Search results for: recirculation type photocatalytic reactor
6637 Predicting Polyethylene Processing Properties Based on Reaction Conditions via a Coupled Kinetic, Stochastic and Rheological Modelling Approach
Authors: Kristina Pflug, Markus Busch
Abstract:
Being able to predict polymer properties and processing behavior based on the applied operating reaction conditions in one of the key challenges in modern polymer reaction engineering. Especially, for cost-intensive processes such as the high-pressure polymerization of low-density polyethylene (LDPE) with high safety-requirements, the need for simulation-based process optimization and product design is high. A multi-scale modelling approach was set-up and validated via a series of high-pressure mini-plant autoclave reactor experiments. The approach starts with the numerical modelling of the complex reaction network of the LDPE polymerization taking into consideration the actual reaction conditions. While this gives average product properties, the complex polymeric microstructure including random short- and long-chain branching is calculated via a hybrid Monte Carlo-approach. Finally, the processing behavior of LDPE -its melt flow behavior- is determined in dependence of the previously determined polymeric microstructure using the branch on branch algorithm for randomly branched polymer systems. All three steps of the multi-scale modelling approach can be independently validated against analytical data. A triple-detector GPC containing an IR, viscosimetry and multi-angle light scattering detector is applied. It serves to determine molecular weight distributions as well as chain-length dependent short- and long-chain branching frequencies. 13C-NMR measurements give average branching frequencies, and rheological measurements in shear and extension serve to characterize the polymeric flow behavior. The accordance of experimental and modelled results was found to be extraordinary, especially taking into consideration that the applied multi-scale modelling approach does not contain parameter fitting of the data. This validates the suggested approach and proves its universality at the same time. In the next step, the modelling approach can be applied to other reactor types, such as tubular reactors or industrial scale. Moreover, sensitivity analysis for systematically varying process conditions is easily feasible. The developed multi-scale modelling approach finally gives the opportunity to predict and design LDPE processing behavior simply based on process conditions such as feed streams and inlet temperatures and pressures.Keywords: low-density polyethylene, multi-scale modelling, polymer properties, reaction engineering, rheology
Procedia PDF Downloads 1246636 Numerical Study of Fluid Flow and Heat Transfer in Microchannel with Thin Obstacles
Authors: Malorzata Kmiotek, Anna Kucaba-Pietal, Robert Smusz
Abstract:
Due to the miniaturisation process, in many technical devices, microchannels are used in cooling systems. Because of the small size of microchannels, the flow inside is laminar, which caused a slow heat exchange. In order to intensify the heat exchange, the flow must be disturbed, for example, by introducing obstacles. We present results on the influence of a thin obstacle, placed on microchannel wall, on the fluid and heat flow in the aspect of their use by constructors of heat exchangers. The obstacle is called 'thin' when its geometrical parameter (o=w/h, w- width, h - height of the obstacle) satisfies inequality: o < 0.5. In this work, we report numerical results on heat and mass transfer in the microchannels of 400 micrometer height (H - height of the microchannel), where thin obstacles are immersed on the walls, to disturb the flow. The Reynolds number of the flow in microchannel varies between 20 and 200 and is typical for the flow in micro heat exchangers. The equations describing the fluid and heat flows in microchannels were solved numerically by using the finite element method with an application of CFD&FSI package of ADINA R&D, Inc. 9.4 solver. In the case of flows in the microchannels with sequences of thin rectangular obstacles placed on the bottom and the top wall of a microchannel, the influence of distances s (s is the distance between two thin obstacles) and heights of obstacles on the fluid and heat transfer was investigated. Thermal and flow conditions of the application area of microchannels in electronic cooling systems, i.e., wall temperature of 60 °C, the fluid temperature of 20°C were used to solve equations. Additionally, the distance s between the thin obstacles in microchannels as a multiple of the amount of the channel height was determined. Results show that placing thin obstacles on microchannel walls increase the length of recirculation zones of the flow and improves the heat transfer.Keywords: Finite Element Method, heat transfer, mechanical engineering, microchannel
Procedia PDF Downloads 1346635 Risk Analysis of Flood Physical Vulnerability in Residential Areas of Mathare Nairobi, Kenya
Authors: James Kinyua Gitonga, Toshio Fujimi
Abstract:
Vulnerability assessment and analysis is essential to solving the degree of damage and loss as a result of natural disasters. Urban flooding causes a major economic loss and casualties, at Mathare residential area in Nairobi, Kenya. High population caused by rural-urban migration, Unemployment, and unplanned urban development are among factors that increase flood vulnerability in Mathare area. This study aims to analyse flood risk physical vulnerabilities in Mathare based on scientific data, research data that includes the Rainfall data, River Mathare discharge rate data, Water runoff data, field survey data and questionnaire survey through sampling of the study area have been used to develop the risk curves. Three structural types of building were identified in the study area, vulnerability and risk curves were made for these three structural types by plotting the relationship between flood depth and damage for each structural type. The results indicate that the structural type with mud wall and mud floor is the most vulnerable building to flooding while the structural type with stone walls and concrete floor is least vulnerable. The vulnerability of building contents is mainly determined by the number of floors, where households with two floors are least vulnerable, and households with a one floor are most vulnerable. Therefore more than 80% of the residential buildings including the property in the building are highly vulnerable to floods consequently exposed to high risk. When estimating the potential casualties/injuries we discovered that the structural types of houses were major determinants where the mud/adobe structural type had casualties of 83.7% while the Masonry structural type had casualties of 10.71% of the people living in these houses. This research concludes that flood awareness, warnings and observing the building codes will enable reduce damage to the structural types of building, deaths and reduce damage to the building contents.Keywords: flood loss, Mathare Nairobi, risk curve analysis, vulnerability
