Search results for: materials modeling
Commenced in January 2007
Frequency: Monthly
Edition: International

Search results for: materials modeling

Consumer Behavior and Attitudes of Green Advertising: A Collaborative Study with Three Companies to Educate Consumers

Authors: Mokhlisur Rahman

Abstract:

Consumers' understanding of the products depends on what levels of information the advertisement contains. Consumers' attitudes vary widely depending on factors such as their level of environmental awareness, their perception of the company's motives, and the perceived effectiveness of the advertising campaign. Considering the growing eco-consciousness among consumers and their concern for the environment, strategies for green advertising have become equally significant for companies to attract new consumers. It is important to understand consumers' habits of purchasing, knowledge, and attitudes regarding eco-friendly products depending on promotion because of the limitless options of the products in the market. Additionally, encouraging consumers to buy sustainable products requires a platform that can message the world that being a stakeholder in sustainability is possible if consumers show eco-friendly behavior on a larger scale. Social media platforms provide an excellent atmosphere to promote companies' sustainable efforts to be connected engagingly with their potential consumers. The unique strategies of green advertising use techniques to carry information and rewards for the consumers. This study aims to understand the consumer behavior and effectiveness of green advertising by experimenting in collaboration with three companies in promoting their eco-friendly products using green designs on the products. The experiment uses three sustainable personalized offerings, Nike shoes, H&M t-shirts, and Patagonia school bags. The experiment uses a pretest and posttest design. 300 randomly selected participants take part in this experiment and survey through Facebook, Twitter, and Instagram. Nike, H&M, and Patagonia share the post of the experiment on their social media homepages with a video advertisement for the three products. The consumers participate in a pre-experiment online survey before making a purchase decision to assess their attitudes and behavior toward eco-friendly products. The audio-only feature explains the product's information, like their use of recycled materials, their manufacturing methods, sustainable packaging, and their impact on the environment during the purchase while the consumer watches the product video. After making a purchase, consumers take a post-experiment survey to know their perception and behavior toward eco-friendly products. For the data analysis, descriptive statistical tools mean, standard deviation, and frequencies measure the pre- and post-experiment survey data. The inferential statistical tool paired sample t-test measures the difference in consumers' behavior and attitudes between pre-purchase and post-experiment survey results. This experiment provides consumers ample time to consider many aspects rather than impulses. This research provides valuable insights into how companies can adopt sustainable and eco-friendly products. The result set a target for the companies to achieve a sustainable production goal that ultimately supports companies' profit-making and promotes consumers' well-being. This empowers consumers to make informed choices about the products they purchase and support their companies of interest.

Keywords: green-advertising, sustainability, consumer-behavior, social media

Procedia PDF Downloads 92
A Finite Element Analysis of Hexagonal Double-Arrowhead Auxetic Structure with Enhanced Energy Absorption Characteristics and Stiffness

Authors: Keda Li, Hong Hu

Abstract:

Auxetic materials, as an emerging artificial designed metamaterial has attracted growing attention due to their promising negative Poisson’s ratio behaviors and tunable properties. The conventional auxetic lattice structures for which the deformation process is governed by a bending-dominated mechanism have faced the limitation of poor mechanical performance for many potential engineering applications. Recently, both load-bearing and energy absorption capabilities have become a crucial consideration in auxetic structure design. This study reports the finite element analysis of a class of hexagonal double-arrowhead auxetic structures with enhanced stiffness and energy absorption performance. The structure design was developed by extending the traditional double-arrowhead honeycomb to a hexagon frame, the stretching-dominated deformation mechanism was determined according to Maxwell’s stability criterion. The finite element (FE) models of 2D lattice structures established with stainless steel material were analyzed in ABAQUS/Standard for predicting in-plane structural deformation mechanism, failure process, and compressive elastic properties. Based on the computational simulation, the parametric analysis was studied to investigate the effect of the structural parameters on Poisson’s ratio and mechanical properties. The geometrical optimization was then implemented to achieve the optimal Poisson’s ratio for the maximum specific energy absorption. In addition, the optimized 2D lattice structure was correspondingly converted into a 3D geometry configuration by using the orthogonally splicing method. The numerical results of 2D and 3D structures under compressive quasi-static loading conditions were compared separately with the traditional double-arrowhead re-entrant honeycomb in terms of specific Young's moduli, Poisson's ratios, and specified energy absorption. As a result, the energy absorption capability and stiffness are significantly reinforced with a wide range of Poisson’s ratio compared to traditional double-arrowhead re-entrant honeycomb. The auxetic behaviors, energy absorption capability, and yield strength of the proposed structure are adjustable with different combinations of joint angle, struts thickness, and the length-width ratio of the representative unit cell. The numerical prediction in this study suggests the proposed concept of hexagonal double-arrowhead structure could be a suitable candidate for the energy absorption applications with a constant request of load-bearing capacity. For future research, experimental analysis is required for the validation of the numerical simulation.

Keywords: auxetic, energy absorption capacity, finite element analysis, negative Poisson's ratio, re-entrant hexagonal honeycomb

Procedia PDF Downloads 93
Recycling Service Strategy by Considering Demand-Supply Interaction

Authors: Hui-Chieh Li

Abstract:

Circular economy promotes greater resource productivity and avoids pollution through greater recycling and re-use which bring benefits for both the environment and the economy. The concept is contrast to a linear economy which is ‘take, make, dispose’ model of production. A well-design reverse logistics service strategy could enhance the willingness of recycling of the users and reduce the related logistics cost as well as carbon emissions. Moreover, the recycle brings the manufacturers most advantages as it targets components for closed-loop reuse, essentially converting materials and components from worn-out product into inputs for new ones at right time and right place. This study considers demand-supply interaction, time-dependent recycle demand, time-dependent surplus value of recycled product and constructs models on recycle service strategy for the recyclable waste collector. A crucial factor in optimizing a recycle service strategy is consumer demand. The study considers the relationships between consumer demand towards recycle and product characteristics, surplus value and user behavior. The study proposes a recycle service strategy which differs significantly from the conventional and typical uniform service strategy. Periods with considerable demand and large surplus product value suggest frequent and short service cycle. The study explores how to determine a recycle service strategy for recyclable waste collector in terms of service cycle frequency and duration and vehicle type for all service cycles by considering surplus value of recycled product, time-dependent demand, transportation economies and demand-supply interaction. The recyclable waste collector is responsible for the collection of waste product for the manufacturer. The study also examines the impacts of utilization rate on the cost and profit in the context of different sizes of vehicles. The model applies mathematical programming methods and attempts to maximize the total profit of the distributor during the study period. This study applies the binary logit model, analytical model and mathematical programming methods to the problem. The model specifically explores how to determine a recycle service strategy for the recycler by considering product surplus value, time-dependent recycle demand, transportation economies and demand-supply interaction. The model applies mathematical programming methods and attempts to minimize the total logistics cost of the recycler and maximize the recycle benefits of the manufacturer during the study period. The study relaxes the constant demand assumption and examines how service strategy affects consumer demand towards waste recycling. Results of the study not only help understanding how the user demand for recycle service and product surplus value affects the logistics cost and manufacturer’s benefits, but also provide guidance such as award bonus and carbon emission regulations for the government.

Keywords: circular economy, consumer demand, product surplus value, recycle service strategy

Procedia PDF Downloads 394
Destruction of Colon Cells by Nanocontainers of Ferromagnetic

Authors: Lukasz Szymanski, Zbigniew Kolacinski, Grzegorz Raniszewski, Slawomir Wiak, Lukasz Pietrzak, Dariusz Koza, Karolina Przybylowska-Sygut, Ireneusz Majsterek, Zbigniew Kaminski, Justyna Fraczyk, Malgorzata Walczak, Beata Kolasinska, Adam Bednarek, Joanna Konka

Abstract:

The aim of this work is to investigate the influence of electromagnetic field from the range of radio frequencies on the desired nanoparticles for cancer therapy. In the article, the development and demonstration of the method and the model device for hyperthermic selective destruction of cancer cells are presented. This method was based on the synthesis and functionalization of carbon nanotubes serving as ferromagnetic material nanocontainers. The methodology of the production carbon - ferromagnetic nanocontainers (FNCs) includes: The synthesis of carbon nanotubes, chemical, and physical characterization, increasing the content of a ferromagnetic material and biochemical functionalization involving the attachment of the key addresses. The ferromagnetic nanocontainers were synthesised in CVD and microwave plasma system. Biochemical functionalization of ferromagnetic nanocontainers is necessary in order to increase the binding selectively with receptors presented on the surface of tumour cells. Multi-step modification procedure was finally used to attach folic acid on the surface of ferromagnetic nanocontainers. Pristine ferromagnetic carbon nanotubes are not suitable for application in medicine and biotechnology. Appropriate functionalization of ferromagnetic carbon nanotubes allows to receiving materials useful in medicine. Finally, a product contains folic acids on the surface of FNCs. The folic acid is a ligand of folate receptors – α which is overexpressed on the surface of epithelial tumours cells. It is expected that folic acids will be recognized and selectively bound by receptors presented on the surface of tumour cells. In our research, FNCs were covalently functionalized in a multi-step procedure. Ferromagnetic carbon nanotubes were oxidated using different oxidative agents. For this purpose, strong acids such as HNO3, or mixture HNO3 and H2SO4 were used. Reactive carbonyl and carboxyl groups were formed on the open sides and at the defects on the sidewalls of FNCs. These groups allow further modification of FNCs as a reaction of amidation, reaction of introduction appropriate linkers which separate solid surface of FNCs and ligand (folic acid). In our studies, amino acid and peptide have been applied as ligands. The last step of chemical modification was reaction-condensation with folic acid. In all reaction as coupling reagents were used derivatives of 1,3,5-triazine. The first trials in the device for hyperthermal RF generator have been done. The frequency of RF generator was in the ranges from 10 to 14Mhz and from 265 to 621kHz. Obtained functionalized nanoparticles enabled to reach the temperature of denaturation tumor cells in given frequencies.

