49 µg/l for Se, and 2.712-10480 µg/l for Zn in the groundwaters. A comparison of heavy metal concentration with WHO and BIS drinking water standards shows that Ni, Zn, As, Se, and Ba level is higher than the drinking water standards in some of the groundwater samples, and the concentrations of all the other heavy metals were lower than the drinking water standards. The present levels of heavy metal concentration in the studied area groundwaters are moderate to severe to public health and environmental concerns and need attention.Keywords: cauvery delta, drinking water, groundwater, heavy metals
Procedia PDF Downloads 3457865 Colour Segmentation of Satellite Imagery to Estimate Total Suspended Solid at Rawa Pening Lake, Central Java, Indonesia
Authors: Yulia Chalri, E. T. P. Lussiana, Sarifuddin Madenda, Bambang Trisakti, Yuhilza Hanum
Abstract:
Water is a natural resource needed by humans and other living creatures. The territorial water of Indonesia is 81% of the country area, consisting of inland waters and the sea. The research object is inland waters in the form of lakes and reservoirs, since 90% of inland waters are in them, therefore the water quality should be monitored. One of water quality parameters is Total Suspended Solid (TSS). Most of the earlier research did direct measurement by taking the water sample to get TSS values. This method takes a long time and needs special tools, resulting in significant cost. Remote sensing technology has solved a lot of problems, such as the mapping of watershed and sedimentation, monitoring disaster area, mapping coastline change, and weather analysis. The aim of this research is to estimate TSS of Rawa Pening lake in Central Java by using the Lansat 8 image. The result shows that the proposed method successfully estimates the Rawa Pening’s TSS. In situ TSS shows normal water quality range, and so does estimation result of segmentation method.Keywords: total suspended solid (TSS), remote sensing, image segmentation, RGB value
Procedia PDF Downloads 4127864 Inorganic Anion Removal from Water Using Natural Adsorbents
Authors: A. Ortuzar, I. Escondrillas, F. Mijangos
Abstract:
There is a need for new systems that can be attached to drinking water treatment plants and have the required treatment capacity as well as the selectivity regarding components derived from anthropogenic activities. In a context of high volumes of water and low concentration of contaminants, adsorption/interchange processes are appealing since they meet the required features. Iron oxides such as siderite and molysite, which are respectively based on FeCO3 and FeCl3, can be found in nature. In this work, their observed performance, raw or roasted at different temperatures, as adsorbents of some inorganic anions is discussed. Roasted 1:1 FeCO3: FeCl3 mixture was very selective for arsenic and allowed a 100% removal of As from a 10 mg L-1 As solution. Besides, the 1:1 FeCO3 and FeCl3 mixture roasted at 500 ºC showed good selectivity for, in order of preference, arsenate, bromate, phosphate, fluoride and nitrate anions with distribution coefficients of, respectively, 4200, 2800, 2500 0.4 and 0.03 L g-1.Keywords: drinking water, natural adsorbent materials, removal, selectivity
Procedia PDF Downloads 1877863 Characterization of Solar Panel Efficiency Using Sun Tracking Device and Cooling System
Authors: J. B. G. Ibarra, J. M. A. Gagui, E. J. T. Jonson, J. A. V. Lim
Abstract:
This paper focused on studying the performance of the solar panels that were equipped with water-spray cooling system, solar tracking system, and combination of both systems. The efficiencies were compared with the solar panels without any efficiency improvement technique. The efficiency of each setup was computed on an hourly basis every day for a month. The study compared the efficiencies and combined systems that significantly improved at a specific time of the day. The data showed that the solar tracking system had the highest efficiency during 6:00 AM to 7:45 AM. Then after 7:45 AM, the combination of both solar tracking and water-spray cooling system was the most efficient to use up to 12:00 NN. Meanwhile, from 12:00 NN to 12:45 PM, the water-spray cooling system had the significant contribution on efficiency. From 12:45 PM up to 4:30 PM, the combination of both systems was the most efficient, and lastly, from 4:30 PM to 6:00 PM, the solar tracking system was the best to use. The study intended to use solar tracking or water-spray cooling system or combined systems alternately to improve the solar panel efficiency on a specific time of the day.Keywords: solar panel efficiency, solar panel efficiency technique, solar tracking system, water-spray cooling system
Procedia PDF Downloads 1617862 The Study on Energy Saving in Clarification Process for Water Treatment Plant
Authors: Wiwat Onnakklum
Abstract:
Clarification is the turbidity removal process of water treatment plant. This paper was to study the factors affecting on energy consumption in order to control energy saving strategy. The factors studied were raw water turbidity in the range of 26-40 NTU and production rate in the range of 3.76-5.20 m³/sec. Clarifiers were sludge blanket and sludge recirculation clarifier. Experimental results found that the raw water turbidity was not affected significantly by energy consumption, while the production rate was affected significantly by energy consumption. Sludge blanket clarifier provided lower energy consumption than sludge recirculation clarifier about 32-37%. Subsequently, the operating pattern in production rate can be arranged to decreased energy consumption. The results showed that it can be reduced about 5.09 % of energy saving of clarification process about 754,655 Baht per year.Keywords: sludge blanket clarifier, sludge recirculation clarifier, water treatment plant, energy
