Search results for: Vero cell line
4949 Lipid Extraction from Microbial Cell by Electroporation Technique and Its Influence on Direct Transesterification for Biodiesel Synthesis
Authors: Abu Yousuf, Maksudur Rahman Khan, Ahasanul Karim, Amirul Islam, Minhaj Uddin Monir, Sharmin Sultana, Domenico Pirozzi
Abstract:
Traditional biodiesel feedstock like edible oils or plant oils, animal fats and cooking waste oil have been replaced by microbial oil in recent research of biodiesel synthesis. The well-known community of microbial oil producers includes microalgae, oleaginous yeast and seaweeds. Conventional transesterification of microbial oil to produce biodiesel is lethargic, energy consuming, cost-ineffective and environmentally unhealthy. This process follows several steps such as microbial biomass drying, cell disruption, oil extraction, solvent recovery, oil separation and transesterification. Therefore, direct transesterification of biodiesel synthesis has been studying for last few years. It combines all the steps in a single reactor and it eliminates the steps of biomass drying, oil extraction and separation from solvent. Apparently, it seems to be cost-effective and faster process but number of difficulties need to be solved to make it large scale applicable. The main challenges are microbial cell disruption in bulk volume and make faster the esterification reaction, because water contents of the medium sluggish the reaction rate. Several methods have been proposed but none of them is up to the level to implement in large scale. It is still a great challenge to extract maximum lipid from microbial cells (yeast, fungi, algae) investing minimum energy. Electroporation technique results a significant increase in cell conductivity and permeability caused due to the application of an external electric field. Electroporation is required to alter the size and structure of the cells to increase their porosity as well as to disrupt the microbial cell walls within few seconds to leak out the intracellular lipid to the solution. Therefore, incorporation of electroporation techniques contributed in direct transesterification of microbial lipids by increasing the efficiency of biodiesel production rate.Keywords: biodiesel, electroporation, microbial lipids, transesterification
Procedia PDF Downloads 2804948 Starting Characteristic Analysis of LSPM for Pumping System Considering Demagnetization
Authors: Subrato Saha, Yun-Hyun Cho
Abstract:
This paper presents the design process of a high performance 3-phase 3.7 kW 2-pole line start permanent magnet synchronous motor for pumping system. A method was proposed to study the starting torque characteristics considering line start with high inertia load. A d-q model including cage was built to study the synchronization capability. Time-stepping finite element method analysis was utilized to accurately predict the dynamic and transient performance, efficiency, starting current, speed curve and, etc. Considering the load torque of pumps during starting stage, the rotor bar was designed with minimum demagnetization of permanent magnet caused by huge starting current.Keywords: LSPM, starting analysis, demagnetization, FEA, pumping system
Procedia PDF Downloads 4714947 Cybernetic Model-Based Optimization of a Fed-Batch Process for High Cell Density Cultivation of E. Coli In Shake Flasks
Authors: Snehal D. Ganjave, Hardik Dodia, Avinash V. Sunder, Swati Madhu, Pramod P. Wangikar
Abstract:
Batch cultivation of recombinant bacteria in shake flasks results in low cell density due to nutrient depletion. Previous protocols on high cell density cultivation in shake flasks have relied mainly on controlled release mechanisms and extended cultivation protocols. In the present work, we report an optimized fed-batch process for high cell density cultivation of recombinant E. coli BL21(DE3) for protein production. A cybernetic model-based, multi-objective optimization strategy was implemented to obtain the optimum operating variables to achieve maximum biomass and minimized substrate feed rate. A syringe pump was used to feed a mixture of glycerol and yeast extract into the shake flask. Preliminary experiments were conducted with online monitoring of dissolved oxygen (DO) and offline measurements of biomass and glycerol to estimate the model parameters. Multi-objective optimization was performed to obtain the pareto front surface. The selected optimized recipe was tested for a range of proteins that show different extent soluble expression in E. coli. These included eYFP and LkADH, which are largely expressed in soluble fractions, CbFDH and GcanADH , which are partially soluble, and human PDGF, which forms inclusion bodies. The biomass concentrations achieved in 24 h were in the range 19.9-21.5 g/L, while the model predicted value was 19.44 g/L. The process was successfully reproduced in a standard laboratory shake flask without online monitoring of DO and pH. The optimized fed-batch process showed significant improvement in both the biomass and protein production of the tested recombinant proteins compared to batch cultivation. The proposed process will have significant implications in the routine cultivation of E. coli for various applications.Keywords: cybernetic model, E. coli, high cell density cultivation, multi-objective optimization
Procedia PDF Downloads 2584946 Mitigation of Cascading Power Outage Caused Power Swing Disturbance Using Real-time DLR Applications
Authors: Dejenie Birile Gemeda, Wilhelm Stork
Abstract:
The power system is one of the most important systems in modern society. The existing power system is approaching the critical operating limits as views of several power system operators. With the increase of load demand, high capacity and long transmission networks are widely used to meet the requirement. With the integration of renewable energies such as wind and solar, the uncertainty, intermittence bring bigger challenges to the operation of power systems. These dynamic uncertainties in the power system lead to power disturbances. The disturbances in a heavily stressed power system cause distance relays to mal-operation or false alarms during post fault power oscillations. This unintended operation of these relays may propagate and trigger cascaded trappings leading to total power system blackout. This is due to relays inability to take an appropriate tripping decision based on ensuing power swing. According to the N-1 criterion, electric power systems are generally designed to withstand a single failure without causing the violation of any operating limit. As a result, some overloaded components such as overhead transmission lines can still work for several hours under overload conditions. However, when a large power swing happens in the power system, the settings of the distance relay of zone 3 may trip the transmission line with a short time delay, and they will be acting so quickly that the system operator has no time to respond and stop the cascading. Misfiring of relays in absence of fault due to power swing may have a significant loss in economic performance, thus a loss in revenue for power companies. This research paper proposes a method to distinguish stable power swing from unstable using dynamic line rating (DLR) in response to power swing or disturbances. As opposed to static line rating (SLR), dynamic line rating support effective mitigation actions against propagating cascading outages in a power grid. Effective utilization of existing transmission lines capacity using machine learning DLR predictions will improve the operating point of distance relay protection, thus reducing unintended power outages due to power swing.Keywords: blackout, cascading outages, dynamic line rating, power swing, overhead transmission lines
Procedia PDF Downloads 1434945 Securitization of Illegal Fishing Cases in Natuna Waters by Indonesian Government: Study Case of Chinese Vessels Shootouts 2016
Authors: Ray Maximillian, Idil Syawfi
Abstract:
Indonesia’s Exclusive Economic Zone and the infamous China’s nine-dash line are intersected in Natuna waters. Even though from Indonesia perspective, that line does not possess any legal basis, China treat that line as their national boundaries, therefore allowing Chinese fishermen to fish in the area. Under President Joko Widodo leadership, Indonesia which now focusing to suppress illegal fishing cases while emphasizing their maritime sovereignty is facing an imminent threat from China’s presence in Natuna. Tension between these countries spiked after three incident happened on 2016, especially after Indonesian navy shot Chinese fishermen vessel that suspected doing illegal fishing activity. This action seen as an attempt to secure Indonesia’s law enforcement in their waters after several months before such attempt was intervened by Chinese coast guard. Indonesia tries to securitize this issue to justify the shooting they done to Chinese vessels. In the process of securitization, it is imperative to identify the existential threat that leads to implementation of emergency measures which responded by units in the cases. Chinese coast guard presence in Natuna perceived as an existential threat to Indonesia, therefore, responded by shooting to Chinese vessels on the next encounter. This action then responded by Chinese government who said that there is overlapping claim between them and Indonesia in Natuna.Keywords: China, illegal fishing, Indonesia, natuna, securitization
Procedia PDF Downloads 2154944 Human Immuno-Deficiency Virus Co-Infection with Hepatitis B Virus and Baseline Cd4+ T Cell Count among Patients Attending a Tertiary Care Hospital, Nepal
Authors: Soma Kanta Baral
Abstract:
Background: Since 1981, when the first AIDS case was reported, worldwide, more than 34 million people have been infected with HIV. Almost 95 percent of the people infected with HIV live in developing countries. As HBV & HIV share similar routes of transmission by sexual intercourse or drug use by parenteral injection, co-infection is common. Because of the limited access to healthcare & HIV treatment in developing countries, HIV-infected individuals are present late for care. Enumeration of CD4+ T cell count at the time of diagnosis has been useful to initiate the therapy in HIV infected individuals. The baseline CD4+ T cell count shows high immunological variability among patients. Methods: This prospective study was done in the serology section of the Department of Microbiology over a period of one year from august 2012 to July 2013. A total of 13037 individuals subjected for HIV test were included in the study comprising of 4982 males & 8055 females. Blood sample was collected by vein puncture aseptically with standard operational procedure in clean & dry test-tube. All blood samples were screened for HIV as described by WHO algorithm by Immuno-chromatography rapid kits. Further confirmation was done by biokit ELISA method as per the manufacturer’s guidelines. After informed consent, HIV positive individuals were screened for HBsAg by Immuno-chromatography rapid kits (Hepacard). Further confirmation was done by biokit ELISA method as per the manufacturer’s guidelines. EDTA blood samples were collected from the HIV sero-positive individuals for baseline CD4+ T count. Then, CD4+ T cells count was determined by using FACS Calibur Flow Cytometer (BD). Results: Among 13037 individuals screened for HIV, 104 (0.8%) were found to be infected comprising of 69(66.34%) males & 35 (33.65%) females. The study showed that the high infection was noted in housewives (28.7%), active age group (30.76%), rural area (56.7%) & in heterosexual route (80.9%) of transmission. Out of total HIV infected individuals, distribution of HBV co-infection was found to be 6(5.7%). All co- infected individuals were married, male, above the age of 25 years & heterosexual route of transmission. Baseline CD4+ T cell count of HIV infected patient was found higher (mean CD4+ T cell count; 283cells/cu.mm) than HBV co-infected patients (mean CD4+ T cell count; 91 cells/cu.mm). Majority (77.2%) of HIV infected & all co-infected individuals were presented in our center late (CD4+ T cell count;< 350/cu. mm) for diagnosis and care. Majority of co- infected 4 (80%) were late presented with advanced AIDS stage (CD4+ count; <200/cu.mm). Conclusions: The study showed a high percentage of HIV sero-positive & co- infected individuals. Baseline CD4+ T cell count of majority of HIV infected individuals was found to be low. Hence, more sustained and vigorous awareness campaigns & counseling still need to be done in order to promote early diagnosis and management.Keywords: HIV/AIDS, HBsAg, co-infection, CD4+
Procedia PDF Downloads 2154943 Socio-Demographic Characteristics and Psychosocial Consequences of Sickle Cell Disease: The Case of Patients in a Public Hospital in Ghana
Authors: Vincent A. Adzika, Franklin N. Glozah, Collins S. K. Ahorlu
Abstract:
Background: Sickle Cell Disease (SCD) is of major public-health concern globally, with majority of patients living in Africa. Despite its relevance, there is a dearth of research to determine the socio-demographic distribution and psychosocial impact of SCD in Africa. The objective of this study therefore was to examine the socio-demographic distribution and psychosocial consequences of SCD among patients in Ghana and to assess their quality of life and coping mechanisms. Methods: A cross-sectional research design was used, involving the completion of questionnaires on socio-demographic characteristics, quality of life of individuals, anxiety and depression. Participants were 387 male and female patients attending a sickle cell clinic in a public hospital. Results: Results showed no gender and marital status differences in anxiety and depression. However, there were age and level of education variances in depression but not in anxiety. In terms of quality of life, patients were more satisfied by the presence of love, friends, relatives as well as home, community and neighbourhood environment. While pains of varied nature and severity were the major reasons for attending hospital in SCD condition, going to the hospital as well as having Faith in God was the frequently reported mechanisms for coping with an unbearable SCD attacks. Multiple regression analysis showed that some socio-demographic and quality of life indicators had strong associations with anxiety and/or depression. Conclusion: It is recommended that a multi-dimensional intervention strategy incorporating psychosocial dimensions should be considered in the treatment and management of SCD.Keywords: anxiety, depression, sickle cell disease, socio-demographic quality of life, characteristics, Ghana
Procedia PDF Downloads 4764942 Profiling of the Cell-Cycle Related Genes in Response to Efavirenz, a Non-Nucleoside Reverse Transcriptase Inhibitor in Human Lung Cancer
Authors: Rahaba Marima, Clement Penny
Abstract:
The Health-related quality of life (HRQoL) for HIV positive patients has improved since the introduction of the highly active antiretroviral treatment (HAART). However, in the present HAART era, HIV co-morbidities such as lung cancer, a non-AIDS (NAIDS) defining cancer have been documented to be on the rise. Under normal physiological conditions, cells grow, repair and proliferate through the cell-cycle as cellular homeostasis is important in the maintenance and proper regulation of tissues and organs. Contrarily, the deregulation of the cell-cycle is a hallmark of cancer, including lung cancer. The association between lung cancer and the use of HAART components such as Efavirenz (EFV) is poorly understood. This study aimed at elucidating the effects of EFV on the cell-cycle genes’ expression in lung cancer. For this purpose, the human cell-cycle gene array composed of 84 genes was evaluated on both normal lung fibroblasts (MRC-5) cells and adenocarcinoma (A549) lung cells, in response to 13µM EFV or 0.01% vehicle. The ±2 up or down fold change was used as a basis of target selection, with p < 0.05. Additionally, RT-qPCR was done to validate the gene array results. Next, In-silico bio-informatics tools, Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), Reactome, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Ingenuity Pathway Analysis (IPA) were used for gene/gene interaction studies as well as to map the molecular and biological pathways influenced by the identified targets. Interestingly, the DNA damage response (DDR) pathway genes such as p53, Ataxia telangiectasia mutated and Rad3 related (ATR), Growth arrest and DNA damage inducible alpha (GADD45A), HUS1 checkpoint homolog (HUS1) and Role of radiation (RAD) genes were shown to be upregulated following EFV treatment, as revealed by STRING analysis. Additionally, functional enrichment analysis by the KEGG pathway revealed that most of the differentially expressed gene targets function at the cell-cycle checkpoint such as p21, Aurora kinase B (AURKB) and Mitotic Arrest Deficient-Like 2 (MAD2L2). Core analysis by IPA revealed that p53 downstream targets such as survivin, Bcl2, and cyclin/cyclin dependent kinases (CDKs) complexes are down-regulated, following exposure to EFV. Furthermore, Reactome analysis showed a significant increase in cellular response to stress genes, DNA repair genes, and apoptosis genes, as observed in both normal and cancerous cells. These findings implicate the genotoxic effects of EFV on lung cells, provoking the DDR pathway. Notably, the constitutive expression of this pathway (DDR) often leads to uncontrolled cell proliferation and eventually tumourigenesis, which could be the attribute of HAART components’ (such as EFV) effect on human cancers. Targeting the cell-cycle and its regulation holds a promising therapeutic intervention to the potential HAART associated carcinogenesis, particularly lung cancer.Keywords: cell-cycle, DNA damage response, Efavirenz, lung cancer
Procedia PDF Downloads 1564941 Rumen Epithelium Development of Bovine Fetuses and Newborn Calves
Authors: Juliana Shimara Pires Ferrão, Letícia Palmeira Pinto, Francisco Palma Rennó, Francisco Javier Hernandez Blazquez
Abstract:
The ruminant stomach is a complex and multi-chambered organ. Although the true stomach (abomasum) is fully differentiated and functional at birth, the same does not occur with the rumen chamber. At this moment, rumen papillae are small or nonexistent. The papillae only fully develop after weaning and during calf growth. Papillae development and ruminal epithelium specialization during the fetus growth and at birth must be two interdependent processes that will prepare the rumen to adapt to ruminant adult feeding. The microscopic study of rumen epithelium at these early phases of life is important to understand how this structure prepares the rumen to deal with the following weaning processes and its functional activation. Samples of ruminal mucosa of bovine fetuses (110- and 150 day-old) and newborn calves were collected (dorsal and ventral portions) and processed for light and electron microscopy and immunohistochemistry. The basal cell layer of the stratified pavimentous epithelium present in different ruminal portions of the fetuses was thicker than the same portions of newborn calves. The superficial and intermediate epithelial layers of 150 day-old fetuses were thicker than those found in the other 2 studied ages. At this age (150 days), dermal papillae begin to invade the intermediate epithelial layer which gradually disappears in newborn calves. At birth, the ruminal papillae project from the epithelial surface, probably by regression of the epithelial cells (transitory cells) surrounding the dermal papillae. The PCNA cell proliferation index (%) was calculated for all epithelial samples. Fetuses 150 day-old showed increased cell proliferation in basal cell layer (Dorsal Portion: 84.2%; Ventral Portion: 89.8%) compared to other ages studied. Newborn calves showed an intermediate index (Dorsal Portion: 65.1%; Ventral Portion: 48.9%), whereas 110 day-old fetuses had the lowest proliferation index (Dorsal Portion: 57.2%; Ventral Portion: 20.6%). Regarding the transitory epithelium, 110 day-old fetuses showed the lowest proliferation index (Dorsal Portion: 44.6%; Ventral Portion: 20.1%), 150 day-old fetuses showed an intermediate proliferation index (Dorsal Portion: 57.5%; Ventral Portion: 71.1%) and newborn calves presented a higher proliferation index (Dorsal Portion: 75.1%; Ventral Portion: 19.6%). Under TEM, the 110- and 150 day-old fetuses presented thicker and poorly organized basal cell layer, with large nuclei and dense cytoplasm. In newborn calves, the basal cell layer was more organized and with fewer layers, but typically similar in both regions of the rumen. For the transitory epithelium, fetuses displayed larger cells than those found in newborn calves with less electrondense cytoplasm than that found in the basal cells. The ruminal dorsal portion has an overall higher cell proliferation rate than the ventral portion. Thus we can infer that the dorsal portion may have a higher cell activity than the ventral portion during ruminal development. Moreover, the basal cell layer is thicker in the 110- and 150 day-old fetuses than in the newborn calves. The transitory epithelium, which is much reduced, at birth may have a structural support function of the developing dermal papillae. When it regresses or is sheared off, the papillae are “carved out” from the surrounding epithelial layer.Keywords: bovine, calf, epithelium, fetus, hematoxylin-eosin, immunohistochemistry, TEM, Rumen
Procedia PDF Downloads 3884940 Factory Communication System for Customer-Based Production Execution: An Empirical Study on the Manufacturing System Entropy
Authors: Nyashadzashe Chiraga, Anthony Walker, Glen Bright
Abstract:
The manufacturing industry is currently experiencing a paradigm shift into the Fourth Industrial Revolution in which customers are increasingly at the epicentre of production. The high degree of production customization and personalization requires a flexible manufacturing system that will rapidly respond to the dynamic and volatile changes driven by the market. They are a gap in technology that allows for the optimal flow of information and optimal manufacturing operations on the shop floor regardless of the rapid changes in the fixture and part demands. Information is the reduction of uncertainty; it gives meaning and context on the state of each cell. The amount of information needed to describe cellular manufacturing systems is investigated by two measures: the structural entropy and the operational entropy. Structural entropy is the expected amount of information needed to describe scheduled states of a manufacturing system. While operational entropy is the amount of information that describes the scheduled states of a manufacturing system, which occur during the actual manufacturing operation. Using Anylogic simulator a typical manufacturing job shop was set-up with a cellular manufacturing configuration. The cellular make-up of the configuration included; a Material handling cell, 3D Printer cell, Assembly cell, manufacturing cell and Quality control cell. The factory shop provides manufactured parts to a number of clients, and there are substantial variations in the part configurations, new part designs are continually being introduced to the system. Based on the normal expected production schedule, the schedule adherence was calculated from the structural entropy and operation entropy of varying the amounts of information communicated in simulated runs. The structural entropy denotes a system that is in control; the necessary real-time information is readily available to the decision maker at any point in time. For contractive analysis, different out of control scenarios were run, in which changes in the manufacturing environment were not effectively communicated resulting in deviations in the original predetermined schedule. The operational entropy was calculated from the actual operations. From the results obtained in the empirical study, it was seen that increasing, the efficiency of a factory communication system increases the degree of adherence of a job to the expected schedule. The performance of downstream production flow fed from the parallel upstream flow of information on the factory state was increased.Keywords: information entropy, communication in manufacturing, mass customisation, scheduling
Procedia PDF Downloads 2454939 Anti-Angiogenic and Anti-Metastatic Effect of Aqueous Fraction from Euchelus Asper Methanolic Extract
Authors: Sweta Agrawal, Sachin Chaugule, Gargi Rane, Shashank More, Madhavi Indap
Abstract:
Angiogenesis and metastasis are two of the most important hallmarks of cancer. Hence, most of the cancer therapies nowadays are multi-targeted so as to reduce resistance and have better efficacy. As synthetic molecules arise with a burden of their toxicities and side-effects, more and more research is being focussed on exploiting the vast natural resources of drugs, in the form of plants and animals. Although, the idea of using marine organisms as a source of pharmaceuticals is not new, the pace at which marine drugs are being discovered, has definitely up surged! In the present study, we have assessed the anti-angiogenic and in vitro anti-metastatic activity of aqueous fraction from the extract of marine gastropod Euchelus asper. The soft body of Euchelus Asper was extracted with methanol and named EAME. Partition chromatography of EAME gave three fractions EAME I, II and III. Biochemical analysis revealed the presence of proteins in EAME III. Preliminary analysis had revealed the anti-angiogenic activity was exhibited by EAME III out of the three fractions. Hereafter, EAME III (concentration 25µg/ml-400µg/ml) was tested on chick chorioallantoic membrane (CAM) model for the detailed analysis of its potential anti-angiogenic effect. In vitro testing of the fraction (concentration 0.25µg/ml - 1µg/ml), involved cytotoxicity by SRB assay, cell cycle analysis by flow cytometry and anti-proliferative effect by scratch wound healing assay on A549 lung carcinoma cells. Apart from this, a portion of treated CAM as well as conditioned medium from treated A549 were subjected to gelatin zymography for assessment of matrix metalloproteinases MMP-2 and MMP-9 levels. Our results revealed that EAME III exhibited significant anti-angiogenic activity on CAM which was also supported by histological observations. During histological studies of CAM, it was found that EAME III caused reduction in angiogenesis by altering the extracellular matrix of the CAM membrane. In vitro analysis disclosed that EAME III exhibited moderate cytotoxic effect on A549 cells and its effect was not dose-dependent. The results of flow cytometry confirmed that EAME III caused cell cycle arrest in A549 cell line as almost all of the treated cells were found in G1 phase. Further, the migration and proliferation of A549 was significantly reduced by EAME III as observed from the scratch wound assay. Moreover, Gelatin zymography analysis revealed that EAME III caused suppression of MMP-2 in CAM membrane and reduced MMP-9 and MMP-2 expression in A549 cells. This verified that the anti-angiogenic and anti-metastatic effects of EAME III were correlated with the suppression of MMP-2 and -9. To conclude, EAME III shows dual anti-tumour action by reducing angiogenesis and exerting anti-metastatic effect on lung cancer cells, thus it has the potential to be used as an anti-cancer agent against lung carcinoma.Keywords: angiogenesis, anti-cancer, marine drugs, matrix metalloproteinases
Procedia PDF Downloads 2314938 Effect of Locally Injected Mesenchymal Stem Cells on Bone Regeneration of Rat Calvaria Defects
Authors: Gileade P. Freitas, Helena B. Lopes, Alann T. P. Souza, Paula G. F. P. Oliveira, Adriana L. G. Almeida, Paulo G. Coelho, Marcio M. Beloti, Adalberto L. Rosa
Abstract:
Bone tissue presents great capacity to regenerate when injured by trauma, infectious processes, or neoplasia. However, the extent of injury may exceed the inherent tissue regeneration capability demanding some kind of additional intervention. In this scenario, cell therapy has emerged as a promising alternative to treat challenging bone defects. This study aimed at evaluating the effect of local injection of bone marrow-derived mesenchymal stem cells (BM-MSCs) and adipose tissue-derived mesenchymal stem cells (AT-MSCs) on bone regeneration of rat calvaria defects. BM-MSCs and AT-MSCs were isolated and characterized by expression of surface markers; cell viability was evaluated after injection through a 21G needle. Defects of 5 mm in diameter were created in calvaria and after two weeks a single injection of BM-MSCs, AT-MSCs or vehicle-PBS without cells (Control) was carried out. Cells were tracked by bioluminescence and at 4 weeks post-injection bone formation was evaluated by micro-computed tomography (μCT) and histology, nanoindentation, and through gene expression of bone remodeling markers. The data were evaluated by one-way analysis of variance (p≤0.05). BM-MSCs and AT-MSCs presented characteristics of mesenchymal stem cells, kept viability after passing through a 21G needle and remained in the defects until day 14. In general, injection of both BM-MSCs and AT-MSCs resulted in higher bone formation compared to Control. Additionally, this bone tissue displayed elastic modulus and hardness similar to the pristine calvaria bone. The expression of all evaluated genes involved in bone formation was upregulated in bone tissue formed by BM-MSCs compared to AT-MSCs while genes involved in bone resorption were upregulated in AT-MSCs-formed bone. We show that cell therapy based on the local injection of BM-MSCs or AT-MSCs is effective in delivering viable cells that displayed local engraftment and induced a significant improvement in bone healing. Despite differences in the molecular cues observed between BM-MSCs and AT-MSCs, both cells were capable of forming bone tissue at comparable amounts and properties. These findings may drive cell therapy approaches toward the complete bone regeneration of challenging sites.Keywords: cell therapy, mesenchymal stem cells, bone repair, cell culture
Procedia PDF Downloads 1844937 Prospects of Acellular Organ Scaffolds for Drug Discovery
Authors: Inna Kornienko, Svetlana Guryeva, Natalia Danilova, Elena Petersen
Abstract:
Drug toxicity often goes undetected until clinical trials, the most expensive and dangerous phase of drug development. Both human cell culture and animal studies have limitations that cannot be overcome by improvements in drug testing protocols. Tissue engineering is an emerging alternative approach to creating models of human malignant tumors for experimental oncology, personalized medicine, and drug discovery studies. This new generation of bioengineered tumors provides an opportunity to control and explore the role of every component of the model system including cell populations, supportive scaffolds, and signaling molecules. An area that could greatly benefit from these models is cancer research. Recent advances in tissue engineering demonstrated that decellularized tissue is an excellent scaffold for tissue engineering. Decellularization of donor organs such as heart, liver, and lung can provide an acellular, naturally occurring three-dimensional biologic scaffold material that can then be seeded with selected cell populations. Preliminary studies in animal models have provided encouraging results for the proof of concept. Decellularized Organs preserve organ microenvironment, which is critical for cancer metastasis. Utilizing 3D tumor models results greater proximity of cell culture morphological characteristics in a model to its in vivo counterpart, allows more accurate simulation of the processes within a functioning tumor and its pathogenesis. 3D models allow study of migration processes and cell proliferation with higher reliability as well. Moreover, cancer cells in a 3D model bear closer resemblance to living conditions in terms of gene expression, cell surface receptor expression, and signaling. 2D cell monolayers do not provide the geometrical and mechanical cues of tissues in vivo and are, therefore, not suitable to accurately predict the responses of living organisms. 3D models can provide several levels of complexity from simple monocultures of cancer cell lines in liquid environment comprised of oxygen and nutrient gradients and cell-cell interaction to more advanced models, which include co-culturing with other cell types, such as endothelial and immune cells. Following this reasoning, spheroids cultivated from one or multiple patient-derived cell lines can be utilized to seed the matrix rather than monolayer cells. This approach furthers the progress towards personalized medicine. As an initial step to create a new ex vivo tissue engineered model of a cancer tumor, optimized protocols have been designed to obtain organ-specific acellular matrices and evaluate their potential as tissue engineered scaffolds for cultures of normal and tumor cells. Decellularized biomatrix was prepared from animals’ kidneys, urethra, lungs, heart, and liver by two decellularization methods: perfusion in a bioreactor system and immersion-agitation on an orbital shaker with the use of various detergents (SDS, Triton X-100) in different concentrations and freezing. Acellular scaffolds and tissue engineered constructs have been characterized and compared using morphological methods. Models using decellularized matrix have certain advantages, such as maintaining native extracellular matrix properties and biomimetic microenvironment for cancer cells; compatibility with multiple cell types for cell culture and drug screening; utilization to culture patient-derived cells in vitro to evaluate different anticancer therapeutics for developing personalized medicines.Keywords: 3D models, decellularization, drug discovery, drug toxicity, scaffolds, spheroids, tissue engineering