Procedia PDF Downloads 2396634 Measurements of Radial Velocity in Fixed Fluidized Bed for Fischer-Tropsch Synthesis Using LDV
Authors: Xiaolai Zhang, Haitao Zhang, Qiwen Sun, Weixin Qian, Weiyong Ying
Abstract:
High temperature Fischer-Tropsch synthesis process use fixed fluidized bed as a reactor. In order to understand the flow behavior in the fluidized bed better, the research of how the radial velocity affect the entire flow field is necessary. Laser Doppler Velocimetry (LDV) was used to study the radial velocity distribution along the diameter direction of the cross-section of the particle in a fixed fluidized bed. The velocity in the cross-section is fluctuating within a small range. The direction of the speed is a random phenomenon. In addition to r/R is 1, the axial velocity are more than 6 times of the radial velocity, the radial velocity has little impact on the axial velocity in a fixed fluidized bed.Keywords: Fischer-Tropsch synthesis, Fixed fluidized bed, LDV, Velocity
Procedia PDF Downloads 4056633 Chaotic Electronic System with Lambda Diode
Authors: George Mahalu
Abstract:
The Chua diode has been configured over time in various ways, using electronic structures like as operational amplifiers (OAs) or devices with gas or semiconductors. When discussing the use of semiconductor devices, tunnel diodes (Esaki diodes) are most often considered, and more recently, transistorized configurations such as lambda diodes. The paper-work proposed here uses in the modeling a lambda diode type configuration consisting of two Junction Field Effect Transistors (JFET). The original scheme is created in the MULTISIM electronic simulation environment and is analyzed in order to identify the conditions for the appearance of evolutionary unpredictability specific to nonlinear dynamic systems with chaos-induced behavior. The chaotic deterministic oscillator is one autonomous type, a fact that places it in the class of Chua’s type oscillators, the only significant and most important difference being the presence of a nonlinear device like the one mentioned structure above. The chaotic behavior is identified both by means of strange attractor-type trajectories and visible during the simulation and by highlighting the hypersensitivity of the system to small variations of one of the input parameters. The results obtained through simulation and the conclusions drawn are useful in the further research of ways to implement such constructive electronic solutions in theoretical and practical applications related to modern small signal amplification structures, to systems for encoding and decoding messages through various modern ways of communication, as well as new structures that can be imagined both in modern neural networks and in those for the physical implementation of some requirements imposed by current research with the aim of obtaining practically usable solutions in quantum computing and quantum computers.Keywords: chaos, lambda diode, strange attractor, nonlinear system
Procedia PDF Downloads 866632 Landfill Leachate: A Promising Substrate for Microbial Fuel Cells
Authors: Jayesh M. Sonawane, Prakash C. Ghosh
Abstract:
Landfill leachate emerges as a promising feedstock for microbial fuel cells (MFCs). In the present investigation, direct air-breathing cathode-based MFCs are fabricated to investigate the potential of landfill leachate. Three MFCs that have different cathode areas are fabricated and investigated for 17 days under open circuit conditions. The maximum open circuit voltage (OCV) is observed to be as high as 1.29 V. The maximum cathode area specific power density achieved in the reactor is 1513 mW m-2. Further studies are under progress to understand the origin of high OCV obtained from landfill leachate-based MFCs.Keywords: microbial fuel cells, landfill leachate, air-breathing cathode, performance study
Procedia PDF Downloads 3106631 Effects of Roughness on Forward Facing Step in an Open Channel
Authors: S. M. Rifat, André L. Marchildon, Mark F. Tachie
Abstract:
Experiments were performed to investigate the effects of roughness on the reattachment and redevelopment regions over a 12 mm forward facing step (FFS) in an open channel flow. The experiments were performed over an upstream smooth wall and a smooth FFS, an upstream wall coated with sandpaper 36 grit and a smooth FFS and an upstream rough wall produced from sandpaper 36 grit and a FFS coated with sandpaper 36 grit. To investigate only the wall roughness effects, Reynolds number, Froude number, aspect ratio and blockage ratio were kept constant. Upstream profiles showed reduced streamwise mean velocities close to the rough wall compared to the smooth wall, but the turbulence level was increased by upstream wall roughness. The reattachment length for the smooth-smooth wall experiment was 1.78h; however, when it is replaced with rough-smooth wall the reattachment length decreased to 1.53h. It was observed that the upstream roughness increased the physical size of contours of maximum turbulence level; however, the downstream roughness decreased both the size and magnitude of contours in the vicinity of the leading edge of the step. Quadrant analysis was performed to investigate the dominant Reynolds shear stress contribution in the recirculation region. The Reynolds shear stress and turbulent kinetic energy profiles after the reattachment showed slower recovery compared to the streamwise mean velocity, however all the profiles fairly collapse on their corresponding upstream profiles at x/h = 60. It was concluded that to obtain a complete collapse several more streamwise distances would be required.Keywords: forward facing step, open channel, separated and reattached turbulent flows, wall roughness