Keywords: cancer colon cells, carbon nanotubes, hyperthermia, ligands

Procedia PDF Downloads 318
Numerical Simulation on Two Components Particles Flow in Fluidized Bed

Authors: Wang Heng, Zhong Zhaoping, Guo Feihong, Wang Jia, Wang Xiaoyi

Abstract:

Flow of gas and particles in fluidized beds is complex and chaotic, which is difficult to measure and analyze by experiments. Some bed materials with bad fluidized performance always fluidize with fluidized medium. The material and the fluidized medium are different in many properties such as density, size and shape. These factors make the dynamic process more complex and the experiment research more limited. Numerical simulation is an efficient way to describe the process of gas-solid flow in fluidized bed. One of the most popular numerical simulation methods is CFD-DEM, i.e., computational fluid dynamics-discrete element method. The shapes of particles are always simplified as sphere in most researches. Although sphere-shaped particles make the calculation of particle uncomplicated, the effects of different shapes are disregarded. However, in practical applications, the two-component systems in fluidized bed also contain sphere particles and non-sphere particles. Therefore, it is needed to study the two component flow of sphere particles and non-sphere particles. In this paper, the flows of mixing were simulated as the flow of molding biomass particles and quartz in fluidized bad. The integrated model was built on an Eulerian–Lagrangian approach which was improved to suit the non-sphere particles. The constructed methods of cylinder-shaped particles were different when it came to different numerical methods. Each cylinder-shaped particle was constructed as an agglomerate of fictitious small particles in CFD part, which means the small fictitious particles gathered but not combined with each other. The diameter of a fictitious particle d_fic and its solid volume fraction inside a cylinder-shaped particle α_fic, which is called the fictitious volume fraction, are introduced to modify the drag coefficient β by introducing the volume fraction of the cylinder-shaped particles α_cld and sphere-shaped particles α_sph. In a computational cell, the void ε, can be expressed as ε=1-〖α_cld α〗_fic-α_sph. The Ergun equation and the Wen and Yu equation were used to calculate β. While in DEM method, cylinder-shaped particles were built by multi-sphere method, in which small sphere element merged with each other. Soft sphere model was using to get the connect force between particles. The total connect force of cylinder-shaped particle was calculated as the sum of the small sphere particles’ forces. The model (size=1×0.15×0.032 mm3) contained 420000 sphere-shaped particles (diameter=0.8 mm, density=1350 kg/m3) and 60 cylinder-shaped particles (diameter=10 mm, length=10 mm, density=2650 kg/m3). Each cylinder-shaped particle was constructed by 2072 small sphere-shaped particles (d=0.8 mm) in CFD mesh and 768 sphere-shaped particles (d=3 mm) in DEM mesh. The length of CFD and DEM cells are 1 mm and 2 mm. Superficial gas velocity was changed in different models as 1.0 m/s, 1.5 m/s, 2.0m/s. The results of simulation were compared with the experimental results. The movements of particles were regularly as fountain. The effect of superficial gas velocity on cylinder-shaped particles was stronger than that of sphere-shaped particles. The result proved this present work provided a effective approach to simulation the flow of two component particles.

Keywords: computational fluid dynamics, discrete element method, fluidized bed, multiphase flow

Procedia PDF Downloads 331
Ways to Prevent Increased Wear of the Drive Box Parts and the Central Drive of the Civil Aviation Turbo Engine Based on Tribology

Authors: Liudmila Shabalinskaya, Victor Golovanov, Liudmila Milinis, Sergey Loponos, Alexander Maslov, D. O. Frolov

Abstract:

The work is devoted to the rapid laboratory diagnosis of the condition of aircraft friction units, based on the application of the nondestructive testing method by analyzing the parameters of wear particles, or tribodiagnostics. The most important task of tribodiagnostics is to develop recommendations for the selection of more advanced designs, materials and lubricants based on data on wear processes for increasing the life and ensuring the safety of the operation of machines and mechanisms. The object of tribodiagnostics in this work are the tooth gears of the central drive and the gearboxes of the gas turbine engine of the civil aviation PS-90A type, in which rolling friction and sliding friction with slip occur. The main criterion for evaluating the technical state of lubricated friction units of a gas turbine engine is the intensity and rate of wear of the friction surfaces of the friction unit parts. When the engine is running, oil samples are taken and the state of the friction surfaces is evaluated according to the parameters of the wear particles contained in the oil sample, which carry important and detailed information about the wear processes in the engine transmission units. The parameters carrying this information include the concentration of wear particles and metals in the oil, the dispersion composition, the shape, the size ratio and the number of particles, the state of their surfaces, the presence in the oil of various mechanical impurities of non-metallic origin. Such a morphological analysis of wear particles has been introduced into the order of monitoring the status and diagnostics of various aircraft engines, including a gas turbine engine, since the type of wear characteristic of the central drive and the drive box is surface fatigue wear and the beginning of its development, accompanied by the formation of microcracks, leads to the formation of spherical, up to 10 μm in size, and in the aftermath of flocculent particles measuring 20-200 μm in size. Tribodiagnostics using the morphological analysis of wear particles includes the following techniques: ferrography, filtering, and computer analysis of the classification and counting of wear particles. Based on the analysis of several series of oil samples taken from the drive box of the engine during their operating time, a study was carried out of the processes of wear kinetics. Based on the results of the study and comparing the series of criteria for tribodiagnostics, wear state ratings and statistics of the results of morphological analysis, norms for the normal operating regime were developed. The study allowed to develop levels of wear state for friction surfaces of gearing and a 10-point rating system for estimating the likelihood of the occurrence of an increased wear mode and, accordingly, prevention of engine failures in flight.

Keywords: aviation, box of drives, morphological analysis, tribodiagnostics, tribology, ferrography, filtering, wear particle

Procedia PDF Downloads 268
Leuco Dye-Based Thermochromic Systems for Application in Temperature Sensing

Authors: Magdalena Wilk-Kozubek, Magdalena Rowińska, Krzysztof Rola, Joanna Cybińska

Abstract:

Leuco dye-based thermochromic systems are classified as intelligent materials because they exhibit thermally induced color changes. Thanks to this feature, they are mainly used as temperature sensors in many industrial sectors. For example, placing a thermochromic material on a chemical reactor may warn about exceeding the maximum permitted temperature for a chemical process. Usually two components, a color former and a developer are needed to produce a system with irreversible color change. The color former is an electron donating (proton accepting) compound such as fluoran leuco dye. The developer is an electron accepting (proton donating) compound such as organic carboxylic acid. When the developer melts, the color former - developer complex is created and the termochromic system becomes colored. Typically, the melting point of the applied developer determines the temperature at which the color change occurs. When the lactone ring of the color former is closed, then the dye is in its colorless state. The ring opening, induced by the addition of a proton, causes the dye to turn into its colored state. Since the color former and the developer are often solid, they can be incorporated into polymer films to facilitate their practical use in industry. The objective of this research was to fabricate a leuco dye-based termochromic system that will irreversibly change color after reaching the temperature of 100°C. For this purpose, benzofluoran leuco dye (as color former) and phenoxyacetic acid (as developer with a melting point of 100°C) were introduced into the polymer films during the drop casting process. The film preparation process was optimized in order to obtain thin films with appropriate properties such as transparency, flexibility and homogeneity. Among the optimized factors were the concentration of benzofluoran leuco dye and phenoxyacetic acid, the type, average molecular weight and concentration of the polymer, and the type and concentration of the surfactant. The selected films, containing benzofluoran leuco dye and phenoxyacetic acid, were combined by mild heat treatment. Structural characterization of single and combined films was carried out by FTIR spectroscopy, morphological analysis was performed by optical microscopy and SEM, phase transitions were examined by DSC, color changes were investigated by digital photography and UV-Vis spectroscopy, while emission changes were studied by photoluminescence spectroscopy. The resulting thermochromic system is colorless at room temperature, but after reaching 100°C the developer melts and it turns irreversibly pink. Therefore, it could be used as an additional sensor to warn against boiling of water in power plants using water cooling. Currently used electronic temperature indicators are prone to faults and unwanted third-party actions. The sensor constructed in this work is transparent, thanks to which it can be unnoticed by an outsider and constitute a reliable reference for the person responsible for the apparatus.

Keywords: color developer, leuco dye, thin film, thermochromism

Procedia PDF Downloads 104
Effects of Sulphide Mining on AISI 304 Stainless Steel

Authors: Aguasanta Miguel Sarmiento, José Miguel Dávila, María Luisa de la Torre

Abstract:

Acid mine drainage (AMD) is an acidic leachate with high levels of metals and sulphates in solution, which seriously affects the durability and strength of metallic materials used in the construction of structural and mechanical components. This paper presents the results of the evolution over time of the reduction in tensile strength and defects in AISI 304 stainless steel in contact with acid mine drainage. For this purpose, a total of 30 bars with a diameter of 8 mm and a length of 14 cm were placed transversely in the course of a stream contaminated by AMD from the sulphide mines of the Iberian Pyritic Belt (SW Spain). This stream has average pH values of 2.6, a potential of 660 mV, and average concentrations of 12 g/L of sulphates, 1.2 g/L of Fe, 191 mg/L of Zn, etc. Every two months of exposure, 6 stainless steel bars were extracted from the acid stream. They were subjected to surface roughness analysis carried out with the help of Mitutoyo Surftest SJ-210 surface roughness tester. The analysis was carried out at three different points on 5 specimens from each series. The average reading of each parameter is calculated in order to ensure the accuracy of the measurements and the surface coverage. Arithmetic mean roughness value (Ra), mean roughness depth (Rz), and root mean square roughness (Rq) were measured. Five specimens from each series were statically tensile tested using universal equipment (Servosis ME 403 of 200kN). The specimens were clamped at their ends with two grips for cylindrical sections, and the tensile force was applied at a constant speed of 0.5 kN/s, according to the requirements of standard UNE-EN ISO 6892-1: 2020. To determine the modulus of elasticity, limits close to 15% and 55% of the maximum load were used, depending on the course of each test. Field Emission Scanning Electron Microscopy (FESEM) was used to observe corrosion products and defects generated by exposure to AMD. Energy dispersive X-ray spectrometry (EDS) was used to analyse the chemical composition of the corrosion products formed. For this purpose, small pieces were cut from the resulting specimens, cleaned, and embedded in epoxy resin. The results show that after only 5 months of exposure of AISI 304 stainless steel to the mining environment, the surface roughness increases significantly, with average depths almost 6 times greater than the initial one. Cracks are observed on the surface of the material, which increases in size with the time of exposure. A large number of grains with a composition of more than 57% Pb and 16% Sn can be observed inside these cracks. Tensile tests show a reduction in the resistance of this material after only two months of exposure. The results show the serious problems that would result from the use of this material for the use of mechanical components in a sulphide mining environment, not only because of the significant reduction in the lifetime of such components, but also because of the implications for human safety.