Procedia PDF Downloads 3257861 Water Dumpflood into Multiple Low-Pressure Gas Reservoirs
Authors: S. Lertsakulpasuk, S. Athichanagorn
Abstract:
As depletion-drive gas reservoirs are abandoned when there is insufficient production rate due to pressure depletion, waterflooding has been proposed to increase the reservoir pressure in order to prolong gas production. Due to high cost, water injection may not be economically feasible. Water dumpflood into gas reservoirs is a new promising approach to increase gas recovery by maintaining reservoir pressure with much cheaper costs than conventional waterflooding. Thus, a simulation study of water dumpflood into multiple nearly abandoned or already abandoned thin-bedded gas reservoirs commonly found in the Gulf of Thailand was conducted to demonstrate the advantage of the proposed method and to determine the most suitable operational parameters for reservoirs having different system parameters. A reservoir simulation model consisting of several thin-layered depletion-drive gas reservoirs and an overlying aquifer was constructed in order to investigate the performance of the proposed method. Two producers were initially used to produce gas from the reservoirs. One of them was later converted to a dumpflood well after gas production rate started to decline due to continuous reduction in reservoir pressure. The dumpflood well was used to flow water from the aquifer to increase pressure of the gas reservoir in order to drive gas towards producer. Two main operational parameters which are wellhead pressure of producer and the time to start water dumpflood were investigated to optimize gas recovery for various systems having different gas reservoir dip angles, well spacings, aquifer sizes, and aquifer depths. This simulation study found that water dumpflood can increase gas recovery up to 12% of OGIP depending on operational conditions and system parameters. For the systems having a large aquifer and large distance between wells, it is best to start water dumpflood when the gas rate is still high since the long distance between the gas producer and dumpflood well helps delay water breakthrough at producer. As long as there is no early water breakthrough, the earlier the energy is supplied to the gas reservoirs, the better the gas recovery. On the other hand, for the systems having a small or moderate aquifer size and short distance between the two wells, performing water dumpflood when the rate is close to the economic rate is better because water is more likely to cause an early breakthrough when the distance is short. Water dumpflood into multiple nearly-depleted or depleted gas reservoirs is a novel study. The idea of using water dumpflood to increase gas recovery has been mentioned in the literature but has never been investigated. This detailed study will help a practicing engineer to understand the benefits of such method and can implement it with minimum cost and risk.Keywords: dumpflood, increase gas recovery, low-pressure gas reservoir, multiple gas reservoirs
Procedia PDF Downloads 4447860 Water Balance in the Forest Basins Essential for the Water Supply in Central America
Authors: Elena Listo Ubeda, Miguel Marchamalo Sacristan
Abstract:
The demand for water doubles every twenty years, at a rate which is twice as fast as the world´s population growth. Despite it´s great importance, water is one of the most degraded natural resources in the world, mainly because of the reduction of natural vegetation coverage, population growth, contamination and changes in the soil use which reduces its capacity to collect water. This situation is especially serious in Central America, as reflected in the Human Development reports. The objective of this project is to assist in the improvement of water production and quality in Central America. In order to do these two watersheds in Costa Rica were selected as experiments: that of the Virilla-Durazno River, located in the extreme north east of the central valley which has an Atlantic influence; and that of the Jabillo River, which flows directly into the Pacific. The Virilla river watershed is located over andisols, and that of the Jabillo River is over alfisols, and both are of great importance for water supply to the Greater Metropolitan Area and the future tourist resorts respectively, as well as for the production of agriculture, livestock and hydroelectricity. The hydrological reaction in different soil-cover complexes, varying from the secondary forest to natural vegetation and degraded pasture, was analyzed according to the evaluation of the properties of the soil, infiltration, soil compaction, as well as the effects of the soil cover complex on erosion, calculated by the C factor of the Revised Universal Soil Loss Equation (RUSLE). A water balance was defined for each watershed, in which the volume of water that enters and leaves were estimated, as well as the evapotranspiration, runoff, and infiltration. Two future scenarios, representing the implementation of reforestation and deforestation plans, were proposed, and were analyzed for the effects of the soil cover complex on the water balance in each case. The results obtained show an increase of the ground water recharge in the humid forest areas, and an extension of the study of the dry areas is proposed since the ground water recharge here is diminishing. These results are of great significance for the planning, design of Payment Schemes for Environmental Services and the improvement of the existing water supply systems. In Central America spatial planning is a priority, as are the watersheds, in order to assess the water resource socially and economically, and securing its availability for the future.Keywords: Costa Rica, infiltration, soil, water