Procedia PDF Downloads 3004936 Investigation of The Effects of Hydroxytyrosol on Cytotoxicity, Apoptosis, PI3K/Akt, and ERK 1/2 Pathways in Ovarian Cancer Cell Cultures
Authors: Latife Merve Oktay, Berrin Tugrul
Abstract:
Hydroxytyrosol (HT) is a phenolic phytochemical molecule derived from the hydrolysis of oleuropein, which originates during the maturation of the olives. It has recently received particular attention because of its antioxidant, anti-proliferative, pro-apoptotic and anti-inflammatory activities. In this study, we investigated the cytotoxic and apoptotic effects of hydroxytyrosol and its effects on phosphatidylinositol 3-kinase/Akt (PI3K/Akt) and extracellular signal-regulated kinase 1/2 (ERK 1/2) signaling pathways in human ovarian cancer cell lines OVCAR-3 and MDAH-2774. XTT cell proliferation kit, Cell Death Detection Elisa Plus Kit (Roche) and Human Apoptosis Array (R&D Systems) were used to determine the cytotoxic and apoptotic effects of HT in OVCAR-3 and MDAH-2774 cell lines at 24, 48, 72, and 96 h. Effect of HT on PI3K/Akt and ERK 1/2 signaling pathways were investigated by using specific inhibitors of these pathways. IC50 values of HT were found to be 102.3 µM in MDAH-2774 cells at 72 h and 51.5 µM in OVCAR-3 cells at 96 h. Apoptotic effect of HT in MDAH-2774 cells was the highest at 50 µM at 72 h, and kept decreasing at 100 and 150 µM concentrations and was not seen at 200 µM and higher concentrations. Highest apoptotic effect was seen at 100 µM concentration in OVCAR-3 cells at 96 h, however apoptotic effect was decreased over 100 µM concentrations. According to antibody microarray results, HT increased the levels of pro-apoptotic molecules Bad, Bax, active caspase-3, Htra2/Omi by 2.0-, 1.4-, 1.2-, 4.2-fold, respectively and also increased the levels of pro-apoptotic death receptors TRAIL R1/DR4, TRAIL R2/DR5, FAS/TNFRSF6 by 2.1-, 1.7-, 1.6-fold, respectively, however, it decreased the level of Survivin by 1.6-fold which is one of the inhibitor of apoptosis protein (IAP) family in MDAH-2774 cells. In OVCAR-3 cells, HT decreased the levels of anti-apoptotic proteins Bcl-2, pro-caspase 3 by 3.1-, 8.2-fold, respectively and IAP family proteins CIAP-1, CIAP-2, XIAP, Livin, Survivin by 6.5-, 6.0-, 3.2-, 2.2-, 2.7-fold, respectively and increased the level of cytochrome-c by 1.2-fold. We have shown that HT shows its cytotoxic and apoptotic effect through inhibiting ERK 1/2 signaling pathway in both OVCAR-3 and MDAH-2774 cells. Further studies are needed to investigate molecular mechanisms and modulatory effects of hydroxytyrosol.Keywords: apoptosis, cytotoxicity, hydroxytyrosol, ovarian cancer
Procedia PDF Downloads 3544935 Ground Water Monitoring Using High-Resolution Fiber Optics Cable Sensors (FOCS)
Authors: Sayed Isahaq Hossain, K. T. Chang, Moustapha Ndour
Abstract:
Inference of the phreatic line through earth dams is of paramount importance because it could be directly associated with piping phenomena which may lead to the dam failure. Normally in the field, the instrumentations such as ‘diver’ and ‘standpipe’ are to be used to identify the seepage conditions which only provide point data with a fair amount of interpolation or assumption. Here in this paper, we employed high-resolution fiber optic cable sensors (FOCS) based on Raman Scattering in order to obtain a very accurate phreatic line and seepage profile. Unlike the above-mention devices which pinpoint the water level location, this kind of Distributed Fiber Optics Sensing gives us more reliable information due to its inherent characteristics of continuous measurement.Keywords: standpipe, diver, FOCS, monitoring, Raman scattering
Procedia PDF Downloads 3574934 Development of an Inexpensive Electrocatalytic Energy Material: Cu-Ni-CeO2 for High Performance Alcoholic Fuel Cell
Authors: Sujit Kumar Guchhait, Subir Paul
Abstract:
One of the major research areas is to find an alternative source of energy to fulfill the energy crisis and environmental problems. The Fuel cell is such kind of energy producing unit. Use of fuel cell to produce renewable energy for commercial purpose is limited by the high cost of Pt based electrode material. Development of high energetic, as well as inexpensive fuel cell electrode materials, is needs of hour to produce clean energy using derive bio-fuel. In this present investigation, inexpensive Cu-Ni-CeO2 electrode material has been synthesized by using pulse current. The surface morphology of the electrode materials is controlled by several deposition parameters to increase the rate of electrochemical oxidation of alcoholic fuel, ethanol. The electrochemical characterization of the developed material was done by Cyclic Voltammetry (CV) and Chronoamperometry (CA) and Electrochemical Impedance Spectroscopy test. It is interesting to find that both these materials have shown high electrocatalytic properties in terms of high exchange current density (I0), low polarization resistance (Rp) and low impedance. It is seen that the addition of CeO2 to Ni-Cu has outperformed Pt as far as high electrocatalytic properties are concerned. The exchange current density on the Cu-Ni-CeO2 electrode surface for ethanol oxidation is about eight times higher than the same on the Pt surface with much lower polarization resistance than the later. The surface morphology of the electrode materials has been revealed by Field Effect Scanning Electron Microscope (FESEM). It is seen that grains are narrow and subspherical with 3D surface containing pores in between two elongated grains. XRD study exhibits the presence of Ni and CeO2 on the Cu surface.Keywords: electro-catalyst, alcoholic fuel, cyclic voltammetry, potentiodynamic polarization, EIS, XRD, SEM
Procedia PDF Downloads 3024933 Computationally Efficient Electrochemical-Thermal Li-Ion Cell Model for Battery Management System
Authors: Sangwoo Han, Saeed Khaleghi Rahimian, Ying Liu
Abstract:
Vehicle electrification is gaining momentum, and many car manufacturers promise to deliver more electric vehicle (EV) models to consumers in the coming years. In controlling the battery pack, the battery management system (BMS) must maintain optimal battery performance while ensuring the safety of a battery pack. Tasks related to battery performance include determining state-of-charge (SOC), state-of-power (SOP), state-of-health (SOH), cell balancing, and battery charging. Safety related functions include making sure cells operate within specified, static and dynamic voltage window and temperature range, derating power, detecting faulty cells, and warning the user if necessary. The BMS often utilizes an RC circuit model to model a Li-ion cell because of its robustness and low computation cost among other benefits. Because an equivalent circuit model such as the RC model is not a physics-based model, it can never be a prognostic model to predict battery state-of-health and avoid any safety risk even before it occurs. A physics-based Li-ion cell model, on the other hand, is more capable at the expense of computation cost. To avoid the high computation cost associated with a full-order model, many researchers have demonstrated the use of a single particle model (SPM) for BMS applications. One drawback associated with the single particle modeling approach is that it forces to use the average current density in the calculation. The SPM would be appropriate for simulating drive cycles where there is insufficient time to develop a significant current distribution within an electrode. However, under a continuous or high-pulse electrical load, the model may fail to predict cell voltage or Li⁺ plating potential. To overcome this issue, a multi-particle reduced-order model is proposed here. The use of multiple particles combined with either linear or nonlinear charge-transfer reaction kinetics enables to capture current density distribution within an electrode under any type of electrical load. To maintain computational complexity like that of an SPM, governing equations are solved sequentially to minimize iterative solving processes. Furthermore, the model is validated against a full-order model implemented in COMSOL Multiphysics.Keywords: battery management system, physics-based li-ion cell model, reduced-order model, single-particle and multi-particle model