Keywords: acid mine drainage, corrosion, mechanical properties, stainless steel

Procedia PDF Downloads 25
Magnetic SF (Silk Fibroin) E-Gel Scaffolds Containing bFGF-Conjugated Fe3O4 Nanoparticles

Authors: Z. Karahaliloğlu, E. Yalçın, M. Demirbilek, E.B. Denkbaş

Abstract:

Critical-sized bone defects caused by trauma, bone diseases, prosthetic implant revision or tumor excision cannot be repaired by physiological regenerative processes. Current orthopedic applications for critical-sized bone defects are to use autologous bone grafts, bone allografts, or synthetic graft materials. However, these strategies are unable to solve completely the problem, and motivate the development of novel effective biological scaffolds for tissue engineering applications and regenerative medicine applications. In particular, scaffolds combined with a variety of bio-agents as fundamental tools emerge to provide the regeneration of damaged bone tissues due to their ability to promote cell growth and function. In this study, a magnetic silk fibroin (SF) hydrogel scaffold was prepared by electrogelation process of the concentrated Bombxy mori silk fibroin (8 %wt) aqueous solution. For enhancement of osteoblast-like cells (SaOS-2) growth and adhesion, basal fibroblast growth factor (bFGF) were conjugated physically to the HSA-coated magnetic nanoparticles (Fe3O4) and magnetic SF e-gel scaffolds were prepared by incorporation of Fe3O4, HSA (human serum albumin)=Fe3O4 and HSA=Fe3O4-bFGF nanoparticles. HSA=Fe3O4, HSA=Fe3O4-bFGF loaded and bare SF e-gels scaffolds were characterized using scanning electron microscopy (SEM.) For cell studies, human osteoblast-like cell line (SaOS-2) was used and an MTT assay was used to assess the cytotoxicity of magnetic silk fibroin e-gel scaffolds and cell density on these surfaces. For the evaluation osteogenic activation, ALP (alkaline phosphatase), the amount of mineralized calcium, total protein and collagen were studied. Fe3O4 nanoparticles were successfully synthesized and bFGF was conjugated to HSA=Fe3O4 nanoparticles with %97.5 of binding yield which has a particle size of 71.52±2.3 nm. Electron microscopy images of the prepared HSA and bFGF incorporated SF e-gel scaffolds showed a 3D porous morphology. In terms of water uptake results, bFGF conjugated HSA=Fe3O4 nanoparticles has the best water absorbability behavior among all groups. In the in-vitro cell culture studies realized using SaOS-2 cell line, the coating of Fe3O4 nanoparticles surface with a protein enhance the cell viability and HSA coating and bFGF conjugation, the both have an inductive effect in the cell proliferation. One of the markers of bone formation and osteoblast differentiation, according to the ALP activity and total protein results, HSA=Fe3O4-bFGF loaded SF e-gels had significantly enhanced ALP activity. Osteoblast cultured HSA=Fe3O4-bFGF loaded SF e-gels deposited more calcium compared with SF e-gel. The proposed magnetic scaffolds seem to be promising for bone tissue regeneration and used in future work for various applications.

Keywords: basic fibroblast growth factor (bFGF), e-gel, iron oxide nanoparticles, silk fibroin

Procedia PDF Downloads 294
Entrepreneurial Dynamism and Socio-Cultural Context

Authors: Shailaja Thakur

Abstract:

Managerial literature abounds with discussions on business strategies, success stories as well as cases of failure, which provide an indication of the parameters that should be considered in gauging the dynamism of an entrepreneur. Neoclassical economics has reduced entrepreneurship to a mere factor of production, driven solely by the profit motive, thus stripping him of all creativity and restricting his decision making to mechanical calculations. His ‘dynamism’ is gauged simply by the amount of profits he earns, marginalizing any discussion on the means that he employs to attain this objective. With theoretical backing, we have developed an Index of Entrepreneurial Dynamism (IED) giving weights to the different moves that the entrepreneur makes during his business journey. Strategies such as changes in product lines, markets and technology are gauged as very important (weighting of 4); while adaptations in terms of technology, raw materials used, upgradations in skill set are given a slightly lesser weight of 3. Use of formal market analysis, diversification in related products are considered moderately important (weight of 2) and being a first generation entrepreneur, employing managers and having plans to diversify are taken to be only slightly important business strategies (weight of 1). The maximum that an entrepreneur can score on this index is 53. A semi-structured questionnaire is employed to solicit the responses from the entrepreneurs on the various strategies that have been employed by them during the course of their business. Binary as well as graded responses are obtained, weighted and summed up to give the IED. This index was tested on about 150 tribal entrepreneurs in Mizoram, a state of India and was found to be highly effective in gauging their dynamism. This index has universal acceptability but is devoid of the socio-cultural context, which is very central to the success and performance of the entrepreneurs. We hypothesize that a society that respects risk taking takes failures in its stride, glorifies entrepreneurial role models, promotes merit and achievement is one that has a conducive socio- cultural environment for entrepreneurship. For obtaining an idea about the social acceptability, we are putting forth questions related to the social acceptability of business to another set of respondents from different walks of life- bureaucracy, academia, and other professional fields. Similar weighting technique is employed, and index is generated. This index is used for discounting the IED of the respondent entrepreneurs from that region/ society. This methodology is being tested for a sample of entrepreneurs from two very different socio- cultural milieus- a tribal society and a ‘mainstream’ society- with the hypothesis that the entrepreneurs in the tribal milieu might be showing a higher level of dynamism than their counterparts in other regions. An entrepreneur who scores high on IED and belongs to society and culture that holds entrepreneurship in high esteem, might not be in reality as dynamic as a person who shows similar dynamism in a relatively discouraging or even an outright hostile environment.

Keywords: index of entrepreneurial dynamism, India, social acceptability, tribal entrepreneurs

Procedia PDF Downloads 262
Development of 3D Printed Natural Fiber Reinforced Composite Scaffolds for Maxillofacial Reconstruction

Authors: Sri Sai Ramya Bojedla, Falguni Pati

Abstract:

Nature provides the best of solutions to humans. One such incredible gift to regenerative medicine is silk. The literature has publicized a long appreciation for silk owing to its incredible physical and biological assets. Its bioactive nature, unique mechanical strength, and processing flexibility make us curious to explore further to apply it in the clinics for the welfare of mankind. In this study, Antheraea mylitta and Bombyx mori silk fibroin microfibers are developed by two economical and straightforward steps via degumming and hydrolysis for the first time, and a bioactive composite is manufactured by mixing silk fibroin microfibers at various concentrations with polycaprolactone (PCL), a biocompatible, aliphatic semi-crystalline synthetic polymer. Reconstructive surgery in any part of the body except for the maxillofacial region deals with replacing its function. But answering both the aesthetics and function is of utmost importance when it comes to facial reconstruction as it plays a critical role in the psychological and social well-being of the patient. The main concern in developing adequate bone graft substitutes or a scaffold is the noteworthy variation in each patient's bone anatomy. Additionally, the anatomical shape and size will vary based on the type of defect. The advent of additive manufacturing (AM) or 3D printing techniques to bone tissue engineering has facilitated overcoming many of the restraints of conventional fabrication techniques. The acquired patient's CT data is converted into a stereolithographic (STL)-file which is further utilized by the 3D printer to create a 3D scaffold structure in an interconnected layer-by-layer fashion. This study aims to address the limitations of currently available materials and fabrication technologies and develop a customized biomaterial implant via 3D printing technology to reconstruct complex form, function, and aesthetics of the facial anatomy. These composite scaffolds underwent structural and mechanical characterization. Atomic force microscopic (AFM) and field emission scanning electron microscopic (FESEM) images showed the uniform dispersion of the silk fibroin microfibers in the PCL matrix. With the addition of silk, there is improvement in the compressive strength of the hybrid scaffolds. The scaffolds with Antheraea mylitta silk revealed higher compressive modulus than that of Bombyx mori silk. The above results of PCL-silk scaffolds strongly recommend their utilization in bone regenerative applications. Successful completion of this research will provide a great weapon in the maxillofacial reconstructive armamentarium.