Procedia PDF Downloads 3847859 Groundwater Geophysical Studies in the Developed and Sub-Urban BBMP Area, Bangalore, Karnataka, South India
Authors: G. Venkatesha, Urs Samarth, H. K. Ramaraju, Arun Kumar Sharma
Abstract:
The projection for Groundwater states that the total domestic water demand for greater Bangalore would increase from 1,170 MLD in 2010 to 1,336 MLD in 2016. Dependence on groundwater is ever increasing due to rapid Industrialization & Urbanization. It is estimated that almost 40% of the population of Bangalore is dependent on groundwater. Due to the unscientific disposal of domestic and industrial waste generated, groundwater is getting highly polluted in the city. The scale of this impact will depend mainly upon the water-service infrastructure, the superficial geology and the regional setting. The quality of ground water is equally important as that of quantity. Jointed and fractured granites and gneisses constitute the major aquifer system of BBMP area. Two new observatory Borewells were drilled and lithology report has been prepared. Petrographic Analysis (XRD/XRF) and Water quality Analysis were carried out as per the standard methods. Petrographic samples were analysed by collecting chip of rock from the borewell for every 20ft depth, most of the samples were similar and samples were identified as Biotite-Gneiss, Schistose Amphibolite. Water quality analysis was carried out for individual chemical parameters for two borewells drilled. 1st Borewell struck water at 150ft (Total depth-200ft) & 2nd struck at 740ft (Total depth-960ft). 5 water samples were collected till end of depth in each borewell. Chemical parameter values such as, Total Hardness (360-348, 280-320) mg/ltr, Nitrate (12.24-13.5, 45-48) mg/ltr, Chloride (104-90, 70-70)mg/ltr, Fe (0.75-0.09, 1.288-0.312)mg/ltr etc. are calculated respectively. Water samples were analysed from various parts of BBMP covering 750 sq kms, also thematic maps (IDW method) of water quality is generated for these samples for Post-Monsoon season. The study aims to explore the sub-surface Lithological layers and the thickness of weathered zone, which indirectly helps to know the Groundwater pollution source near surface water bodies, dug wells, etc. The above data are interpreted for future ground water resources planning and management.Keywords: lithology, petrographic, pollution, urbanization
Procedia PDF Downloads 2937858 A Social-Environmental Way for Production of Building Materials with Solid Residues
Authors: Flavio Araujo, Julio Lima, Paulo Scalize, Antonio Albuquerque
Abstract:
Water treatment residues (WTR) are produced during water treatment and have recently been seen as a reusable material. The aim of this research was to perform characterizations of the residue generated in the Meia-Ponte Water Treatment Plant, in Goiania, Brazil, seeking to obtain normative parameters and consider sustainable alternatives for reincorporation of the residues in the productive chain for manufacturing various materials construction. In order to reduce the environmental liabilities generated by sanitation companies and discontinue unsustainable forms of disposal. The analyzes performed: Granulometry, Scanning Electron Microscopy, and X-Ray Diffraction demonstrated the potential application of residues to replace the soil and sand, because it has characteristics compatible with small aggregate and can be used as feed stock for the manufacture of materials as ceramic and soil-cement bricks, mortars, interlocking floors and concrete artifacts.Keywords: residue, sustainable, water treatment plants, WTR
Procedia PDF Downloads 5487857 Copper/Nickel Sulfide Catalyst Electrodeposited on Nickel Foam for Efficient Water Splitting
Authors: Hamad Almohamadi, Nabeel Alharthi, Majed Alamoudi
Abstract:
Biphasic electrodes featuring CuSx/NiSx electrodeposited on nickel foam have been investigated for their electrocatalytic activity in water splitting. The study investigates the impacts of an S-vacancy induced biphasic design on the overpotential and Tafel slope. According to the findings, the NiSx/CuSx/NF electrode with S-vacancy defects displays stronger oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) activity with lower overpotential and a steeper Tafel slope than the non-defect sample. NiSx/CuSx/NF exhibits the lowest overpotential value of 212 mV vs reversible hydrogen electrode (RHE) for OER and −109 mV vs RHE for HER at 10 mA cm−2. Tafel slope of 25.4 mV dec−1 for OER and −108 mV dec−1 for OER found of that electrode. The electrochemical surface area (ECSA) and diffusion impedance of the electrode is calculated. The maximum ECSA, lowest series resistance and lowest charge transfer resistance are found in the *NiSx/CuSx/NF sample with S-vacancy defects, showing increased electrical conductivity and quick charge transfer kinetics. The *NiSx/CuSx/NF electrode was found to be stable for 80 hours in pure water splitting and 20 hours in sea-water splitting. The investigation comes to the conclusion that the enhanced water splitting activity and electrical conductivity of the electrode are caused by S-vacancy defects resulting in improved water splitting performance.Keywords: water splitting, electrocatalyst, biphasic design, electrodeposition