Procedia PDF Downloads 1114932 Veering Pattern in Human Walking in Sighted and Blindfolded Conditions
Authors: Triloki Prasad, Subhankar Ghosh, Asis Goswami
Abstract:
The information received from visual organ plays an important role in human locomotion and human beings generally veer from the straight line in the absence of visual cue. Since in case of visually impaired persons this support is unavailable they are expected to have a different type of locomotion behaviour than the sighted persons. Higher degree of veering can result in accident or injury during indoor and outdoor activities. Hence, it is important to know the degree of veering that may happen in case of a sighted individual loosing the visual input. The present study was conducted on fifty three volunteers who walked with open and closed eyes, at their comfortable pace, in a grid marked area of 17m by 10m space. The volunteers had to walk in a straight line from a central starting point during three trials and their walking path was marked with a pair of sponge absorbed with three different colours. All volunteers had walked expectedly in straight line during open eye condition but had varied degree of veering during closed eye state. The correlation between the first step side and the side of deviation was not significant in closed eye condition. The number of steps taken in open eye and closed eye condition were significantly different while travelling similar distances. This study reveals that sighted persons become cautious during walking if the visual cue is not available and they reduce the step length so there is increase in step number.Keywords: Closed eye, Open eye, Footprint, Veering
Procedia PDF Downloads 2034931 Tumour-Associated Tissue Eosinophilia as a Prognosticator in Oral Squamous Cell Carcinoma
Authors: Karen Boaz, C. R. Charan
Abstract:
Background: The infiltration of tumour stroma by eosinophils, Tumor-Associated Tissue Eosinophilia (TATE), is known to modulate the progression of Oral Squamous Cell Carcinoma (OSCC). Eosinophils have direct tumoricidal activity by release of cytotoxic proteins and indirectly they enhance permeability into tumor cells enabling penetration of tumoricidal cytokines. Also, eosinophils may promote tumor angiogenesis by production of several angiogenic factors. Identification of eosinophils in the inflammatory stroma has been proven to be an important prognosticator in cancers of mouth, oesophagus, larynx, pharynx, breast, lung, and intestine. Therefore, the study aimed to correlate TATE with clinical and histopathological variables, and blood eosinophil count to assess the role of TATE as a prognosticator in Oral Squamous Cell Carcinoma (OSCC). Methods: Seventy two biopsy-proven cases of OSCC formed the study cohort. Blood eosinophil counts and TNM stage were obtained from the medical records. Tissue sections (5µm thick) were stained with Haematoxylin and Eosin. The eosinophils were quantified at invasive tumour front (ITF) in 10HPF (40x magnification) with an ocular grid. Bryne’s grading of ITF was also performed. A subset of thirty cases was also assessed for association of TATE with recurrence, involvement of lymph nodes and surgical margins. Results: 1) No statistically significant correlation was found between TATE and TNM stage, blood eosinophil counts and most parameters of Bryne’s grading system. 2) Statistically significant relation of intense degree of TATE was associated with the absence of distant metastasis, increased lympho-plasmacytic response and increased survival (diseasefree and overall) of OSCC patients. 3) In the subset of 30 cases, tissue eosinophil counts were higher in cases with lymph node involvement, decreased survival, without margin involvement and in cases that did not recur. Conclusion: While the role of eosinophils in mediating immune responses seems ambiguous as eosinophils support cell-mediated tumour immunity in early stages while inhibiting the same in advanced stages, TATE may be used as a surrogate marker for determination of prognosis in oral squamous cell carcinoma.Keywords: tumour-associated tissue eosinophilia, oral squamous cell carcinoma, prognosticator, tumoral immunity
Procedia PDF Downloads 2504930 Off-Line Parameter Estimation for the Induction Motor Drive System
Authors: Han-Woong Ahn, In-Gun Kim, Hyun-Seok Hong, Dong-Woo Kang, Ju Lee
Abstract:
It is important to accurately identify machine parameters for direct vector control. To obtain the parameter values, traditional methods can be used such as no-load and rotor locked tests. However, there are many differences between values obtained from the traditional tests and actual values. In addition, there are drawbacks that additional equipment and cost are required for the experiment. Therefore, it is hard to temporary operation to estimate induction motor parameters. Therefore, this paper deals with the estimation algorithm of induction motor parameters without a motor operation and the measurement from additional equipment such as sensors and dynamometer. The validity and usefulness of the estimation algorithm considering inverter nonlinearity is verified by comparing the conventional method with the proposed method.Keywords: induction motor, parameter, off-line estimation, inverter nonlinearity
Procedia PDF Downloads 5294929 MnO₂-Carbon Nanotubes Catalyst for Enhanced Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cell
Authors: Abidullah, Basharat Hussain, Jong Seok Kim
Abstract:
Polymer electrolyte membrane fuel cell (PEMFC) is an electrochemical cell, which undergoes an oxygen reduction reaction to produce electrical energy. Platinum (Pt) metal has been used as a catalyst since its inception, but expensiveness is the major obstacle in the commercialization of fuel cells. Herein a non-precious group metal (NPGM) is employed instead of Pt to reduce the cost of PEMFCs. Manganese dioxide impregnated carbon nanotubes (MnO₂-CNTs composite) is a catalyst having excellent electrochemical properties and offers a better alternative to the Platinum-based PEMFC. The catalyst is synthesized by impregnating the transition metal on large surface carbonaceous CNTs by hydrothermal synthesis techniques. To enhance the catalytic activity and increase the volumetric current density, the sample was pyrolyzed at 800ᵒC under a nitrogen atmosphere. During pyrolysis, the nitrogen was doped in the framework of CNTs. Then the material was treated with acid for removing the unreacted metals and adding oxygen functional group to the CNT framework. This process ameliorates the catalytic activity of the manganese-based catalyst. The catalyst has been characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and the catalyst activity has been examined by rotating disc electrode (RDE) experiment. The catalyst was strong enough to withstand an austere alkaline environment in experimental conditions and had a high electrocatalytic activity for oxygen reduction reaction (ORR). Linear Sweep Voltammetry (LSV) depicts an excellent current density of -4.0 mA/cm² and an overpotential of -0.3V vs. standard calomel electrode (SCE) in 0.1M KOH electrolyte. Rotating disk electrode (RDE) was conducted at 400, 800, 1200, and 1600 rpm. The catalyst exhibited a higher methanol tolerance and long term durability with respect to commercial Pt/C. The results for MnO₂-CNT show that the low-cost catalyst will supplant the expensive Pt/C catalyst in the fuel cell.Keywords: carbon nanotubes, methanol fuel cell, oxygen reduction reaction, MnO₂-CNTs