Keywords: compressive modulus, 3d printing, maxillofacial reconstruction, natural fiber reinforced composites, silk fibroin microfibers

Procedia PDF Downloads 205
Regional Dynamics of Innovation and Entrepreneurship in the Optics and Photonics Industry

Authors: Mustafa İlhan Akbaş, Özlem Garibay, Ivan Garibay

Abstract:

The economic entities in innovation ecosystems form various industry clusters, in which they compete and cooperate to survive and grow. Within a successful and stable industry cluster, the entities acquire different roles that complement each other in the system. The universities and research centers have been accepted to have a critical role in these systems for the creation and development of innovations. However, the real effect of research institutions on regional economic growth is difficult to assess. In this paper, we present our approach for the identification of the impact of research activities on the regional entrepreneurship for a specific high-tech industry: optics and photonics. The optics and photonics has been defined as an enabling industry, which combines the high-tech photonics technology with the developing optics industry. The recent literature suggests that the growth of optics and photonics firms depends on three important factors: the embedded regional specializations in the labor market, the research and development infrastructure, and a dynamic small firm network capable of absorbing new technologies, products and processes. Therefore, the role of each factor and the dynamics among them must be understood to identify the requirements of the entrepreneurship activities in optics and photonics industry. There are three main contributions of our approach. The recent studies show that the innovation in optics and photonics industry is mostly located around metropolitan areas. There are also studies mentioning the importance of research center locations and universities in the regional development of optics and photonics industry. These studies are mostly limited with the number of patents received within a short period of time or some limited survey results. Therefore the first contribution of our approach is conducting a comprehensive analysis for the state and recent history of the photonics and optics research in the US. For this purpose, both the research centers specialized in optics and photonics and the related research groups in various departments of institutions (e.g. Electrical Engineering, Materials Science) are identified and a geographical study of their locations is presented. The second contribution of the paper is the analysis of regional entrepreneurship activities in optics and photonics in recent years. We use the membership data of the International Society for Optics and Photonics (SPIE) and the regional photonics clusters to identify the optics and photonics companies in the US. Then the profiles and activities of these companies are gathered by extracting and integrating the related data from the National Establishment Time Series (NETS) database, ES-202 database and the data sets from the regional photonics clusters. The number of start-ups, their employee numbers and sales are some examples of the extracted data for the industry. Our third contribution is the utilization of collected data to investigate the impact of research institutions on the regional optics and photonics industry growth and entrepreneurship. In this analysis, the regional and periodical conditions of the overall market are taken into consideration while discovering and quantifying the statistical correlations.

Keywords: entrepreneurship, industrial clusters, optics, photonics, emerging industries, research centers

Procedia PDF Downloads 412
Tailorability of Poly(Aspartic Acid)/BSA Complex by Self-Assembling in Aqueous Solutions

Authors: Loredana E. Nita, Aurica P. Chiriac, Elena Stoleru, Alina Diaconu, Tudorachi Nita

Abstract:

Self-assembly processes are an attractive method to form new and complex structures between macromolecular compounds to be used for specific applications. In this context, intramolecular and intermolecular bonds play a key role during self-assembling processes in preparation of carrier systems of bioactive substances. Polyelectrolyte complexes (PECs) are formed through electrostatic interactions, and though they are significantly below of the covalent linkages in their strength, these complexes are sufficiently stable owing to the association processes. The relative ease way of PECs formation makes from them a versatile tool for preparation of various materials, with properties that can be tuned by adjusting several parameters, such as the chemical composition and structure of polyelectrolytes, pH and ionic strength of solutions, temperature and post-treatment procedures. For example, protein-polyelectrolyte complexes (PPCs) are playing an important role in various chemical and biological processes, such as protein separation, enzyme stabilization and polymer drug delivery systems. The present investigation is focused on evaluation of the PPC formation between a synthetic polypeptide (poly(aspartic acid) – PAS) and a natural protein (bovine serum albumin - BSA). The PPC obtained from PAS and BSA in different ratio was investigated by corroboration of various techniques of characterization as: spectroscopy, microscopy, thermo-gravimetric analysis, DLS and zeta potential determination, measurements which were performed in static and/or dynamic conditions. The static contact angle of the sample films was also determined in order to evaluate the changes brought upon surface free energy of the prepared PPCs in interdependence with the complexes composition. The evolution of hydrodynamic diameter and zeta potential of the PPC, recorded in situ, confirm changes of both co-partners conformation, a 1/1 ratio between protein and polyelectrolyte being benefit for the preparation of a stable PPC. Also, the study evidenced the dependence of PPC formation on the temperature of preparation. Thus, at low temperatures the PPC is formed with compact structure, small dimension and hydrodynamic diameter, close to those of BSA. The behavior at thermal treatment of the prepared PPCs is in agreement with the composition of the complexes. From the contact angle determination results the increase of the PPC films cohesion, which is higher than that of BSA films. Also, a higher hydrophobicity corresponds to the new PPC films denoting a good adhesion of the red blood cells onto the surface of PSA/BSA interpenetrated systems. The SEM investigation evidenced as well the specific internal structure of PPC concretized in phases with different size and shape in interdependence with the interpolymer mixture composition.

Keywords: polyelectrolyte – protein complex, bovine serum albumin, poly(aspartic acid), self-assembly

Procedia PDF Downloads 247
OER on Academic English, Educational Research and ICT Literacy, Promoting International Graduate Programs in Thailand

Authors: Maturos Chongchaikit, Sitthikorn Sumalee, Nopphawan Chimroylarp, Nongluck Manowaluilou, Thapanee Thammetha

Abstract:

The 2015 Kasetsart University Research Plan, which was funded by the National Research Institutes: TRF – NRCT, comprises four sub-research projects on the development of three OER websites and on their usage study by students in international programs. The goals were to develop the open educational resources (OER) in the form of websites that will promote three key skills of quality learning and achievement: Academic English, Educational Research, and ICT Literacy, to graduate students in international programs of Thailand. The statistics from the Office of Higher Education showed that the number of foreign students who come to study in international higher education of Thailand has increased respectively by 25 percent per year, proving that the international education system and institutes of Thailand have been already recognized regionally and globally as meeting the standards. The output of the plan: the OER websites and their materials, and the outcome: students’ learning improvement due to lecturers’ readiness for open educational media, will ultimately lead the country to higher business capabilities for international education services in ASEAN Community in the future. The OER innovation is aimed at sharing quality knowledge to the world, with the adoption of Creative Commons Licenses that makes sharing be able to do freely (5Rs openness), without charge and leading to self and life-long learning. The research has brought the problems on the low usage of existing OER in the English language to develop the OER on three specific skills and try them out with the sample of 100 students randomly selected from the international graduate programs of top 10 Thai universities, according to QS Asia University Rankings 2014. The R&D process was used for product evaluation in 2 stages: the development stage and the usage study stage. The research tools were the questionnaires for content and OER experts, the questionnaires for the sample group and the open-ended interviews for the focus group discussions. The data were analyzed using frequency, percentage, mean and SD. The findings revealed that the developed websites were fully qualified as OERs by the experts. The students’ opinions and satisfaction were at the highest levels for both the content and the technology used for presentation. The usage manual and self-assessment guide were finalized during the focus group discussions. The direct participation according to the concept of 5Rs Openness Activities through the provided tools of OER models like MERLOT and OER COMMONS, as well as the development of usage manual and self-assessment guide, were revealed as a key approach to further extend the output widely and sustainably to the network of users in various higher education institutions.

Keywords: open educational resources, international education services business, academic English, educational research, ICT literacy, international graduate program, OER

Procedia PDF Downloads 225
Chemical vs Visual Perception in Food Choice Ability of Octopus vulgaris (Cuvier, 1797)

Authors: Al Sayed Al Soudy, Valeria Maselli, Gianluca Polese, Anna Di Cosmo

Abstract:

Cephalopods are considered as a model organism with a rich behavioral repertoire. Sophisticated behaviors were widely studied and described in different species such as Octopus vulgaris, who has evolved the largest and more complex nervous system among invertebrates. In O. vulgaris, cognitive abilities in problem-solving tasks and learning abilities are associated with long-term memory and spatial memory, mediated by highly developed sensory organs. They are equipped with sophisticated eyes, able to discriminate colors even with a single photoreceptor type, vestibular system, ‘lateral line analogue’, primitive ‘hearing’ system and olfactory organs. They can recognize chemical cues either through direct contact with odors sources using suckers or by distance through the olfactory organs. Cephalopods are able to detect widespread waterborne molecules by the olfactory organs. However, many volatile odorant molecules are insoluble or have a very low solubility in water, and must be perceived by direct contact. O. vulgaris, equipped with many chemosensory neurons located in their suckers, exhibits a peculiar behavior that can be provocatively described as 'smell by touch'. The aim of this study is to establish the priority given to chemical vs. visual perception in food choice. Materials and methods: Three different types of food (anchovies, clams, and mussels) were used, and all sessions were recorded with a digital camera. During the acclimatization period, Octopuses were exposed to the three types of food to test their natural food preferences. Later, to verify if food preference is maintained, food was provided in transparent screw-jars with pierced lids to allow both visual and chemical recognition of the food inside. Subsequently, we tested alternatively octopuses with food in sealed transparent screw-jars and food in blind screw-jars with pierced lids. As a control, we used blind sealed jars with the same lid color to verify a random choice among food types. Results and discussion: During the acclimatization period, O. vulgaris shows a higher preference for anchovies (60%) followed by clams (30%), then mussels (10%). After acclimatization, using the transparent and pierced screw jars octopus’s food choices resulted in 50-50 between anchovies and clams, avoiding mussels. Later, guided by just visual sense, with transparent but not pierced jars, their food preferences resulted in 100% anchovies. With pierced but not transparent jars their food preference resulted in 100% anchovies as first food choice, the clams as a second food choice result (33.3%). With no possibility to select food, neither by vision nor by chemoreception, the results were 20% anchovies, 20% clams, and 60% mussels. We conclude that O. vulgaris uses both chemical and visual senses in an integrative way in food choice, but if we exclude one of them, it appears clear that its food preference relies on chemical sense more than on visual perception.