Procedia PDF Downloads 747856 Assess Changes in Groundwater Dynamics Caused by Mini Dam Construction in Arid Zone of District Killa Abdullah, Pakistan
Authors: Akhtar Malik Muhammad, Agha Mirwais
Abstract:
Dams are considered to recharge aquifers by raising the water table, especially the ones near wells. The present study investigates the impact of dams on groundwater recharge in Jilga, Pakistan. The comparative analysis of changes in the groundwater table of the year 2012 and 2019 was carried out using ArcGIS 10.5 through the kriging method and remote sensing techniques to evaluate the mini dam's impact on the upstream area. Arc Info Spatial Analyze extension was used to find static water level maps of the years. The water table was observed minimum 67.08 feet and maximum 130.09 feet in 2012 whereas in 2019 the minimum water table level 49.89 feet and maximum 115.85 feet. Groundwater recharge with different ratio was noted, but the most significant was at Rabbani dam with 26ft due to supported lithology conditions and the lowest recharge was found at Garang dam14ft. The overall positive trend indicates the rehabilitation of dead karez and agriculture activities by increasing 36% the vegetation area in 2019. An over 6% increase in human settlement indicates socioeconomic development. Thus, it highlights the need for preferential focus on the construction of the dam so that the water level could be sustained to cater to the agricultural and domestic needs of the local population around the yearKeywords: water table, GIS, land cover, mini dams, agriculture
Procedia PDF Downloads 847855 A Study on the Safety Evaluation of Pier According to the Water Level Change by the Monte-Carlo Method
Authors: Minho Kwon, Jeonghee Lim, Yeongseok Jeong, Donghoon Shin, Kiyoung Kim
Abstract:
Recently, global warming phenomenon has led to natural disasters caused by global environmental changes, and due to abnormal weather events, the frequency and intensity of heavy rain storm typhoons are increasing. Therefore, it is imperative to prepare for future heavy rain storms and typhoons. This study selects arbitrary target bridges and performs numerical analysis to evaluate the safety of bridge piers in the event that the water level changes. The numerical model is based on two-dimensional surface elements. Actual reinforced concrete was simulated by modeling concrete to include reinforcements, and a contact boundary model was applied between the ground and the concrete. The water level applied to the piers was considered at 18 levels between 7.5 m and 16.1 m. The elastic modulus, compressive strength, tensile strength, and yield strength of the reinforced concrete were calculated using 250 random combinations and numerical analysis was carried out for each water level. In the results of analysis, the bridge exceeded the stated limit at 15.0 m. At the maximum water level of 16.1m, the concrete’s failure rate was 35.2%, but the probability that the reinforcement would fail was 61.2%.Keywords: Monte-Carlo method, pier, water level change, limit state
Procedia PDF Downloads 2867854 Improvement of Oran Sebkha Soil by Dredged Sediments from Chorfa Dam in Algeria
Authors: Z. Aloui-Labiod, H. Trouzine, M. S. Ghembaza
Abstract:
Geotechnical properties of dredged sediment from Chorfa dam in Algeria and their mixtures (5%, 10%, 15%, 20%, and 25%)with bentonite were investigated through with bentonite were investigated through a series of laboratory experimental tests in order to investigate possibilities of their usage as a barrier against the spread out of the Sebkha of Oran in the northwest of Algeria. Grain size and Atterberg limits tests, chemical and mineral analyses, and compaction, vertical swelling, and horizontal and vertical permeability tests were performed on the soils and their mixtures using tap water and the salty Sebkha water. The results indicate that the bentonite specimens remolded and inundated with Sebkha salty water have less swell potential than those prepared with tap water. The addition of bentonite to Chorfa sediment increases the density, limit liquid, specific surface, and swell potential of the mixtures. Compaction tests show a decrease in the optimum moisture and an increase in maximum dry densities as the bentonite content increases. The horizontal and vertical permeabilities decrease relatively with the addition of bentonite.Keywords: dredged sediment, bentonite, salty water, barrier
Procedia PDF Downloads 4287853 Effect of cold water immersion on bone mineral metabolism in aging rats
Authors: Irena Baranowska-Bosiacka, Mateusz Bosiacki, Patrycja Kupnicka, Anna Lubkowska, Dariusz Chlubek
Abstract:
Physical activity and a balanced diet are among the key factors of "healthy ageing". Physical effort, including swimming in cold water (including bathing in natural water reservoirs), is widely recognized as a hardening factor, with a positive effect on the mental and physical health. At the same time, there is little scientific evidence to verify this hypothesis. In the literature to date, it is possible to obtain data on the impact of these factors on selected physiological and biochemical parameters of the blood, at the same time there are no results of research on the effect of immersing in cold water on mineral metabolism, especially bones, hence it seems important to perform such an analysis in relation to the key elements such as calcium (Ca), magnesium (Mg) and phosphorus (P). Taking the above into account, a hypothesis was put forward about the possibility of a positive effect of exercise in cold water on mineral metabolism and bone density in aging rats. The aim of the study was to evaluate the effect of an 8-week swimming training on mineral metabolism and bone density in aging rats in response to exercise in cold water (5oC) in comparison to swimming in thermal comfort (36oC) and sedentary (control) rats of both sexes. The examination of the concentration of the examined elements in the bones was carried out using inductively coupled plasma atomic emission spectrometry (ICP-OES). The mineral density of the femurs of the rats was measured using the Hologic Horizon DEXA System® densitometer. The results of our study showed that swimming in cold water affects bone mineral metabolism in aging rats by changing the Ca, Mg, P concentration and at the same time increasing their bone density. In males, a decrease in Mg concentration and no changes in bone density were observed. In the light of the research results, it seems that swimming in cold water may be a factor that positively modifies the bone aging process by improving the mechanisms affecting their density.Keywords: swimming in cold water, adaptation to cold water, bone mineral metabolism, aging
Procedia PDF Downloads 607852 A Comparison of Direct Water Injection with Membrane Humidifier for Proton Exchange Membrane Fuel Cells Humification
Authors: Flavien Marteau, Pedro Affonso Nóbrega, Pascal Biwole, Nicolas Autrusson, Iona De Bievre, Christian Beauger
Abstract:
Effective water management is essential for the optimal performance of fuel cells. For this reason, many vehicle systems use a membrane humidifier, a passive device that humidifies the air before the cathode inlet. Although they offer good performance, humidifiers are voluminous, costly, and fragile, hence the desire to find an alternative. Direct water injection could be an option, although this method lacks maturity. It consists of injecting liquid water as a spray in the dry heated air coming out from the compressor. This work focuses on the evaluation of direct water injection and its performance compared to the membrane humidifier selected as a reference. Two architectures were experimentally tested to humidify an industrial 2 kW short stack made up of 20 cells of 150 cm² each. For the reference architecture, the inlet air is humidified with a commercial membrane humidifier. For the direct water injection architecture, a pneumatic nozzle was selected to generate a fine spray in the air flow with a Sauter mean diameter of about 20 μm. Initial performance was compared over the entire range of current based on polarisation curves. Then, the influence of various parameters impacting water management was studied, such as the temperature, the gas stoichiometry, and the water injection flow rate. The experimental results obtained confirm the possibility of humidifying the fuel cell using direct water injection. This study, however shows the limits of this humidification method, the mean cell voltage being significantly lower in some operating conditions with direct water injection than with the membrane humidifier. The voltage drop reaches 30 mV per cell (4 %) at 1 A/cm² (1,8 bara, 80 °C) and increases in more demanding humidification conditions. It is noteworthy that the heat of compression available is not enough to evaporate all the injected liquid water in the case of DWI, resulting in a mix of liquid and vapour water entering the fuel cell, whereas only vapour is present with the humidifier. Variation of the injection flow rate shows that part of the injected water is useless for humidification and seems to cross channels without reaching the membrane. The stack was successfully humidified thanks to direct water injection. Nevertheless, our work shows that its implementation requires substantial adaptations and may reduce the fuel cell stack performance when compared to conventional membrane humidifiers, but opportunities for optimisation have been identified.Keywords: cathode humidification, direct water injection, membrane humidifier, proton exchange membrane fuel cell
Procedia PDF Downloads 437851 The Influence of Sulfate and Magnesium Ions on the Growth Kinetics of CaCO3
Authors: Kotbia Labiod, Mohamed Mouldi Tlili
Abstract:
The presence of different mineral salts in natural waters may precipitate and form hard deposits in water distribution systems. In this respect, we have developed numerous works on scaling by Algerian water with a very high hardness of 102 °F. The aim of our work is to study the influence of water dynamics and its composition on mineral salts on the precipitation of calcium carbonate (CaCO3). To achieve this objective, we have adopted two precipitation techniques based on controlled degassing of dissolved CO2. This study will identify the causes and provide answers to this complex phenomenon.Keywords: calcium carbonate, controlled degassing, precipitation, scaling
Procedia PDF Downloads 2337850 Crop Water Productivity for Sunflower under Different Irrigation Regimes and Plant Spacing, at Gezira Clay Soil, Sudan