Procedia PDF Downloads 1254928 DFT Study of Secondary Phase of Cu2ZnSnS4 in Solar Cell: Cu2SnS3
Authors: Mouna Mesbahi, M. Loutfi Benkhedir
Abstract:
In CZTS films solar cell, the preferable reaction between Cu and sulfur vapor was likely to be induced by out diffusion of the bottom Cu component to the surface; this would lead to inhomogeneous distribution of the Cu component to form the Cu2SnS3 secondary phase and formation of many voids and crevices in the resulting CZTS film; which is also the cause of the decline in performance. In this work we study the electronic and optical properties of Cu2SnS3. For this purpose we used the Wien2k code based on the theory of density functional theory (DFT) with the modified Becke-Johnson exchange potential mBJ and the Hubbard potential individually or combined. We have found an energy gap 0.92 eV. The results are in good agreement with experimental results.Keywords: Cu2SnS3, DFT, electronic and optical properties, mBJ+U, WIEN2K
Procedia PDF Downloads 5604927 Comparative Analysis of Chemical Composition and Biological Activities of Ajuga genevensis L. in in vitro Culture and Intact Plants
Authors: Naira Sahakyan, Margarit Petrosyan, Armen Trchounian
Abstract:
One of the tasks in contemporary biotechnology, pharmacology and other fields of human activities is to obtain biologically active substances from plants. They are very essential in the treatment of many diseases due to their actually high therapeutic value without visible side effects. However, sometimes the possibility of obtaining the metabolites is limited due to the reduction of wild-growing plants. That is why the plant cell cultures are of great interest as alternative sources of biologically active substances. Besides, during the monitored cultivation, it is possible to obtain substances that are not synthesized by plants in nature. Isolated culture of Ajuga genevensis with high growth activity and ability of regeneration was obtained using MS nutrient medium. The agar-diffusion method showed that aqueous extracts of callus culture revealed high antimicrobial activity towards various gram-positive (Bacillus subtilis A1WT; B. mesentericus WDCM 1873; Staphylococcus aureus WDCM 5233; Staph. citreus WT) and gram-negative (Escherichia coli WKPM M-17; Salmonella typhimurium TA 100) microorganisms. The broth dilution method revealed that the minimal and half maximal inhibitory concentration values against E. coli corresponded to the 70 μg/mL and 140 μg/mL concentration of the extract respectively. According to the photochemiluminescent analysis, callus tissue extracts of leaf and root origin showed higher antioxidant activity than the same quantity of A. genevensis intact plant extract. A. genevensis intact plant and callus culture extracts showed no cytotoxic effect on K-562 suspension cell line of human chronic myeloid leukemia. The GC-MS analysis showed deep differences between the qualitative and quantitative composition of callus culture and intact plant extracts. Hexacosane (11.17%); n-hexadecanoic acid (9.33%); and 2-methoxy-4-vinylphenol (4.28%) were the main components of intact plant extracts. 10-Methylnonadecane (57.0%); methoxyacetic acid, 2-tetradecyl ester (17.75%) and 1-Bromopentadecane (14.55%) were the main components of A. genevensis callus culture extracts. Obtained data indicate that callus culture of A. genevensis can be used as an alternative source of biologically active substances.Keywords: Ajuga genevensis, antibacterial activity, antioxidant activity, callus cultures
Procedia PDF Downloads 2984926 A New Conjugate Gradient Method with Guaranteed Descent
Authors: B. Sellami, M. Belloufi
Abstract:
Conjugate gradient methods are an important class of methods for unconstrained optimization, especially for large-scale problems. Recently, they have been much studied. In this paper, we propose a new two-parameter family of conjugate gradient methods for unconstrained optimization. The two-parameter family of methods not only includes the already existing three practical nonlinear conjugate gradient methods, but also has other family of conjugate gradient methods as subfamily. The two-parameter family of methods with the Wolfe line search is shown to ensure the descent property of each search direction. Some general convergence results are also established for the two-parameter family of methods. The numerical results show that this method is efficient for the given test problems. In addition, the methods related to this family are uniformly discussed.Keywords: unconstrained optimization, conjugate gradient method, line search, global convergence
Procedia PDF Downloads 4524925 Inter-Cell-Interference Mitigation Scheme in Wireless Communication System
Authors: Jae-Hyun Ro, Yong-Jun Kim, Eui-Hak Lee, Hyoung-Kyu Song
Abstract:
Mobile communication has been developing very rapidly since it appeared. However, although mobile communication market has been rapidly developing, many mobile users are not offered good quality of service (QoS) due to increment of the amount of data traffic. Recently, femtocell is very hot issue in mobile communication because femtocell can solve the problems of data traffic and offer better QoS to mobile users. However, the deployment of femtocell in existing macrocell coverage area is not so simple due to the influence of inter-cell-interference (ICI) with existing macrocell. Thus, this paper proposes femtocell scheme which is able to reduce the influence of ICI to deploy femtocell easily.Keywords: CDD, femtocell, interference, macrocell, OFDM
Procedia PDF Downloads 5024924 Transmission Line Protection Challenges under High Penetration of Renewable Energy Sources and Proposed Solutions: A Review
Authors: Melake Kuflom
Abstract:
European power networks involve the use of multiple overhead transmission lines to construct a highly duplicated system that delivers reliable and stable electrical energy to the distribution level. The transmission line protection applied in the existing GB transmission network are normally independent unit differential and time stepped distance protection schemes, referred to as main-1 & main-2 respectively, with overcurrent protection as a backup. The increasing penetration of renewable energy sources, commonly referred as “weak sources,” into the power network resulted in the decline of fault level. Traditionally, the fault level of the GB transmission network has been strong; hence the fault current contribution is more than sufficient to ensure the correct operation of the protection schemes. However, numerous conventional coal and nuclear generators have been or about to shut down due to the societal requirement for CO2 emission reduction, and this has resulted in a reduction in the fault level on some transmission lines, and therefore an adaptive transmission line protection is required. Generally, greater utilization of renewable energy sources generated from wind or direct solar energy results in a reduction of CO2 carbon emission and can increase the system security and reliability but reduces the fault level, which has an adverse effect on protection. Consequently, the effectiveness of conventional protection schemes under low fault levels needs to be reviewed, particularly for future GB transmission network operating scenarios. The proposed paper will evaluate the transmission line challenges under high penetration of renewable energy sources andprovides alternative viable protection solutions based on the problem observed. The paper will consider the assessment ofrenewable energy sources (RES) based on a fully rated converter technology. The DIgSILENT Power Factory software tool will be used to model the network.Keywords: fault level, protection schemes, relay settings, relay coordination, renewable energy sources