Keywords: food choice, Octopus vulgaris, olfaction, sensory organs, visual sense

Procedia PDF Downloads 224
Survey of the Literacy by Radio Project as an Innovation in Literacy Promotion in Nigeria

Authors: Stella Chioma Nwizu

Abstract:

The National Commission for Adult and Non Formal Education (NMEC) in Nigeria is charged with the reduction of illiteracy rate through the development, monitoring, and supervision of literacy programmes in Nigeria. In spite of various efforts by NMEC to reduce illiteracy, literature still shows that the illiteracy rate is still high. According to NMEC/UNICEF, about 60 million Nigerians are non-literate, and nearly two thirds of them are women. This situation forced the government to search for innovative and better approaches to literacy promotion and delivery. The literacy by radio project was adopted as an innovative intervention to literacy delivery in Nigeria because the radio is the cheapest and most easily affordable medium for non-literates. The project aimed at widening access to literacy programmes for the non-literate marginalized and disadvantaged groups in Nigeria by taking literacy programmes to their door steps. The literacy by radio has worked perfectly well in non-literacy reduction in Cuba. This innovative intervention of literacy by radio is anchored on the diffusion of innovation theory by Rogers. The literacy by radio has been going on for fifteen years and the efficacy and contributions of this innovation need to be investigated. Thus, the purpose of this research is to review the contributions of the literacy by radio in Nigeria. The researcher adopted the survey research design for the study. The population for the study consisted of 2,706 participants and 47 facilitators of the literacy by radio programme in the 10 pilot states in Nigeria. A sample of four states made up of 302 participants and eight facilitators were used for the study. Information was collected through Focus Group Discussion (FGD), interviews and content analysis of official documents. The data were analysed qualitatively to review the contributions of literacy by radio project and determine the efficacy of this innovative approach in facilitating literacy in Nigeria. Results from the field experience showed, among others, that more non-literates have better access to literacy programmes through this innovative approach. The pilot project was 88% successful; not less than 2,110 adults were made literate through the literacy by radio project in 2017. However, lack of enthusiasm and commitment on the part of the technical committee and facilitators due to non-payment of honorarium, poor signals from radio stations, interruption of lectures with adverts, low community involvement in decision making in the project are challenges to the success rate of the project. The researcher acknowledges the need to customize all materials and broadcasts in all the dialects of the participants and the inclusion of more civil rights, environmental protection and agricultural skills into the project. The study recommends among others, improved and timely funding of the project by the Federal Government to enable NMEC to fulfill her obligations towards the greater success of the programme, setting up of independent radio stations for airing the programmes and proper monitoring and evaluation of the project by NMEC and State Agencies for greater effectiveness. In an era of the knowledge-driven economy, no one should be allowed to get saddled with the weight of illiteracy.

Keywords: innovative approach, literacy, project, radio, survey

Procedia PDF Downloads 73
Eco-Nanofiltration Membranes: Nanofiltration Membrane Technology Utilization-Based Fiber Pineapple Leaves Waste as Solutions for Industrial Rubber Liquid Waste Processing and Fertilizer Crisis in Indonesia

Authors: Andi Setiawan, Annisa Ulfah Pristya

Abstract:

Indonesian rubber plant area reached 2.9 million hectares with productivity reached 1.38 million. High rubber productivity is directly proportional to the amount of waste produced rubber processing industry. Rubber industry would produce a negative impact on the rubber industry in the form of environmental pollution caused by waste that has not been treated optimally. Rubber industrial wastewater containing high-nitrogen compounds (nitrate and ammonia) and phosphate compounds which cause water pollution and odor problems due to the high ammonia content. On the other hand, demand for NPK fertilizers in Indonesia continues to increase from year to year and in need of ammonia and phosphate as raw material. Based on domestic demand, it takes a year to 400,000 tons of ammonia and Indonesia imports 200,000 tons of ammonia per year valued at IDR 4.2 trillion. As well, the lack of phosphoric acid to be imported from Jordan, Morocco, South Africa, the Philippines, and India as many as 225 thousand tons per year. During this time, the process of wastewater treatment is generally done with a rubber on the tank to contain the waste and then precipitated, filtered and the rest released into the environment. However, this method is inefficient and thus require high energy costs because through many stages before producing clean water that can be discharged into the river. On the other hand, Indonesia has the potential of pineapple fruit can be harvested throughout the year in all of Indonesia. In 2010, production reached 1,406,445 tons of pineapple in Indonesia or about 9.36 percent of the total fruit production in Indonesia. Increased productivity is directly proportional to the amount of pineapple waste pineapple leaves are kept continuous and usually just dumped in the ground or disposed of with other waste at the final disposal. Through Eco-Nanofiltration Membrane-Based Fiber Pineapple leaves Waste so that environmental problems can be solved efficiently. Nanofiltration is a process that uses pressure as a driving force that can be either convection or diffusion of each molecule. Nanofiltration membranes that can split water to nano size so as to separate the waste processed residual economic value that N and P were higher as a raw material for the manufacture of NPK fertilizer to overcome the crisis in Indonesia. The raw materials were used to manufacture Eco-Nanofiltration Membrane is cellulose from pineapple fiber which processed into cellulose acetate which is biodegradable and only requires a change of the membrane every 6 months. Expected output target is Green eco-technology so with nanofiltration membranes not only treat waste rubber industry in an effective, efficient and environmentally friendly but also lowers the cost of waste treatment compared to conventional methods.

Keywords: biodegradable, cellulose diacetate, fertilizers, pineapple, rubber

Procedia PDF Downloads 451
Interwoven Realms: The Relationship Between Textiles, Fashion, and Architecture

Authors: Toktam mehrabani

Abstract:

Textiles, fashion, and architecture, though seemingly disparate fields, share a deep and evolving relationship. This paper explores the intersection of these disciplines, examining how the tactile, structural, and aesthetic qualities of textiles have influenced both fashion and architecture over time. By investigating historical and contemporary examples, this paper seeks to unravel the ways in which textiles and fashion have not only shaped architectural design but have also acted as a bridge between functionality, art, and human experience in the built environment.Textiles have been integral to human culture since the dawn of civilization. Their presence transcends mere functionality, serving as a medium for artistic expression, cultural identity, and social commentary. Fashion, derived from textiles, has long been associated with personal identity and societal trends, while architecture reflects human needs, environmental context, and cultural values. This paper posits that the relationship between textiles, fashion, and architecture is more interconnected than often perceived, with each influencing and inspiring the other across time. Textiles in Architectural Design: From ancient draperies in temples to tapestries in castles, textiles have adorned structures, softening rigid spaces and adding layers of warmth and luxury. Fabric screens and curtains have also served functional purposes, such as controlling light, acoustics, and temperature. Fashion as Architectural Expression: Renaissance and Baroque fashion used exaggerated forms, corsetry, and layers to mirror the grandiosity of architectural styles of the time. Clothing acted as wearable architecture, with structured garments mirroring the strong lines and curves of buildings..Structural Textiles in Architecture: In the 21st century, textiles are no longer just decorative; they have become integral to architectural innovation. Materials like tensile fabrics and smart textiles are used in creating flexible, lightweight structures. Iconic examples include Frei Otto’s work with tensile membranes, seen in the Munich Olympic Stadium.Technological advancements have drastically transformed the relationship between textiles, fashion, and architecture. Digital tools like 3D printing and laser cutting allow designers in both fields to push the limits of form and structure. Smart textiles that react to environmental stimuli are being explored for use in both wearable technology and adaptable architecture, such as facades that change in response to weather conditions. Textiles, fashion, and architecture are inextricably linked through their shared exploration of form, structure, and expression. This interdisciplinary relationship continues to evolve, driven by technological advancements and a growing emphasis on sustainability. As fashion becomes more architectural in its construction and architecture more fluid in its forms, the lines between these disciplines blur, offering new possibilities for creativity and functionality in both wearable and built environments.

Keywords: textiles in architecture, fashion and architecture, textile architecture, structural textiles, wearable architecture, architectural fashion

Procedia PDF Downloads 36
Irradion: Portable Small Animal Imaging and Irradiation Unit

Authors: Josef Uher, Jana Boháčová, Richard Kadeřábek

Abstract:

In this paper, we present a multi-robot imaging and irradiation research platform referred to as Irradion, with full capabilities of portable arbitrary path computed tomography (CT). Irradion is an imaging and irradiation unit entirely based on robotic arms for research on cancer treatment with ion beams on small animals (mice or rats). The platform comprises two subsystems that combine several imaging modalities, such as 2D X-ray imaging, CT, and particle tracking, with precise positioning of a small animal for imaging and irradiation. Computed Tomography: The CT subsystem of the Irradion platform is equipped with two 6-joint robotic arms that position a photon counting detector and an X-ray tube independently and freely around the scanned specimen and allow image acquisition utilizing computed tomography. Irradiation measures nearly all conventional 2D and 3D trajectories of X-ray imaging with precisely calibrated and repeatable geometrical accuracy leading to a spatial resolution of up to 50 µm. In addition, the photon counting detectors allow X-ray photon energy discrimination, which can suppress scattered radiation, thus improving image contrast. It can also measure absorption spectra and recognize different materials (tissue) types. X-ray video recording and real-time imaging options can be applied for studies of dynamic processes, including in vivo specimens. Moreover, Irradion opens the door to exploring new 2D and 3D X-ray imaging approaches. We demonstrate in this publication various novel scan trajectories and their benefits. Proton Imaging and Particle Tracking: The Irradion platform allows combining several imaging modules with any required number of robots. The proton tracking module comprises another two robots, each holding particle tracking detectors with position, energy, and time-sensitive sensors Timepix3. Timepix3 detectors can track particles entering and exiting the specimen and allow accurate guiding of photon/ion beams for irradiation. In addition, quantifying the energy losses before and after the specimen brings essential information for precise irradiation planning and verification. Work on the small animal research platform Irradion involved advanced software and hardware development that will offer researchers a novel way to investigate new approaches in (i) radiotherapy, (ii) spectral CT, (iii) arbitrary path CT, (iv) particle tracking. The robotic platform for imaging and radiation research developed for the project is an entirely new product on the market. Preclinical research systems with precision robotic irradiation with photon/ion beams combined with multimodality high-resolution imaging do not exist currently. The researched technology can potentially cause a significant leap forward compared to the current, first-generation primary devices.