Authors: R. A. Eman Elsheikh, Bart Schultz, Abraham Mehari Haile, Hussein S. Adam
Abstract:
A field experiment was conducted at Gezira research station farm during the winter season in the third week of November 2012, in WadMedani, Sudan (Lat 14.23 W, Long 33.39 E and altitude 405 m above sea level, in deep cracking alkaline heavy clay Vertisols). The objective of this study was to determine the effect of three different irrigation for 10 days (W1), 15 days (W2) and 20 days (W3) and for two rows of 30 cm (S1) and 40 cm (S2), respectively. The experimental design was split plot with three replicates. The sunflower test variety was Hysun 33 cultivar. The seasonal water applied during the study was 6898, 6647, 5256, 5435, 5214, 5416 m3/ha for W1S1, W1S2, W2S1, W2S2, W3S1 and W3S2 respectively. The seed yield obtained for the above treatment in that sequence was 4208, 5542, 5167, 4579, 2931, 2936 kg/ha. The corresponding computed water productivity was 0.61, 0.82, 0.87, 0.95, 0.54, 0.56 kg/m3. The study clearly indicated that the highest seed yield was obtained when the crop was sown at 40 cm row spacing and was irrigated every 10 days (W1S2), followed by W2S1.Keywords: water productivity, water deficit, sunflower, plant spacing
Procedia PDF Downloads 3497849 Strategic Management for Corporate Social Responsibility in Colombian Industries: A Typology of CSR
Authors: Iris Maria Velez Osorio
Abstract:
There has been in the last decade a concern about the environment, particularly about clean and enough water for human consumption but, some enterprises had some trouble to understand the limited resources in the environment. This research tries to understand how some industries are better oriented to the preservation of the environment through investment for strategic management of scarce resources and try in the best way possible, the contaminants. It was made an industry classification since four different group of theories for Corporate Social Responsibility agree with variables of: investment in environmental care, water protection, and residues treatment finding different levels of commitment with CSR.Keywords: corporate social responsibility, environment, strategic management, water
Procedia PDF Downloads 3767848 Experimental Evaluation of Electrocoagulation for Hardness Removal of Bore Well Water
Authors: Pooja Kumbhare
Abstract:
Water is an important resource for the survival of life. The inadequate availability of surface water makes people depend on ground water for fulfilling their needs. However, ground water is generally too hard to satisfy the requirements for domestic as well as industrial applications. Removal of hardness involves various techniques such as lime soda process, ion exchange, reverse osmosis, nano-filtration, distillation, and, evaporation, etc. These techniques have individual problems such as high annual operating cost, sediment formation on membrane, sludge disposal problem, etc. Electrocoagulation (EC) is being explored as modern and cost-effective technology to cope up with the growing demand of high water quality at the consumer end. In general, earlier studies on electrocoagulation for hardness removal are found to deploy batch processes. As batch processes are always inappropriate to deal with large volume of water to be treated, it is essential to develop continuous flow EC process. So, in the present study, an attempt is made to investigate continuous flow EC process for decreasing excessive hardness of bore-well water. The experimental study has been conducted using 12 aluminum electrodes (25cm*10cm, 1cm thick) provided in EC reactor with volume of 8 L. Bore well water sample, collected from a local bore-well (i.e. at – Vishrambag, Sangli; Maharashtra) having average initial hardness of 680 mg/l (Range: 650 – 700 mg/l), was used for the study. Continuous flow electrocoagulation experiments were carried out by varying operating parameters specifically reaction time (Range: 10 – 60 min), voltage (Range: 5 – 20 V), current (Range: 1 – 5A). Based on the experimental study, it is found that hardness removal to the desired extent could be achieved even for continuous flow EC reactor, so the use of it is found promising.Keywords: hardness, continuous flow EC process, aluminum electrode, optimal operating parameters
Procedia PDF Downloads 1787847 Flashover Voltage of Silicone Insulating Surface Covered by Water Drops under AC Voltage
Authors: Fatiha Aouabed, Abdelhafid Bayadi, Rabah Boudissa
Abstract:
Nowadays, silicone rubber insulation materials are widely used in high voltage outdoor insulation systems as they can combat pollution flashover problems. The difference in pollution flashover performance of silicone rubber and other insulating materials is due to the way that water wets their surfaces. It resides as discrete drops on silicone rubber, and the mechanism of flashover is due to the breakdown of the air between the water drops and the distortion of these drops in the direction of the electric field which brings the insulation to degradation and failure. The main objective of this work is to quantify the effect of different types of water drops arrangements, their position and dry bands width on the flashover voltage of the silicone insulating surface with non-uniform electric field systems. The tests were carried out on a rectangular sample under AC voltage. A rod-rod electrode system is used. The findings of this work indicate that the performance of the samples decreases with the presence of water drops on their surfaces. Further, these experimental findings show that there is a limiting number of rows from which the flashover voltage of the insulation is minimal and constant. This minimum is a function of the distance between two successive rows. Finally, it is concluded that the system withstand voltage increases when the row of droplets on the electrode axis is removed.Keywords: contamination, flashover, testing, silicone rubber insulators, surface wettability, water droplets