Procedia PDF Downloads 2064923 Effect of Ti, Nb, and Zr Additives on Biocompatibility of Injection Molded 316L Stainless Steel for Biomedical Applications
Authors: Busra Gundede, Ozal Mutlu, Nagihan Gulsoy
Abstract:
Background: Over the years, material research has led to the development of numerous metals and alloys for using in biomedical applications. One of the major tasks of biomaterial research is the functionalization of the material surface to improve the biocompatibility according to a specific application. 316L and 316L alloys are excellent for various bio-applications. This research was investigated the effect of titanium (Ti), niobium (Nb), and zirconium (Zr) additives on injection molded austenitic grade 316L stainless steels in vitro biocompatibility. For this purpose, cytotoxic tests were performed to evaluate the potential biocompatibility of the specimens. Materials and Methods: 3T3 fibroblast were cultivated in DMEM supplemented with 10% fetal bovine serum and %1 penicillin-streptomycin at 37°C with 5% CO2 and 95%humidity. Trypsin/EDTA solution was used to remove cells from the culture flask. Cells were reseeded at a density of 1×105cell in 25T flasks. The medium change took place every 3 days. The trypan blue assay was used to determine cell viability. Cell viability is calculated as the number of viable cells divided by the total number of cells within the grids on the cell counter machine counted the number of blue staining cells and the number of total cells. Cell viability should be at least 95% for healthy log-phase cultures. MTT assay was assessed for 96-hours. Cells were cultivated in 6-well flask within 5 ml DMEM and incubated as same conditions. 0,5mg/ml MTT was added for 4-hours and then acid-isoprohanol was added for solubilize to formazan crystals. Cell morphology after 96h was investigated by SEM. The medium was removed, samples were washed with 0.15 M PBS buffer and fixed for 12h at 4- 8°C with %2,5 gluteraldehyte. Samples were treated with 1% osmium tetroxide. Samples were then dehydrated and dried, mounted on appropriate stubs with colloidal silver and sputter-coated with gold. Images were collected using a scanning electron microscope. ROS assay is a cell viability test for in vitro studies. Cells were grown for 96h, ROS solution added on cells in 6 well plate flask and incubated for 1h. Fluorescence signal indicates ROS generation by cells. Results: Trypan Blue exclusion assay results were 96%, 92%, 95%, 90%, 91% for negative control group, 316L, 316L-Ti, 316L-Nb and 316L-Zr, respectively. Results were found nearly similar to each other when compared with control group. Cell viability from MTT analysis was found to be 100%, 108%, 103%, 107%, and 105% for the control group, 316L, 316L-Ti, 316L-Nb and 316L-Zr, respectively. Fluorescence microscopy analysis indicated that all test groups were same as the control group in ROS assay. SEM images demonstrated that the attachment of 3T3 cells on biomaterials. Conclusion: We, therefore, concluded that Ti, Nb and Zr additives improved physical properties of 316L stainless. In our in vitro experiments showed that these new additives did not modify the cytocompatibility of stainless steel and these additives on 316L might be useful for biomedical applications.Keywords: 316L stainles steel, biocompatibility, cell culture, Ti, Nb, Zr
Procedia PDF Downloads 5134922 Enhanced Bit Error Rate in Visible Light Communication: A New LED Hexagonal Array Distribution
Authors: Karim Matter, Heba Fayed, Ahmed Abd-Elaziz, Moustafa Hussein
Abstract:
Due to the exponential growth of mobile devices and wireless services, a huge demand for radiofrequency has increased. The presence of several frequencies causes interference between cells, which must be minimized to get the lower Bit Error Rate (BER). For this reason, it is of great interest to use visible light communication (VLC). This paper suggests a VLC system that decreases the BER by applying a new LED distribution with a hexagonal shape using a Frequency Reuse (FR) concept to mitigate the interference between the reused frequencies inside the hexagonal shape. The BER is measured in two scenarios, Line of Sight (LoS) and Non-Line of Sight (Non-LoS), for each technique that we used. The recommended values of BER in the proposed model for Soft Frequency Reuse (SFR) in the case of Los at 4, 8, and 10 dB signal to noise ratio (SNR), are 3.6×10⁻⁶, 6.03×10⁻¹³, and 2.66×10⁻¹⁸, respectively.Keywords: visible light communication (VLC), field of view (FoV), hexagonal array, frequency reuse
Procedia PDF Downloads 1604921 Physiological Indicators and Stress Index of Scavenging Chickens at Lafarge and Dangote Cement Factory Areas of Ogun State
Authors: Oluwadele Joshua Femi, Akinlabi Ebenezer Yemi, Onaopemipo Adeitan, Kazeem Bello, Anthony Ekeocha, Miraim Tawose
Abstract:
This study was carried out to determine the physiological and stress index of scavenging chickens in LAFARGE (Ewekoro) and Dangote (Ibese) Cement Factories Area of Ogun State. One hundred adult scavenging chickens comprising of 25 chickens from LAFARGE, Dangote and respective adjourning communities (Imasayi and Wasimi) were used. Experimental birds were caught at night on their perch and kept in cages till the next morning. Data were collected on rectal temperature, pulse rate, and respiratory rate of the birds. Also, 5ml blood was collected through the wing vein of the chickens in each location using a sterilized needle and syringe and transported to laboratory for analysis. Significant (P<0.05) highest pulse rate (215.64 beat/minute) and respiratory rate (19.90 breaths/minute) were recorded among scavenging chickens at LAFARGE (Ewekoro) Area and the least (198.61 beat/minute and 16.93 breaths/minute, respectively) at Imasayi. There was no significant (P>0.05) difference in the rectal temperature of the birds in the study area. Significant (P<0.05) differences were also recorded in the Packed Cell Volume (PCV), Hemoglobin (Hb), White Blood Cell (WBC), Monocyte, and Glucose level of the chickens in study area with the highest (P<0.05) Packed Cell Volume (28.06%) and Haemoglobin (4.01g/dl) recorded in Ibese and the least Packed Cell Volume (22.00%) and Haemoglobin (288g/dl) in Imasayi. Highest (P<0.05) Monocyte (4.28%) and glucose (256.53g/dl) were recorded among scavenging chickens at Dangote (Ibese) while the least Monocyte (0.00%) and Glucose (194.53g/dl) was recorded among chickens at Wasimi. Highest (P<0.05) White Blood Cell (6488.89×103µl) was recorded among chickens at Ewekoro and the lowest value in Ibese (4388.44×103µl). There was no significant (P>0.05) difference in the Heterophyl, Lymphocyte, Basophyl and Heterophyl/Lymphocyte ratio of the chickens in the study Area. The study concluded that chickens reared at LAFARGE (Ewekoro) were stressed and had comprised welfare and health status compared to Dangote (Ibese) cement area and other agrarian communities. Effective environmental mitigation programme should be put in place to enhance the welfare of the scavenging chickens in LAFARGE Cement Factory Area.Keywords: blood, chicken, poisonous substances, pack cell volume, communities
Procedia PDF Downloads 854920 Comparative Study of Two New Configurations of Solar Photovoltaic Thermal Collectors
Authors: K. Touafek, A. Khelifa, E. H. Khettaf, A. Embarek
Abstract:
Hybrid photovoltaic thermal (PV/T) solar system comprises a solar collector which is disposed on photovoltaic solar cells. The disadvantage of a conventional photovoltaic cell is that its performance decreases as the temperature increases. Indeed, part of the solar radiation is converted into electricity and is dissipated as heat, increasing the temperature of the photovoltaic cell with respect to the ambient temperature. The objective of this work is to study experimentally and implement a hybrid prototype to evaluate electrical and thermal performance. In this paper, an experimental study of two new configurations of hybrid collectors is exposed. The results are given and interpreted. The two configurations of absorber studied are a new combination with tubes and galvanized tank, the other is a tubes and sheet.Keywords: experimental, photovoltaic, solar, temperature
Procedia PDF Downloads 489