Procedia PDF Downloads 3856630 The Descriptions of vBloggers with Type 1 Diabetes about Overcoming Diabetes Burnout
Authors: Samereh Abdoli, Amit Vora, Anusha Vora
Abstract:
Background: Diabetes burnout is one of the most common contributors to decreased quality of life, poor psychosocial well-being, and increased morbidity, mortality and diabetes cost. While the term diabetes burnout is widely accepted particularly in type 1 diabetes (T1D), the state of the science on diabetes burnout is lacking a systematic approach to overcome diabetes burnout. Objective: The study aimed to explore the strategies to overcome burnout by integrating the voices of individuals with T1D. Methods: In this study, we applied a descriptive qualitative design using YouTube videos produced by individuals with T1D. Seven YouTube videos (Austria= 1, U.S=6) with the highest rate of views which met the inclusion criteria were analyzed using a qualitative content analysis approach. Results: Participants verbalized overcoming diabetes burnout as a 'difficult hole to climb out of' which make them empowered. Themes that describes their strategies to overcome burnout in T1D, in general, include; 'make plan and take action', 'start with small steps', 'ask for help', 'get engage in diabetes community' and 'do not be perfect'. Future Work: These findings can begin the examination of different strategies to overcome diabetes burnout, which may change the course of action for diabetes care and management to improve quality of diabetes care and quality of life.Keywords: diabetes burnout, type 1 diabetes, qualitative research, YouTube videos
Procedia PDF Downloads 1526629 Solving Stochastic Eigenvalue Problem of Wick Type
Authors: Hassan Manouzi, Taous-Meriem Laleg-Kirati
Abstract:
In this paper we study mathematically the eigenvalue problem for stochastic elliptic partial differential equation of Wick type. Using the Wick-product and the Wiener-Ito chaos expansion, the stochastic eigenvalue problem is reformulated as a system of an eigenvalue problem for a deterministic partial differential equation and elliptic partial differential equations by using the Fredholm alternative. To reduce the computational complexity of this system, we shall use a decomposition-coordination method. Once this approximation is performed, the statistics of the numerical solution can be easily evaluated.Keywords: eigenvalue problem, Wick product, SPDEs, finite element, Wiener-Ito chaos expansion
Procedia PDF Downloads 3596628 Torrefaction of Biomass Pellets: Modeling of the Process in a Fixed Bed Reactor
Authors: Ekaterina Artiukhina, Panagiotis Grammelis
Abstract:
Torrefaction of biomass pellets is considered as a useful pretreatment technology in order to convert them into a high quality solid biofuel that is more suitable for pyrolysis, gasification, combustion and co-firing applications. In the course of torrefaction the temperature varies across the pellet, and therefore chemical reactions proceed unevenly within the pellet. However, the uniformity of the thermal distribution along the pellet is generally assumed. The torrefaction process of a single cylindrical pellet is modeled here, accounting for heat transfer coupled with chemical kinetics. The drying sub-model was also introduced. The non-stationary process of wood pellet decomposition is described by the system of non-linear partial differential equations over the temperature and mass. The model captures well the main features of the experimental data.Keywords: torrefaction, biomass pellets, model, heat, mass transfer
Procedia PDF Downloads 4806627 The Phylogenetic Investigation of Candidate Genes Related to Type II Diabetes in Man and Other Species
Authors: Srijoni Banerjee
Abstract:
Sequences of some of the candidate genes (e.g., CPE, CDKAL1, GCKR, HSD11B1, IGF2BP2, IRS1, LPIN1, PKLR, TNF, PPARG) implicated in some of the complex disease, e.g. Type II diabetes in man has been compared with other species to investigate phylogenetic affinity. Based on mRNA sequence of these genes of 7 to 8 species, using bioinformatics tools Mega 5, Bioedit, Clustal W, distance matrix was obtained. Phylogenetic trees were obtained by NJ and UPGMA clustering methods. The results of the phylogenetic analyses show that of the species compared: Xenopus l., Danio r., Macaca m., Homo sapiens s., Rattus n., Mus m. and Gallus g., Bos taurus, both NJ and UPGMA clustering show close affinity between clustering of Homo sapiens s. (Man) with Rattus n. (Rat), Mus m. species for the candidate genes, except in case of Lipin1 gene. The results support the functional similarity of these genes in physiological and biochemical process involving man and mouse/rat. Therefore, in understanding the complex etiology and treatment of the complex disease mouse/rate model is the best laboratory choice for experimentation.Keywords: phylogeny, candidate gene of type-2 diabetes, CPE, CDKAL1, GCKR, HSD11B1, IGF2BP2, IRS1, LPIN1, PKLR, TNF, PPARG
Procedia PDF Downloads 3216626 Application of Single Subject Experimental Designs in Adapted Physical Activity Research: A Descriptive Analysis
Authors: Jiabei Zhang, Ying Qi
Abstract:
The purpose of this study was to develop a descriptive profile of the adapted physical activity research using single subject experimental designs. All research articles using single subject experimental designs published in the journal of Adapted Physical Activity Quarterly from 1984 to 2013 were employed as the data source. Each of the articles was coded in a subcategory of seven categories: (a) the size of sample; (b) the age of participants; (c) the type of disabilities; (d) the type of data analysis; (e) the type of designs, (f) the independent variable, and (g) the dependent variable. Frequencies, percentages, and trend inspection were used to analyze the data and develop a profile. The profile developed characterizes a small portion of research articles used single subject designs, in which most researchers used a small sample size, recruited children as subjects, emphasized learning and behavior impairments, selected visual inspection with descriptive statistics, preferred a multiple baseline design, focused on effects of therapy, inclusion, and strategy, and measured desired behaviors more often, with a decreasing trend over years.Keywords: adapted physical activity research, single subject experimental designs, physical education, sport science
Procedia PDF Downloads 4676625 Molecular Detection and Characterization of Shiga Toxogenic Escherichia coli Associated with Dairy Product