Procedia PDF Downloads 4427846 Effects of Starvation Stress on Antioxidant Defense System in Rainbow Trout (Oncorhynchus mykiss)
Authors: Metin Çenesi̇z, Büşra Şahi̇n
Abstract:
The sustainability of aquaculture is possible through the conscious use of resources and minimization of environmental impacts. These can be achieved through science-based planning, ecosystem-based management, strict observations and controls. The ideal water temperature for rainbow trout, which are intensively farmed in the Black Sea Region of Turkey, should be below 20 oC. In summer, the water temperature exceeds this value in some dams where production is carried out. For this reason, it has become obligatory to transfer to dams where the water temperature is low in order to provide suitable temperature conditions. There are many factors that may cause stress to trout during transportation. Some of these stress factors are starvation of the fish for a while to avoid contamination of the water, mobility and noise during transportation and loading, dissolved oxygen content and composition of the water in the transportation tanks, etc. The starvation stress caused by starvation/lack of food during transportation causes a certain amount of loss of macronutrients such as carbohydrates, proteins and fats in the tissues. This situation causes changes in metabolic activities and the energy balance of fish species. In this study, oxidant-antioxidant values and stress markers of rainbow trout starved before transplantation will be evaluated.Keywords: oncorhynchus mykiss, starvation stress, TAS, TOS
Procedia PDF Downloads 817845 Review of Various Designs and Development in Hydropower Turbines
Authors: Fatemeh Behrouzi, Adi Maimun, Mehdi Nakisa
Abstract:
The growth of population, rising fossil fuel prices which the fossil fuels are limited and decreased day by day, pollution problem due to use of fossil fuels and electrical demand are important role to encourage of using the green energy and renewable technologies. Among different renewable energy technologies, hydro power generation (large and small scale) is the prime choice in terms of contribution to the world's electricity generation by using water current turbines. Nowadays, researchers focus on design and development of different kind of turbines to capture hydro-power electricity generation as clean and reliable energy. This article is review about statues of water current turbines carried out to generate electricity from hydro-kinetic energy especially places that they do not have electricity, but they have access to the current water.Keywords: water current turbine, renewable energy, hydro-power, mechanic
Procedia PDF Downloads 4797844 Physicochemical and Microbiological Assessment of Source and Stored Domestic Water from Three Local Governments in Ile-Ife, Nigeria
Authors: Mary A. Bisi-Johnson, Kehinde A. Adediran, Saheed A. Akinola, Hamzat A. Oyelade
Abstract:
Some of the main problems man contends with are the quantity (source and amount) and quality of water in Nigeria. Scarcity leads to water being obtained from various sources and microbiological contaminations of the water may thus occur between the collection point and the point of usage. Thus, this study aims to assess the general and microbiological quality of domestic water sources and household stored water used within selected areas in Ile-Ife, South-Western part of Nigeria for microbial contaminants. Physicochemical and microbiological examination were carried out on 45 source and stored water samples collected from well and spring in three different local government areas i.e. Ife east, Ife-south, and Ife-north. Physicochemical analysis included pH value, temperature, total dissolved solid, dissolved oxygen, and biochemical oxygen demand. Microbiology involved most probable number analysis, total coliform, heterotrophic plate, faecal coliform, and streptococcus count. The result of the physicochemical analysis of samples showed anomalies compared to acceptable standards with the pH value of 7.20-8.60 for stored and 6.50-7.80 for source samples as the total dissolved solids (TDS of stored 20-70mg/L, source 352-691mg/L), dissolved oxygen (DO of stored 1.60-9.60mg/L, source 1.60-4.80mg/L), biochemical oxygen demand (BOD stored 0.80-3.60mg/L, source 0.60-5.40mg/L). General microbiological quality indicated that both stored and source samples with the exception of a sample were not within acceptable range as indicated by analysis of the MPN/100ml which ranges (stored 290-1100mg/L, source 9-1100mg/L). Apart from high counts, most samples did not meet the World Health Organization standard for drinking water with the presence of some pathogenic bacteria and fungi such as Salmonella and Aspergillus spp. To annul these constraints, standard treatment methods should be adopted to make water free from contaminants. This will help identify common and likely water related infection origin within the communities and thus help guide in terms of interventions required to prevent the general populace from such infections.Keywords: domestic, microbiology, physicochemical, quality, water