Keywords: arbitrary path CT, robotic CT, modular, multi-robot, small animal imaging

Procedia PDF Downloads 94
Structural Analysis of a Composite Wind Turbine Blade

Authors: C. Amer, M. Sahin

Abstract:

The design of an optimised horizontal axis 5-meter-long wind turbine rotor blade in according with IEC 61400-2 standard is a research and development project in order to fulfil the requirements of high efficiency of torque from wind production and to optimise the structural components to the lightest and strongest way possible. For this purpose, a research study is presented here by focusing on the structural characteristics of a composite wind turbine blade via finite element modelling and analysis tools. In this work, first, the required data regarding the general geometrical parts are gathered. Then, the airfoil geometries are created at various sections along the span of the blade by using CATIA software to obtain the two surfaces, namely; the suction and the pressure side of the blade in which there is a hat shaped fibre reinforced plastic spar beam, so-called chassis starting at 0.5m from the root of the blade and extends up to 4 m and filled with a foam core. The root part connecting the blade to the main rotor differential metallic hub having twelve hollow threaded studs is then modelled. The materials are assigned as two different types of glass fabrics, polymeric foam core material and the steel-balsa wood combination for the root connection parts. The glass fabrics are applied using hand wet lay-up lamination with epoxy resin as METYX L600E10C-0, is the unidirectional continuous fibres and METYX XL800E10F having a tri-axial architecture with fibres in the 0,+45,-45 degree orientations in a ratio of 2:1:1. Divinycell H45 is used as the polymeric foam. The finite element modelling of the blade is performed via MSC PATRAN software with various meshes created on each structural part considering shell type for all surface geometries, and lumped mass were added to simulate extra adhesive locations. For the static analysis, the boundary conditions are assigned as fixed at the root through aforementioned bolts, where for dynamic analysis both fixed-free and free-free boundary conditions are made. By also taking the mesh independency into account, MSC NASTRAN is used as a solver for both analyses. The static analysis aims the tip deflection of the blade under its own weight and the dynamic analysis comprises normal mode dynamic analysis performed in order to obtain the natural frequencies and corresponding mode shapes focusing the first five in and out-of-plane bending and the torsional modes of the blade. The analyses results of this study are then used as a benchmark prior to modal testing, where the experiments over the produced wind turbine rotor blade has approved the analytical calculations.

Keywords: dynamic analysis, fiber reinforced composites, horizontal axis wind turbine blade, hand-wet layup, modal testing

Procedia PDF Downloads 430
A Robust Stretchable Bio Micro-Electromechanical Systems Technology for High-Strain in vitro Cellular Studies

Authors: Tiffany Baetens, Sophie Halliez, Luc Buée, Emiliano Pallecchi, Vincent Thomy, Steve Arscott

Abstract:

We demonstrate here a viable stretchable bio-microelectromechanical systems (BioMEMS) technology for use with biological studies concerned with the effect of high mechanical strains on living cells. An example of this is traumatic brain injury (TBI) where neurons are damaged with physical force to the brain during, e.g., accidents and sports. Robust, miniaturized integrated systems are needed by biologists to be able to study the effect of TBI on neuron cells in vitro. The major challenges in this area are (i) to develop micro, and nanofabrication processes which are based on stretchable substrates and to (ii) create systems which are robust and performant at very high mechanical strain values—sometimes as high as 100%. At the time of writing, such processes and systems were rapidly evolving subject of research and development. The BioMEMS which we present here is composed of an elastomer substrate (low Young’s modulus ~1 MPa) onto which is patterned robust electrodes and insulators. The patterning of the thin films is achieved using standard photolithography techniques directly on the elastomer substrate—thus making the process generic and applicable to many materials’ in based systems. The chosen elastomer used is commercial ‘Sylgard 184’ polydimethylsiloxane (PDMS). It is spin-coated onto a silicon wafer. Multistep ultra-violet based photolithography involving commercial photoresists are then used to pattern robust thin film metallic electrodes (chromium/gold) and insulating layers (parylene) on the top of the PDMS substrate. The thin film metals are deposited using thermal evaporation and shaped using lift-off techniques The BioMEMS has been characterized mechanically using an in-house strain-applicator tool. The system is composed of 12 electrodes with one reference electrode transversally-orientated to the uniaxial longitudinal straining of the system. The electrical resistance of the electrodes is observed to remain very stable with applied strain—with a resistivity approaching that of evaporated gold—up to an interline strain of ~50%. The mechanical characterization revealed some interesting original properties of such stretchable BioMEMS. For example, a Poisson effect induced electrical ‘self-healing’ of cracking was identified. Biocompatibility of the commercial photoresist has been studied and is conclusive. We will present the results of the BioMEMS, which has also characterized living cells with a commercial Multi Electrode Array (MEA) characterization tool (Multi Channel Systems, USA). The BioMEMS enables the cells to be strained up to 50% and then characterized electrically and optically.

Keywords: BioMEMS, elastomer, electrical impedance measurements of living cells, high mechanical strain, microfabrication, stretchable systems, thin films, traumatic brain injury

Procedia PDF Downloads 150
Dynamic-cognition of Strategic Mineral Commodities; An Empirical Assessment

Authors: Carlos Tapia Cortez, Serkan Saydam, Jeff Coulton, Claude Sammut

Abstract:

Strategic mineral commodities (SMC) both energetic and metals have long been fundamental for human beings. There is a strong and long-run relation between the mineral resources industry and society's evolution, with the provision of primary raw materials, becoming one of the most significant drivers of economic growth. Due to mineral resources’ relevance for the entire economy and society, an understanding of the SMC market behaviour to simulate price fluctuations has become crucial for governments and firms. For any human activity, SMC price fluctuations are affected by economic, geopolitical, environmental, technological and psychological issues, where cognition has a major role. Cognition is defined as the capacity to store information in memory, processing and decision making for problem-solving or human adaptation. Thus, it has a significant role in those systems that exhibit dynamic equilibrium through time, such as economic growth. Cognition allows not only understanding past behaviours and trends in SCM markets but also supports future expectations of demand/supply levels and prices, although speculations are unavoidable. Technological developments may also be defined as a cognitive system. Since the Industrial Revolution, technological developments have had a significant influence on SMC production costs and prices, likewise allowing co-integration between commodities and market locations. It suggests a close relation between structural breaks, technology and prices evolution. SCM prices forecasting have been commonly addressed by econometrics and Gaussian-probabilistic models. Econometrics models may incorporate the relationship between variables; however, they are statics that leads to an incomplete approach of prices evolution through time. Gaussian-probabilistic models may evolve through time; however, price fluctuations are addressed by the assumption of random behaviour and normal distribution which seems to be far from the real behaviour of both market and prices. Random fluctuation ignores the evolution of market events and the technical and temporal relation between variables, giving the illusion of controlled future events. Normal distribution underestimates price fluctuations by using restricted ranges, curtailing decisions making into a pre-established space. A proper understanding of SMC's price dynamics taking into account the historical-cognitive relation between economic, technological and psychological factors over time is fundamental in attempting to simulate prices. The aim of this paper is to discuss the SMC market cognition hypothesis and empirically demonstrate its dynamic-cognitive capacity. Three of the largest and traded SMC's: oil, copper and gold, will be assessed to examine the economic, technological and psychological cognition respectively.

Keywords: commodity price simulation, commodity price uncertainties, dynamic-cognition, dynamic systems

Procedia PDF Downloads 470
Green Extraction Technologies of Flavonoids Containing Pharmaceuticals

Authors: Lamzira Ebralidze, Aleksandre Tsertsvadze, Dali Berashvili, Aliosha Bakuridze

Abstract:

Nowadays, there is an increasing demand for biologically active substances from vegetable, animal, and mineral resources. In terms of the use of natural compounds, pharmaceutical, cosmetic, and nutrition industry has big interest. The biggest drawback of conventional extraction methods is the need to use a large volume of organic extragents. The removal of the organic solvent is a multi-stage process. And their absolute removal cannot be achieved, and they still appear in the final product as impurities. A large amount of waste containing organic solvent damages not only human health but also has the harmful effects of the environment. Accordingly, researchers are focused on improving the extraction methods, which aims to minimize the use of organic solvents and energy sources, using alternate solvents and renewable raw materials. In this context, green extraction principles were formed. Green Extraction is a need of today’s environment. Green Extraction is the concept, and it totally corresponds to the challenges of the 21st century. The extraction of biologically active compounds based on green extraction principles is vital from the view of preservation and maintaining biodiversity. Novel technologies of green extraction are known, such as "cold methods" because during the extraction process, the temperature is relatively lower, and it doesn’t have a negative impact on the stability of plant compounds. Novel technologies provide great opportunities to reduce or replace the use of organic toxic solvents, the efficiency of the process, enhance excretion yield, and improve the quality of the final product. The objective of the research is the development of green technologies of flavonoids containing preparations. Methodology: At the first stage of the research, flavonoids containing preparations (Tincture Herba Leonuri, flamine, rutine) were prepared based on conventional extraction methods: maceration, bismaceration, percolation, repercolation. At the same time, the same preparations were prepared based on green technologies, microwave-assisted, UV extraction methods. Product quality characteristics were evaluated by pharmacopeia methods. At the next stage of the research technological - economic characteristics and cost efficiency of products prepared based on conventional and novel technologies were determined. For the extraction of flavonoids, water is used as extragent. Surface-active substances are used as co-solvent in order to reduce surface tension, which significantly increases the solubility of polyphenols in water. Different concentrations of water-glycerol mixture, cyclodextrin, ionic solvent were used for the extraction process. In vitro antioxidant activity will be studied by the spectrophotometric method, using DPPH (2,2-diphenyl-1- picrylhydrazyl) as an antioxidant assay. The advantage of green extraction methods is also the possibility of obtaining higher yield in case of low temperature, limitation extraction process of undesirable compounds. That is especially important for the extraction of thermosensitive compounds and maintaining their stability.