Authors: Mohamed Al-Hazmi, Abdullah Al-Arfaj, Moussa Ihab
Abstract:
Raw, unpasteurized milk can carry dangerous bacteria such as Salmonella, E. coli, and Listeria, which are responsible for causing numerous foodborne illnesses. The objective of this study was molecular characterization of shiga toxogenic E. coli in raw milk collected from different Egyptian governorates by multiplex PCR. During the period of 25th May to 25th October 2012, a total of 320 bulk-tank milk samples were collected from 10 cow farms located in different Egyptian governorates. Bacteriological examination of milk samples revealed the presence of E. coli organisms in 65 samples (20.3%), serotyping of the E. coli isolates revealed, 35 strains (10.94%) O111, 15 strains (4.69%) O157: H7, 10 strains (3.13%) O128 and 5 strains (1.56%) O119. Multiplex PCR for detection of shiga toxin type 2 and intimin genes revealed positive amplification of 255 bp fragment of shiga toxin type 2 gene and 384 bp fragment of intimin gene from all E. coli serovar O157: H7, while from serovar O111 were 25 (71.43%), 20 (57.14%) and from serovar O128 were 6 (60%), 8 (80%), respectively. The results of multiplex PCR assay are useful for identification of STEC possessing the eaeA and stx2 genes.Keywords: raw milk, E. coli, multiplex PCR, Shiga toxin type 2, intimin gene
Procedia PDF Downloads 3066624 Reviewing Privacy Preserving Distributed Data Mining
Authors: Sajjad Baghernezhad, Saeideh Baghernezhad
Abstract:
Nowadays considering human involved in increasing data development some methods such as data mining to extract science are unavoidable. One of the discussions of data mining is inherent distribution of the data usually the bases creating or receiving such data belong to corporate or non-corporate persons and do not give their information freely to others. Yet there is no guarantee to enable someone to mine special data without entering in the owner’s privacy. Sending data and then gathering them by each vertical or horizontal software depends on the type of their preserving type and also executed to improve data privacy. In this study it was attempted to compare comprehensively preserving data methods; also general methods such as random data, coding and strong and weak points of each one are examined.Keywords: data mining, distributed data mining, privacy protection, privacy preserving
Procedia PDF Downloads 5256623 Renewable Natural Gas Production from Biomass and Applications in Industry
Authors: Sarah Alamolhoda, Kevin J. Smith, Xiaotao Bi, Naoko Ellis
Abstract:
For millennials, biomass has been the most important source of fuel used to produce energy. Energy derived from biomass is renewable by re-growth of biomass. Various technologies are used to convert biomass to potential renewable products including combustion, gasification, pyrolysis and fermentation. Gasification is the incomplete combustion of biomass in a controlled environment that results in valuable products such as syngas, biooil and biochar. Syngas is a combustible gas consisting of hydrogen (H₂), carbon monoxide (CO), carbon dioxide (CO₂), and traces of methane (CH₄) and nitrogen (N₂). Cleaned syngas can be used as a turbine fuel to generate electricity, raw material for hydrogen and synthetic natural gas production, or as the anode gas of solid oxide fuel cells. In this work, syngas as a product of woody biomass gasification in British Columbia, Canada, was introduced to two consecutive fixed bed reactors to perform a catalytic water gas shift reaction followed by a catalytic methanation reaction. The water gas shift reaction is a well-established industrial process and used to increase the hydrogen content of the syngas before the methanation process. Catalysts were used in the process since both reactions are reversible exothermic, and thermodynamically preferred at lower temperatures while kinetically favored at elevated temperatures. The water gas shift reactor and the methanation reactor were packed with Cu-based catalyst and Ni-based catalyst, respectively. Simulated syngas with different percentages of CO, H₂, CH₄, and CO₂ were fed to the reactors to investigate the effect of operating conditions in the unit. The water gas shift reaction experiments were done in the temperature of 150 ˚C to 200 ˚C, and the pressure of 550 kPa to 830 kPa. Similarly, methanation experiments were run in the temperature of 300 ˚C to 400 ˚C, and the pressure of 2340 kPa to 3450 kPa. The Methanation reaction reached 98% of CO conversion at 340 ˚C and 3450 kPa, in which more than half of CO was converted to CH₄. Increasing the reaction temperature caused reduction in the CO conversion and increase in the CH₄ selectivity. The process was designed to be renewable and release low greenhouse gas emissions. Syngas is a clean burning fuel, however by going through water gas shift reaction, toxic CO was removed, and hydrogen as a green fuel was produced. Moreover, in the methanation process, the syngas energy was transformed to a fuel with higher energy density (per volume) leading to reduction in the amount of required fuel that flows through the equipment and improvement in the process efficiency. Natural gas is about 3.5 times more efficient (energy/ volume) than hydrogen and easier to store and transport. When modification of existing infrastructure is not practical, the partial conversion of renewable hydrogen to natural gas (with up to 15% hydrogen content), the efficiency would be preserved while greenhouse gas emission footprint is eliminated.Keywords: renewable natural gas, methane, hydrogen, gasification, syngas, catalysis, fuel
Procedia PDF Downloads 1186622 Electromagnetic-Mechanical Stimulation on PC12 for Enhancement of Nerve Axonal Extension
Authors: E. Nakamachi, K. Matsumoto, K. Yamamoto, Y. Morita, H. Sakamoto
Abstract:
In recently, electromagnetic and mechanical stimulations have been recognized as the effective extracellular environment stimulation technique to enhance the defected peripheral nerve tissue regeneration. In this study, we developed a new hybrid bioreactor by adopting 50 Hz uniform alternative current (AC) magnetic stimulation and 4% strain mechanical stimulation. The guide tube for nerve regeneration is mesh structured tube made of biodegradable polymer, such as polylatic acid (PLA). However, when neural damage is large, there is a possibility that peripheral nerve undergoes necrosis. So it is quite important to accelerate the nerve tissue regeneration by achieving enhancement of nerve axonal extension rate. Therefore, we try to design and fabricate the system that can simultaneously load the uniform AC magnetic field stimulation and the stretch stimulation to cells for enhancement of nerve axonal extension. Next, we evaluated systems performance and the effectiveness of each stimulation for rat adrenal pheochromocytoma cells (PC12). First, we designed and fabricated the uniform AC magnetic field system and the stretch stimulation system. For the AC magnetic stimulation system, we focused on the use of pole piece structure to carry out in-situ microscopic observation. We designed an optimum pole piece structure using the magnetic field finite element analyses and the response surface methodology. We fabricated the uniform AC magnetic field stimulation system as a bio-reactor by adopting analytically determined design specifications. We measured magnetic flux density that is generated by the uniform AC magnetic field stimulation system. We confirmed that measurement values show good agreement with analytical results, where the uniform magnetic field was observed. Second, we fabricated the cyclic stretch stimulation device under the conditions of particular strains, where the chamber was made of polyoxymethylene (POM). We measured strains in the PC12 cell culture region to confirm the uniform strain. We found slightly different values from the target strain. Finally, we concluded that these differences were allowable in this mechanical stimulation system. We evaluated the effectiveness of each stimulation to enhance the nerve axonal extension using PC12. We confirmed that the average axonal extension length of PC12 under the uniform AC magnetic stimulation was increased by 16 % at 96 h in our bio-reactor. We could not confirm that the axonal extension enhancement under the stretch stimulation condition, where we found the exfoliating of cells. Further, the hybrid stimulation enhanced the axonal extension. Because the magnetic stimulation inhibits the exfoliating of cells. Finally, we concluded that the enhancement of PC12 axonal extension is due to the magnetic stimulation rather than the mechanical stimulation. Finally, we confirmed that the effectiveness of the uniform AC magnetic field stimulation for the nerve axonal extension using PC12 cells.Keywords: nerve cell PC12, axonal extension, nerve regeneration, electromagnetic-mechanical stimulation, bioreactor
Procedia PDF Downloads 2656621 Radiation Hardness Materials Article Review
Authors: S. Abou El-Azm, U. Kruchonak, M. Gostkin, A. Guskov, A. Zhemchugov
Abstract:
Semiconductor detectors are widely used in nuclear physics and high-energy physics experiments. The application of semiconductor detectors could be limited by their ultimate radiation resistance. The increase of radiation defects concentration leads to significant degradation of the working parameters of semiconductor detectors. The investigation of radiation defects properties in order to enhance the radiation hardness of semiconductor detectors is an important task for the successful implementation of a number of nuclear physics experiments; we presented some information about radiation hardness materials like diamond, sapphire and CdTe. Also, the results of measurements I-V characteristics, charge collection efficiency and its dependence on the bias voltage for different doses of high resistivity (GaAs: Cr) and Si at LINAC-200 accelerator and reactor IBR-2 are presented.Keywords: semiconductor detectors, radiation hardness, GaAs, Si, CCE, I-V, C-V
Procedia PDF Downloads 1136620 Improvement of Fatigue and Fatigue Corrosion Resistances of Turbine Blades Using Laser Cladding
Authors: Sami I. Jafar, Sami A. Ajeel, Zaman A. Abdulwahab
Abstract:
The turbine blades used in electric power plants are made of low alloy steel type 52. These blades will be subjected to fatigue and also at other times to fatigue corrosion with aging time. Due to their continuous exposure to cyclic rotational stresses in corrosive steam environments, The current research aims to deal with this problem using the laser cladding method for low alloy steel type 52, which works to re-compose the metallurgical structure and improve the mechanical properties by strengthening the resulting structure, which leads to an increase in fatigue and wears resistance, therefore, an increase in the life of these blades is observed.Keywords: fatigue, fatigue corrosion, turbine blades, laser cladding
Procedia PDF Downloads 1996619 One Pot Synthesis of Ultrasmall NiMo Catalysts Supported on Amorphous Alumina with Enhanced type 2 Sites for Hydrodesulfurization Reaction: A Combined Experimental and Theoretical Study
Authors: Shalini Arora, Sri Sivakumar
Abstract:
The deep removal of high molecular weight sulphur compounds (e.g., 4,6, dimethyl dibenzothiophene) is challenging due to their steric hindrance. Hydrogenation desulfurization (HYD) pathway is the main pathway to remove these sulfur compounds, and it is mainly governed by the number of type 2 sites. The formation of type 2 sites can be enhanced by modulating the pore structure and the interaction between the active metal and support. To this end, we report the enhanced HDS catalytic activity of ultrasmall NiMo supported on amorphous alumina (A-Al₂O₃) catalysts by one pot colloidal synthesis method followed by calcination and sulfidation. The amorphous alumina (A-Al₂O₃) was chosen as the support due to its lower surface energy, better physicochemical properties, and enhanced acidic sites (due to the dominance of tetra and penta coordinated [Al] sites) than crystalline alumina phase. At 20% metal oxide composition, NiMo supported on A-Al₂O₃ catalyst showed 1.4 and 1.2 times more reaction rate constant and turn over frequency (TOF) respectively than the conventional catalyst (wet impregnated NiMo catalysts) for HDS reaction of dibenzothiophene reactant molecule. A-Al₂O₃ supported catalysts represented enhanced type 2 sites formation (because this catalystpossesses higher sulfidation degree (80%) and NiMoS sites (19.3 x 10¹⁷ sites/mg) with desired optimum stacking degree (2.5) than wet impregnated catalyst at same metal oxide composition 20%) along with higher active metal dispersion, Mo edge site fraction. The experimental observations were also supported by DFT simulations. Lower heat of adsorption (< 4.2 ev for MoS2 interaction and < 3.15 ev for Ni doped MoS2 interaction) values for A-Al₂O₃ confirmed the presence of weaker metal-support interaction in A-Al₂O₃ in contrast to crystalline ℽ-Al₂O3. The weak metal-support interaction for prepared catalysts clearly suggests the higher formation of type 2 sites which leads to higher catalytic activity for HDS reaction.Keywords: amorphous alumina, colloidal, desulfurization, metal-support interaction