Procedia PDF Downloads 3607843 Water Sorption of Self Cured Resin Acrylic Soaked in Clover Solution
Authors: Hermanto J. M, Mirna Febriani
Abstract:
Resin acrylic, which is widely used, has the physical properties that can absorb liquids. This can lead to a change in the dimensions of the acrylic resin material. If repeated immersions were done, its strength would be affected. Disinfectant solutions have been widely used to reduce microorganisms both inside and outside the patient's mouth. One of the disinfecting materials that can be used is a clover solution. The purpose of this research is to find the ratio of water absorption of the acrylic resin material of self-cured type, soaked in clover solution for 10 minutes. The results showed that the average value obtained before soaked in clover solution was 0.0692 mg/cm3 and after soaked, in clover solution, the value was 0.090 mg/cm3. The conclusion of this research shows that the values of water sorption of acrylic resin before and after soaked in clover solution is still in ISO standard 1567/2001. Differences in water sorption value of self-cured acrylic resin before and after the immersion are caused by the process of liquid diffusion into the acrylic resin.Keywords: absorption of fluid, self-cured acrylic resin, soaked, clover solution
Procedia PDF Downloads 1637842 Barrier Properties of Starch-Ethylene Vinyl Alcohol Nanocomposites
Authors: Farid Amidi Fazli
Abstract:
Replacement of plastics used in the food industry seems to be a serious issue to overcome mainly the environmental problems in recent years. This study investigates the hydrophilicity and permeability properties of starch biopolymer which ethylene vinyl alcohol (EVOH) (0-10%) and nanocrystalline cellulose (NCC) (1 -15%) were used to enhance its properties. Starch -EVOH nanocomposites were prepared by casting method in different formulations. NCC production by acid hydrolysis was confirmed by scanning electron microscopy. Solubility, water vapor permeability, water vapor transmission rate and moisture absorbance were measured on each of the nanocomposites. The results were analyzed by SAS software. The lowest moisture absorbance was measured in pure starch nanocomposite containing 8% NCC. The lowest permeability to water vapor belongs to starch nanocomposite containing 8% NCC and the sample containing 7.8% EVOH and 13% NCC. Also, the lowest solubility was observed in the composite contains the highest amount of EVOH. Applied Process resulted in production of bio films which have good resistance to water vapor permeability and solubility in water. The use of NCC and EVOH leads to reduced moisture absorbance property of the biofilms.Keywords: starch, EVOH, nanocrystalline cellulose, hydrophilicity
Procedia PDF Downloads 4117841 Scaling Analysis for the Liquefaction Phenomena Generated by Water Waves
Authors: E. Arcos, E. Bautista, F. Méndez
Abstract:
In this work, a scaling analysis of the liquefaction phenomena is presented. The characteristic scales are obtained by balancing term by term of the well-known partial dynamics governing equations, (U − P). From the above, the order of magnitude of the horizontal displacement is very smaller compared with the vertical displacement and therefore the governing equation is only a function of the dependent vertical variables. The U − P approximation is reduced and presented in its dimensionless version. This scaling analysis can be used to obtain analytical solutions of the liquefaction phenomena under the action of the water waves.Keywords: approximation U-P, porous seabed, scaling analysis, water waves
Procedia PDF Downloads 3497840 Exploring the Impact of Tillage and Manure on Soil Water Retention and Van Genuchten
Authors: Azadeh Safadoust, Ali Akbar Mahboubi
Abstract:
A study was conducted to evaluate hydraulic properties of a sandy loam soil and corn (Zea mays L.) crop production under a short-term tillage and manure combinations field experiment carried out in west of Iran. Treatments included composted cattle manure application rates [0, 30, and 60 Mg (dry weight) ha-1] and tillage systems [no-tillage (NT), chisel plowing (CP), and moldboard plowing (MP)] arranged in a split-plot design. Soil water characteristic curve (SWCC) and saturated hydraulic conductivity (Ks) were significantly affected by manure and tillage treatments. At any matric suction, the soil water content was in the order of MP>CP>NT. At all matric suctions, the amount of water retained by the soil increased as manure application rate increased (i.e. 60>30>0 Mg ha-1). Similar to the tillage effects, at high suctions the differences of water retained due to manure addition were less than that at low suctions. The change of SWCC from tillage methods and manure applications may attribute to the change of pore size and aggregate size distributions. Soil Ks was in the order of CP>MP>NT for the first two layers and in the order of MP>CP and NT for the deeper soil layer. The Ks also increased with increasing rates of manure application (i.e. 60>30>0 Mg ha-1). This was due to the increase in the total pore size and continuity.Keywords: corn, manure, saturated hydraulic conductivity, soil water characteristic curve, tillage
Procedia PDF Downloads 75