Keywords: extraction, green technologies, natural resources, flavonoids

Procedia PDF Downloads 133
Association of Ovine Lymphocyte Antigen (OLA) with the Parasitic Infestation in Kashmiri Sheep Breeds

Authors: S. A. Bhat, Ahmad Arif, Muneeb U. Rehman, Manzoor R Mir, S. Bilal, Ishraq Hussain, H. M Khan, S. Shanaz, M. I Mir, Sabhiya Majid

Abstract:

Background: Geologically Climatic conditions of the state range from sub-tropical (Jammu), temperate (Kashmir) to cold artic (Ladakh) zones, which exerts significant influence on its agro-climatic conditions. Gastrointestinal parasitism is a major problem in sheep production worldwide. Materials and Methods: The present study was to evaluate the resistance status of sheep breeds reared in Kashmir Valley for natural resistance against Haemonchus contortus by natural pasture challenge infection. Ten microsatellite markers were used in the study for evaluation of association of Ovar-MHC with parasitic resistance in association with biochemical and parasitological parameters. Following deworming, 500 animals were subjected to selected contaminated pastures in a vicinity of the livestock farms of SKUAST-K and Sheep Husbandry Kashmir. For each animal about 10-15 ml blood was collected aseptically for molecular and biochemical analysis. Weekly fecal samples (3g) were taken, directly from the rectum of all experimental animals and examined for Fecal egg count (FEC) with modified McMaster technique. Packed cell volume (PCV) was determined within 2-5 h of blood collection, all the biochemical parameters were determined in serum by semi automated analyzer. DNA was extracted from all the blood samples with phenol-chloroform method. Microsatellite analysis was done by denaturing sequencing gel electrophoresis Results: Overall sheep from Bakerwal breed followed by Corriediale breed performed relatively better in the trial; however difference between breeds remained low. Both significant (P<0.05) and non-significant differences with respect to resistance against haemonchosis were noted at different intervals in all the parameters.. All the animals were typed for the microsatellites INRA132, OarCP73, DRB1 (U0022), OLA-DQA2, BM1818, TFAP2A, HH56, BM1815, IL-3 and BM-1258. An association study including the effect of FEC, PCV, TSP, SA, LW, and the number of alleles within each marker was done. All microsatellite markers showed degree of heterozygosity of 0.72, 0.72, 0.75, 0.62, 0.84, 0.69, 0.66, 0.65, 0.73 and 0.68 respectively. Significant association between alleles and the parameters measured were only found for the OarCP73, OLA-DQA2 and BM1815 microsatellite marker. Standard alleles of the above markers showed significant effect on the TP, SA and body weight. The three sheep breeds included in the study responded differently to the nematode infection, which may be attributed to their differences in their natural resistance against nematodes. Conclusion: Our data confirms that some markers (OarCP73, OLA-DQA2 and BM1815) within Ovar-MHC are associated with phenotypic parameters of resistance and suggest superiority of Bakerwal sheep breed in natural resistance against Haemonchus contortus.

Keywords: Ovar-Mhc, ovine leukocyte antigen (OLA), sheep, parasitic resistance, Haemonchus contortus, phenotypic & genotypic markers

Procedia PDF Downloads 718
Experience of Two Major Research Centers in the Diagnosis of Cardiac Amyloidosis from Transthyretin

Authors: Ioannis Panagiotopoulos, Aristidis Anastasakis, Konstantinos Toutouzas, Ioannis Iakovou, Charalampos Vlachopoulos, Vasilis Voudris, Georgios Tziomalos, Konstantinos Tsioufis, Efstathios Kastritis, Alexandros Briassoulis, Kimon Stamatelopoulos, Alexios Antonopoulos, Paraskevi Exadaktylou, Evanthia Giannoula, Anastasia Katinioti, Maria Kalantzi, Evangelos Leontiadis, Eftychia Smparouni, Ioannis Malakos, Nikolaos Aravanis, Argyrios Doumas, Maria Koutelou

Abstract:

Introduction: Cardiac amyloidosis from Transthyretin (ATTR-CA) is an infiltrative disease characterized by the deposition of pathological transthyretin complexes in the myocardium. This study describes the characteristics of patients diagnosed with ATTR-CA from 2019 until present at the Nuclear Medicine Department of Onassis Cardiac Surgery Center and AHEPA Hospital. These centers have extensive experience in amyloidosis and modern technological equipment for its diagnosis. Materials and Methods: Records of consecutive patients (N=73) diagnosed with any type of amyloidosis were collected, analyzed, and prospectively followed. The diagnosis of amyloidosis was made using specific myocardial scintigraphy with Tc-99m DPD. Demographic characteristics, including age, gender, marital status, height, and weight, were collected in a database. Clinical characteristics, such as amyloidosis type (ATTR and AL), serum biomarkers (BNP, troponin), electrocardiographic findings, ultrasound findings, NYHA class, aortic valve replacement, device implants, and medication history, were also collected. Some of the most significant results are presented. Results: A total of 73 cases (86% male) were diagnosed with amyloidosis over four years. The mean age at diagnosis was 82 years, and the main symptom was dyspnea. Most patients suffered from ATTR-CA (65 vs. 8 with AL). Out of all the ATTR-CA patients, 61 were diagnosed with wild-type and 2 with two rare mutations. Twenty-eight patients had systemic amyloidosis with extracardiac involvement, and 32 patients had a history of bilateral carpal tunnel syndrome. Four patients had already developed polyneuropathy, and the diagnosis was confirmed by DPD scintigraphy, which is known for its high sensitivity. Among patients with isolated cardiac involvement, only 6 had left ventricular ejection fraction below 40%. The majority of ATTR patients underwent tafamidis treatment immediately after diagnosis. Conclusion: In conclusion, the experiences shared by the two centers and the continuous exchange of information provide valuable insights into the diagnosis and management of cardiac amyloidosis. Clinical suspicion of amyloidosis and early diagnostic approach are crucial, given the availability of non-invasive techniques. Cardiac scintigraphy with DPD can confirm the presence of the disease without the need for a biopsy. The ultimate goal still remains continuous education and awareness of clinical cardiologists so that this systemic and treatable disease can be diagnosed and certified promptly and treatment can begin as soon as possible.

Keywords: amyloidosis, diagnosis, myocardial scintigraphy, Tc-99m DPD, transthyretin

Procedia PDF Downloads 96
Stainless Steel Degradation by Sulphide Mining

Authors: Aguasanta M. Sarmiento, Jose Miguel Davila, Juan Carlos Fortes, Maria Luisa de la Torre

Abstract:

Acid mine drainage (AMD) is an acidic leachate with high levels of metals and sulphates in solution, which seriously affects the durability and strength of metallic materials used in the construction of structural and mechanical components. This paper presents the results of the evolution over time of the reduction in tensile strength and defects in AISI 304 stainless steel in contact with acid mine drainage. For this purpose, a total of 30 bars with a diameter of 8 mm and a length of 14 cm were placed transversely in the course of a stream contaminated by AMD from the sulphide mines of the Iberian Pyritic Belt (SW Spain). This stream has average pH values of 2.6, a potential of 660 mV and average concentrations of 12 g/L of sulphates, 1.2 g/L of Fe, 191 mg/L of Zn, etc. Every two months of exposure, 6 stainless steel bars were extracted from the acid stream. They were subjected to surface roughness analysis carried out with the help of Mitutoyo Surftest SJ-210 surface roughness tester. The analysis was carried out at three different points on 5 specimens from each series. The average reading of each parameter is calculated in order to ensure the accuracy of the measurements and the surface coverage. Arithmetic mean roughness value (Ra), mean roughness depth (Rz) and root mean square roughness (Rq) were measured. Five specimens from each series were statically tensile tested using universal equipment (Servosis ME 403 of 200kN). The specimens were clamped at their ends with two grips for cylindrical sections, and the tensile force was applied at a constant speed of 0.5 kN/s, according to the requirements of standard UNE-EN ISO 6892-1: 2020. To determine the modulus of elasticity, limits close to 15% and 55% of the maximum load were used, depending on the course of each test. Field Emission Scanning Electron Microscopy (FESEM) was used to observe corrosion products and defects generated by exposure to AMD. Energy dispersive X-ray spectrometry (EDS) was used to analyze the chemical composition of the corrosion products formed. For this purpose, small pieces were cut from the resulting specimens, cleaned and embedded in epoxy resin. The results show that after only 5 months of exposure of AISI 304 stainless steel to the mining environment, the surface roughness increases significantly, with average depths almost 6 times greater than the initial one. Cracks are observed on the surface of the material, which increases in size with the time of exposure. A large number of grains with a composition of more than 57% Pb and 16% Sn can be observed inside these cracks. Tensile tests show a reduction in the resistance of this material after only two months of exposure. The results show the serious problems that would result from the use of this material for the use of mechanical components in a sulphide mining environment, not only because of the significant reduction in the lifetime of such components but also because of the implications for human safety.