Procedia PDF Downloads 2676618 The Structural Pattern: An Event-Related Potential Study on Tang Poetry
Authors: ShuHui Yang, ChingChing Lu
Abstract:
Measuring event-related potentials (ERPs) has been fundamental to our understanding of how people process language. One specific ERP component, a P600, has been hypothesized to be associated with syntactic reanalysis processes. We, however, propose that the P600 is not restricted to reanalysis processes, but is the index of the structural pattern processing. To investigate the structural pattern processing, we utilized the effects of stimulus degradation in structural priming. To put it another way, there was no P600 effect if the structure of the prime was the same with the structure of the target. Otherwise, there would be a P600 effect if the structure were different between the prime and the target. In the experiment, twenty-two participants were presented with four sentences of Tang poetry. All of the first two sentences, being prime, were conducted with SVO+VP. The last two sentences, being the target, were divided into three types. Type one of the targets was SVO+VP. Type two of the targets was SVO+VPVP. Type three of the targets was VP+VP. The result showed that both of the targets, SVO+VPVP and VP+VP, elicited positive-going brainwave, a P600 effect, at 600~900ms time window. Furthermore, the P600 component was lager for the target’ VP+VP’ than the target’ SVO+VPVP’. That meant the more dissimilar the structure was, the lager the P600 effect we got. These results indicate that P600 was the index of the structure processing, and it would affect the P600 effect intensity with the degrees of structural heterogeneity.Keywords: ERPs, P600, structural pattern, structural priming, Tang poetry
Procedia PDF Downloads 1406617 High Rate Bio-Methane Generation from Petrochemical Wastewater Using Improved CSTR
Authors: Md. Nurul Islam Siddique, A. W. Zularisam
Abstract:
The effect of gradual increase in organic loading rate (OLR) and temperature on biomethanation from petrochemical wastewater treatment was investigated using CSTR. The digester performance was measured at hydraulic retention time (HRT) of 4 to 2d, and start up procedure of the reactor was monitored for 60 days via chemical oxygen demand (COD) removal, biogas and methane production. By enhancing the temperature from 30 to 55 ˚C Thermophilic condition was attained, and pH was adjusted at 7 ± 0.5 during the experiment. Supreme COD removal competence was 98±0.5% (r = 0.84) at an OLR of 7.5 g-COD/Ld and 4d HRT. Biogas and methane yield were logged to an extreme of 0.80 L/g-CODremoved d (r = 0.81), 0.60 L/g-CODremoved d (r = 0.83), and mean methane content of biogas was 65.49%. The full acclimatization was established at 55 ˚C with high COD removal efficiency and biogas production. An OLR of 7.5 g-COD/L d and HRT of 4 days were apposite for petrochemical wastewater treatment.Keywords: anaerobic digestion, petrochemical wastewater, CSTR, methane
Procedia PDF Downloads 3556616 Microwave Production of Geopolymers Using Fluidized Bed Combustion Bottom Ash
Authors: Osholana Tobi Stephen, Rotimi Emmanuel Sadiku, Bilainu Oboirien.o
Abstract:
Fluidized bed combustion (FBC) is a clean coal technology used in the combustion of low-grade coals for power generation. The production of large solid wastes such as bottom ashes from this process is a problem. The bottom ash contains some toxic elements which can leach out soils and contaminate surface and ground water; for this reason, they can neither be disposed in landfills nor lagoons anymore. The production of geopolymers from bottom ash for structural and concrete applications is an option for their disposal. In this study, the waste bottom ash obtained from the combustion of three low grade South African coals in a bubbling fluidized bed reactor was used to produce geopolymers. The geopolymers were cured in a household microwave. The results showed that the microwave curing enhanced the reactivity and strength of the geopolymers.Keywords: bottom ash, coal, fluidized bed combustion (FBC) geopolymer, compressive strength
Procedia PDF Downloads 3156615 Diverse Sensitivity to Ultraviolet Radiation of DNA and RNA Viruses
Authors: Nickolay Nosik, Dmitry Nosik, Marina Bochkova, Nina Kondrashina, Olga Lobach
Abstract:
The bactericidal effect of UV radiation is known for long time and widely used for inactivation of pathogens but for viruses it is not so uniform. Due to a wide variety of viruses their sensitivity to UV radiation is quite different and not quite predictable. The goal of the study was to determine the inactivation kinetics of UV radiation ( 254 nm) of the viruses of social importance (HIV), as well as test-viruses (poliovirus, adenovirus) used for the evaluation of the viral inactivation efficacy of germicides. Methods: DNA viruses- adenovirus, type 5; Herpes simplex virus (HSV), type 1, and RNA viruses–human immunodeficiency virus (HIV), type 1 and poliovirus, type 1 (Sabin strain) were obtained from State collection of viruses ( The D.I. Ivanovsky Institute of Virology). The source of UV radiation was a 15-watt low-pressure mercury vapor lamp (over 60% 254nm). The samples of 5cm2 were placed direct under the UV lamp flow (h-0.3m). Log reduction value was used as a marker for the rate of virus inactivation. Results: The data obtained indicate that poliovirus (one of the viruses most resistant to chemical germicides) and HSV are rather sensitive to UV radiation ( D90 =250-311 J/m2). Adenovirus is much more resistant to UV radiation (750 J/m2 ). The kinetics of adenovirus inactivation : 0 min- 5.0 lg TCID50, 10 min - 5,0, 15 min -4,0, 30 min – 3.5, 60 min – 1,0, 75 min -0,5 lg TCID50, 90 min –virus not detectable. HIV is most resistant to UV radiation among the studied viruses. It takes more than 4 hrs to inactivate the virus on the surface. D90 = 2000 J/m2 Conclusion: The results of the study show that there is no direct dependence between sensitivity to UV light and the size of the virion or presence\absence of the envelope of the virus. Poliovirus and adenovirus are small viruses (20-30nm poliovirus and 70-90nm adenovirus) and both are non-enveloped viruses but adenovirus 3-fold more resistant to UV radiation than poliovirus. It can be expected that viruses with more complicate structure, like Herpes virus (200nm) or HIV (80-100 nm), would be more sensitive to UV light. However, the very high resistance of HIV to UV radiation needs further investigation. The diverse resistance of the different viruses to UV radiation should be taken into the account when UV light is used to inactivate infectious viruses in hospitals and other public environments.Keywords: HIV, HSV, inhibition of viruses, UV radiation