Keywords: Acid mine drainage, Corrosion, Mechanical properties, Stainless steel

Procedia PDF Downloads 17
Determination of Physical Properties of Crude Oil Distillates by Near-Infrared Spectroscopy and Multivariate Calibration

Authors: Ayten Ekin Meşe, Selahattin Şentürk, Melike Duvanoğlu

Abstract:

Petroleum refineries are a highly complex process industry with continuous production and high operating costs. Physical separation of crude oil starts with the crude oil distillation unit, continues with various conversion and purification units, and passes through many stages until obtaining the final product. To meet the desired product specification, process parameters are strictly followed. To be able to ensure the quality of distillates, routine analyses are performed in quality control laboratories based on appropriate international standards such as American Society for Testing and Materials (ASTM) standard methods and European Standard (EN) methods. The cut point of distillates in the crude distillation unit is very crucial for the efficiency of the upcoming processes. In order to maximize the process efficiency, the determination of the quality of distillates should be as fast as possible, reliable, and cost-effective. In this sense, an alternative study was carried out on the crude oil distillation unit that serves the entire refinery process. In this work, studies were conducted with three different crude oil distillates which are Light Straight Run Naphtha (LSRN), Heavy Straight Run Naphtha (HSRN), and Kerosene. These products are named after separation by the number of carbons it contains. LSRN consists of five to six carbon-containing hydrocarbons, HSRN consist of six to ten, and kerosene consists of sixteen to twenty-two carbon-containing hydrocarbons. Physical properties of three different crude distillation unit products (LSRN, HSRN, and Kerosene) were determined using Near-Infrared Spectroscopy with multivariate calibration. The absorbance spectra of the petroleum samples were obtained in the range from 10000 cm⁻¹ to 4000 cm⁻¹, employing a quartz transmittance flow through cell with a 2 mm light path and a resolution of 2 cm⁻¹. A total of 400 samples were collected for each petroleum sample for almost four years. Several different crude oil grades were processed during sample collection times. Extended Multiplicative Signal Correction (EMSC) and Savitzky-Golay (SG) preprocessing techniques were applied to FT-NIR spectra of samples to eliminate baseline shifts and suppress unwanted variation. Two different multivariate calibration approaches (Partial Least Squares Regression, PLS and Genetic Inverse Least Squares, GILS) and an ensemble model were applied to preprocessed FT-NIR spectra. Predictive performance of each multivariate calibration technique and preprocessing techniques were compared, and the best models were chosen according to the reproducibility of ASTM reference methods. This work demonstrates the developed models can be used for routine analysis instead of conventional analytical methods with over 90% accuracy.

Keywords: crude distillation unit, multivariate calibration, near infrared spectroscopy, data preprocessing, refinery

Procedia PDF Downloads 137
[Keynote] Implementation of Quality Control Procedures in Radiotherapy CT Simulator

Authors: B. Petrović, L. Rutonjski, M. Baucal, M. Teodorović, O. Čudić, B. Basarić

Abstract:

Purpose/Objective: Radiotherapy treatment planning requires use of CT simulator, in order to acquire CT images. The overall performance of CT simulator determines the quality of radiotherapy treatment plan, and at the end, the outcome of treatment for every single patient. Therefore, it is strongly advised by international recommendations, to set up a quality control procedures for every machine involved in radiotherapy treatment planning process, including the CT scanner/ simulator. The overall process requires number of tests, which are used on daily, weekly, monthly or yearly basis, depending on the feature tested. Materials/Methods: Two phantoms were used: a dedicated phantom CIRS 062QA, and a QA phantom obtained with the CT simulator. The examined CT simulator was Siemens Somatom Definition as Open, dedicated for radiation therapy treatment planning. The CT simulator has a built in software, which enables fast and simple evaluation of CT QA parameters, using the phantom provided with the CT simulator. On the other hand, recommendations contain additional test, which were done with the CIRS phantom. Also, legislation on ionizing radiation protection requires CT testing in defined periods of time. Taking into account the requirements of law, built in tests of a CT simulator, and international recommendations, the intitutional QC programme for CT imulator is defined, and implemented. Results: The CT simulator parameters evaluated through the study were following: CT number accuracy, field uniformity, complete CT to ED conversion curve, spatial and contrast resolution, image noise, slice thickness, and patient table stability.The following limits are established and implemented: CT number accuracy limits are +/- 5 HU of the value at the comissioning. Field uniformity: +/- 10 HU in selected ROIs. Complete CT to ED curve for each tube voltage must comply with the curve obtained at comissioning, with deviations of not more than 5%. Spatial and contrast resultion tests must comply with the tests obtained at comissioning, otherwise machine requires service. Result of image noise test must fall within the limit of 20% difference of the base value. Slice thickness must meet manufacturer specifications, and patient stability with longitudinal transfer of loaded table must not differ of more than 2mm vertical deviation. Conclusion: The implemented QA tests gave overall basic understanding of CT simulator functionality and its clinical effectiveness in radiation treatment planning. The legal requirement to the clinic is to set up it’s own QA programme, with minimum testing, but it remains user’s decision whether additional testing, as recommended by international organizations, will be implemented, so to improve the overall quality of radiation treatment planning procedure, as the CT image quality used for radiation treatment planning, influences the delineation of a tumor and calculation accuracy of treatment planning system, and finally delivery of radiation treatment to a patient.

Keywords: CT simulator, radiotherapy, quality control, QA programme

Procedia PDF Downloads 535
Perception of Tactile Stimuli in Children with Autism Spectrum Disorder

Authors: Kseniya Gladun

Abstract:

Tactile stimulation of a dorsal side of the wrist can have a strong impact on our attitude toward physical objects such as pleasant and unpleasant impact. This study explored different aspects of tactile perception to investigate atypical touch sensitivity in children with autism spectrum disorder (ASD). This study included 40 children with ASD and 40 healthy children aged 5 to 9 years. We recorded rsEEG (sampling rate of 250 Hz) during 20 min using EEG amplifier “Encephalan” (Medicom MTD, Taganrog, Russian Federation) with 19 AgCl electrodes placed according to the International 10–20 System. The electrodes placed on the left, and right mastoids served as joint references under unipolar montage. The registration of EEG v19 assignments was carried out: frontal (Fp1-Fp2; F3-F4), temporal anterior (T3-T4), temporal posterior (T5-T6), parietal (P3-P4), occipital (O1-O2). Subjects were passively touched by 4 types of tactile stimuli on the left wrist. Our stimuli were presented with a velocity of about 3–5 cm per sec. The stimuli materials and procedure were chosen for being the most "pleasant," "rough," "prickly" and "recognizable". Type of tactile stimulation: Soft cosmetic brush - "pleasant" , Rough shoe brush - "rough", Wartenberg pin wheel roller - "prickly", and the cognitive tactile stimulation included letters by finger (most of the patient’s name ) "recognizable". To designate the moments of the stimuli onset-offset, we marked the moment when the moment of the touch began and ended; the stimulation was manual, and synchronization was not precise enough for event-related measures. EEG epochs were cleaned from eye movements by ICA-based algorithm in EEGLAB plugin for MatLab 7.11.0 (Mathwork Inc.). Muscle artifacts were cut out by manual data inspection. The response to tactile stimuli was significantly different in the group of children with ASD and healthy children, which was also depended on type of tactile stimuli and the severity of ASD. Amplitude of Alpha rhythm increased in parietal region to response for only pleasant stimulus, for another type of stimulus ("rough," "thorny", "recognizable") distinction of amplitude was not observed. Correlation dimension D2 was higher in healthy children compared to children with ASD (main effect ANOVA). In ASD group D2 was lower for pleasant and unpleasant compared to the background in the right parietal area. Hilbert transform changes in the frequency of the theta rhythm found only for a rough tactile stimulation compared with healthy participants only in the right parietal area. Children with autism spectrum disorders and healthy children were responded to tactile stimulation differently with specific frequency distribution alpha and theta band in the right parietal area. Thus, our data supports the hypothesis that rsEEG may serve as a sensitive index of altered neural activity caused by ASD. Children with autism have difficulty in distinguishing the emotional stimuli ("pleasant," "rough," "prickly" and "recognizable").

Keywords: autism, tactile stimulation, Hilbert transform, pediatric electroencephalography

Procedia PDF Downloads 256
Treatment of Onshore Petroleum Drill Cuttings via Soil Washing Process: Characterization and Optimal Conditions

Authors: T. Poyai, P. Painmanakul, N. Chawaloesphonsiya, P. Dhanasin, C. Getwech, P. Wattana

Abstract:

Drilling is a key activity in oil and gas exploration and production. Drilling always requires the use of drilling mud for lubricating the drill bit and controlling the subsurface pressure. As drilling proceeds, a considerable amount of cuttings or rock fragments is generated. In general, water or Water Based Mud (WBM) serves as drilling fluid for the top hole section. The cuttings generated from this section is non-hazardous and normally applied as fill materials. On the other hand, drilling the bottom hole to reservoir section uses Synthetic Based Mud (SBM) of which synthetic oils are composed. The bottom-hole cuttings, SBM cuttings, is regarded as a hazardous waste, in accordance with the government regulations, due to the presence of hydrocarbons. Currently, the SBM cuttings are disposed of as an alternative fuel and raw material in cement kiln. Instead of burning, this work aims to propose an alternative for drill cuttings management under two ultimate goals: (1) reduction of hazardous waste volume; and (2) making use of the cleaned cuttings. Soil washing was selected as the major treatment process. The physiochemical properties of drill cuttings were analyzed, such as size fraction, pH, moisture content, and hydrocarbons. The particle size of cuttings was analyzed via light scattering method. Oil present in cuttings was quantified in terms of total petroleum hydrocarbon (TPH) through gas chromatography equipped with flame ionization detector (GC-FID). Other components were measured by the standard methods for soil analysis. Effects of different washing agents, liquid-to-solid (L/S) ratio, washing time, mixing speed, rinse-to-solid (R/S) ratio, and rinsing time were also evaluated. It was found that drill cuttings held the electrical conductivity of 3.84 dS/m, pH of 9.1, and moisture content of 7.5%. The TPH in cuttings existed in the diesel range with the concentration ranging from 20,000 to 30,000 mg/kg dry cuttings. A majority of cuttings particles held a mean diameter of 50 µm, which represented silt fraction. The results also suggested that a green solvent was considered most promising for cuttings treatment regarding occupational health, safety, and environmental benefits. The optimal washing conditions were obtained at L/S of 5, washing time of 15 min, mixing speed of 60 rpm, R/S of 10, and rinsing time of 1 min. After washing process, three fractions including clean cuttings, spent solvent, and wastewater were considered and provided with recommendations. The residual TPH less than 5,000 mg/kg was detected in clean cuttings. The treated cuttings can be then used for various purposes. The spent solvent held the calorific value of higher than 3,000 cal/g, which can be used as an alternative fuel. Otherwise, the recovery of the used solvent can be conducted using distillation or chromatography techniques. Finally, the generated wastewater can be combined with the produced water and simultaneously managed by re-injection into the reservoir.

Keywords: drill cuttings, green solvent, soil washing, total petroleum hydrocarbon (TPH)

Procedia PDF Downloads 159