Procedia PDF Downloads 4556614 Ab-Initio Study of Native Defects in SnO Under Strain
Authors: A. Albar, D. B. Granato, U. Schwingenschlogl
Abstract:
Tin monoxide (SnO) has promising properties to be applied as a p-type semiconductor in transparent electronics. To this end, it is necessary to understand the behavior of defects in order to control them. We use density functional theory to study native defects of SnO under tensile and compressive strain. We show that Sn vacancies are more stable under tension and less stable under compression, irrespectively of the charge state. In contrast, O vacancies behave differently for different charge. It turns out that the most stable defect under compression is the +1 charged O vacancy in a Sn-rich environment and the charge neutral O interstitial in an O-rich environment. Therefore, compression can be used to transform SnO from an n-type into un-doped semiconductor.Keywords: native defects, ab-initio, point defect, tension, compression, semiconductor
Procedia PDF Downloads 3966613 Experimental and Numerical Study on the Effects of Oxygen Methane Flames with Water Dilution for Different Pressures
Authors: J. P. Chica Cano, G. Cabot, S. de Persis, F. Foucher
Abstract:
Among all possibilities to combat global warming, CO2 capture and sequestration (CCS) is presented as a great alternative to reduce greenhouse gas (GHG) emission. Several strategies for CCS from industrial and power plants are being considered. The concept of combined oxy-fuel combustion has been the most alternative solution. Nevertheless, due to the high cost of pure O2 production, additional ways recently emerged. In this paper, an innovative combustion process for a gas turbine cycle was studied: it was composed of methane combustion with oxygen enhanced air (OEA), exhaust gas recirculation (EGR) and H2O issuing from STIG (Steam Injection Gas Turbine), and the CO2 capture was realized by membrane separator. The effect on this combustion process was emphasized, and it was shown that a study of the influence of H2O dilution on the combustion parameters by experimental and numerical approaches had to be carried out. As a consequence, the laminar burning velocities measurements were performed in a stainless steel spherical combustion from atmospheric pressure to high pressure (up to 0.5 MPa), at 473 K for an equivalence ratio at 1. These experimental results were satisfactorily compared with Chemical Workbench v.4.1 package in conjunction with GRIMech 3.0 reaction mechanism. The good correlations so obtained between experimental and calculated flame speed velocities showed the validity of the GRIMech 3.0 mechanism in this domain of combustion: high H2O dilution, low N2, medium pressure. Finally, good estimations of flame speed and pollutant emissions were determined in other conditions compatible with real gas turbine. In particular, mixtures (composed of CH4/O2/N2/H2O/ or CO2) leading to the same adiabatic temperature were investigated. Influences of oxygen enrichment and H2O dilution (compared to CO2) were disused.Keywords: CO₂ capture, oxygen enrichment, water dilution, laminar burning velocity, pollutants emissions
Procedia PDF Downloads 1666612 A New Type Safety-Door for Earthquake Disaster Prevention: Part I
Authors: Daniel Y. Abebe, Jaehyouk Choi
Abstract:
From the past earthquake events, many people get hurt at the exit while they are trying to go out of the buildings because of the exit doors are unable to be opened. The door is not opened because it deviates from its the original position. The aim of this research is to develop and evaluate a new type safety door that keeps the door frame in its original position or keeps its edge angles perpendicular during and post-earthquake. The proposed door is composed of three components: outer frame joined to the wall, inner frame (door frame) and circular hollow section connected to the inner and outer frame which is used as seismic energy dissipating device.Keywords: safety-door, earthquake disaster, low yield point steel, passive energy dissipating device, FE analysis
Procedia PDF Downloads 5266611 Comparison between Conventional Bacterial and Algal-Bacterial Aerobic Granular Sludge Systems in the Treatment of Saline Wastewater
Authors: Philip Semaha, Zhongfang Lei, Ziwen Zhao, Sen Liu, Zhenya Zhang, Kazuya Shimizu
Abstract:
The increasing generation of saline wastewater through various industrial activities is becoming a global concern for activated sludge (AS) based biological treatment which is widely applied in wastewater treatment plants (WWTPs). As for the AS process, an increase in wastewater salinity has negative impact on its overall performance. The advent of conventional aerobic granular sludge (AGS) or bacterial AGS biotechnology has gained much attention because of its superior performance. The development of algal-bacterial AGS could enhance better nutrients removal, potentially reduce aeration cost through symbiotic algae-bacterial activity, and thus, can also reduce overall treatment cost. Nonetheless, the potential of salt stress to decrease biomass growth, microbial activity and nutrient removal exist. Up to the present, little information is available on saline wastewater treatment by algal-bacterial AGS. To the authors’ best knowledge, a comparison of the two AGS systems has not been done to evaluate nutrients removal capacity in the context of salinity increase. This study sought to figure out the impact of salinity on the algal-bacterial AGS system in comparison to bacterial AGS one, contributing to the application of AGS technology in the real world of saline wastewater treatment. In this study, the salt concentrations tested were 0 g/L, 1 g/L, 5 g/L, 10 g/L and 15 g/L of NaCl with 24-hr artificial illuminance of approximately 97.2 µmol m¯²s¯¹, and mature bacterial and algal-bacterial AGS were used for the operation of two identical sequencing batch reactors (SBRs) with a working volume of 0.9 L each, respectively. The results showed that salinity increase caused no apparent change in the color of bacterial AGS; while for algal-bacterial AGS, its color was progressively changed from green to dark green. A consequent increase in granule diameter and fluffiness was observed in the bacterial AGS reactor with the increase of salinity in comparison to a decrease in algal-bacterial AGS diameter. However, nitrite accumulation peaked from 1.0 mg/L and 0.4 mg/L at 1 g/L NaCl in the bacterial and algal-bacterial AGS systems, respectively to 9.8 mg/L in both systems when NaCl concentration varied from 5 g/L to 15 g/L. Almost no ammonia nitrogen was detected in the effluent except at 10 g/L NaCl concentration, where it averaged 4.2 mg/L and 2.4 mg/L, respectively, in the bacterial and algal-bacterial AGS systems. Nutrients removal in the algal-bacterial system was relatively higher than the bacterial AGS in terms of nitrogen and phosphorus removals. Nonetheless, the nutrient removal rate was almost 50% or lower. Results show that algal-bacterial AGS is more adaptable to salinity increase and could be more suitable for saline wastewater treatment. Optimization of operation conditions for algal-bacterial AGS system would be important to ensure its stably high efficiency in practice.Keywords: algal-bacterial aerobic granular sludge, bacterial aerobic granular sludge, Nutrients removal, saline wastewater, sequencing batch reactor
Procedia PDF Downloads 1486610 Numerical Analysis of a Reaction Diffusion System of Lambda-Omega Type
Authors: Hassan J. Al Salman, Ahmed A. Al Ghafli
Abstract:
In this study, we consider a nonlinear in time finite element approximation of a reaction diffusion system of lambda-omega type. We use a fixed-point theorem to prove existence of the approximations at each time level. Then, we derive some essential stability estimates and discuss the uniqueness of the approximations. In addition, we employ Nochetto mathematical framework to prove an optimal error bound in time for d= 1, 2 and 3 space dimensions. Finally, we present some numerical experiments to verify the obtained theoretical results.Keywords: reaction diffusion system, finite element approximation, stability estimates, error bound
Procedia PDF Downloads 4306609 Sono- and Photocatalytic Degradation of Indigocarmine in Water Using ZnO
Authors: V. Veena, Suguna Yesodharan, E. P. Yesodharan
Abstract:
Two Advanced Oxidation Processes (AOP) i.e., sono- and photo-catalysis mediated by semiconductor oxide catalyst, ZnO has been found effective for the removal of trace amounts of the toxic dye pollutant Indigocarmine (IC) from water. The effect of various reaction parameters such as concentration of the dye, catalyst dosage, temperature, pH, dissolved oxygen etc. as well as the addition of oxidisers and presence of salts in water on the rate of degradation has been evaluated and optimised. The degradation follows variable kinetics depending on the concentration of the substrate, the order of reaction varying from 1 to 0 with increase in concentration. The reaction proceeds through a number of intermediates and many of them have been identified using GCMS technique. The intermediates do not affect the rate of degradation significantly. The influence of anions such as chloride, sulphate, fluoride, carbonate, bicarbonate, phosphate etc. on the degradation of IC is not consistent and does not follow any predictable pattern. Phosphates and fluorides inhibit the degradation while chloride, sulphate, carbonate and bicarbonate enhance. Adsorption studies of the dye in the absence as well as presence of these anions show that there may not be any direct correlation between the adsorption of the dye on the catalyst and the degradation. Oxidants such as hydrogen peroxide and persulphate enhance the degradation though the combined effect and it is less than the cumulative effect of individual components. COD measurements show that the degradation proceeds to complete mineralisation. The results will be presented and probable mechanism for the degradation will be discussed.Keywords: AOP, COD, indigocarmine, photocatalysis, sonocatalysis
Procedia PDF Downloads 3366608 A Systematic Review and Meta-Analysis of Diabetes Ketoacidosis in Ethiopia
Authors: Addisu Tadesse Sahile, Mussie Wubshet Teka, Solomon Muluken Ayehu
Abstract:
Background: Diabetes is one of the common public health problems of the century that was estimated to affect one in a tenth of the world population by the year 2030, where diabetes ketoacidosis is one of its common acute complications. Objectives: The aim of this review was to assess the magnitude of diabetes ketoacidosis among patients with type 1 diabetes in Ethiopia. Methods: A systematic data search was done across Google Scholar, PubMed, Web of Science, and African Online Journals. Two reviewers carried out the selection, reviewing, screening, and extraction of the data independently by using a Microsoft Excel Spreadsheet. The Joanna Briggs Institute's prevalence critical appraisal tool was used to assess the quality of evidence. All studies conducted in Ethiopia that reported diabetes ketoacidosis rates among type 1 diabetes were included. The extracted data was imported into the comprehensive meta-analysis version 3.0 for further analysis. Heterogeneity was checked by Higgins’s method, whereas the publication bias was checked by using Beggs and Eggers’s tests. A random-effects meta-analysis model with a 95% confidence interval was computed to estimate the pooled prevalence. Furthermore, subgroup analysis based on the study area (Region) and the sample size was carried out. Result and Conclusion: After review made across a total of 51 articles, of which 12 articles fulfilled the inclusion criteria and were included in the meta-analysis. The pooled prevalence of diabetes ketoacidosis among type 1 diabetes in Ethiopia was 53.2% (95%CI: 43.1%-63.1%). The highest prevalence of DKA was reported in the Tigray region of Ethiopia, whereas the lowest was reported in the Southern region of Ethiopia. Concerned bodies were suggested to work on the escalated burden of diabetes ketoacidosis in Ethiopia.Keywords: DKA, Type 1 diabetes, Ethiopia, systematic review, meta-analysis
Procedia PDF Downloads 59