Search results for: organic acids salts
2352 Effects of Rations with High Amount of Crude Fiber on Rumen Fermentation in Suckler Cows
Authors: H. Scholz, P. Kuehne, G. Heckenberger
Abstract:
Problems during the calving period (December until May) often are results in a high body condition score (BCS) at this time. At the end of the grazing period (frequently after early weaning), however, an increase of BCS can often be observed under German conditions. In the last eight weeks before calving, the body condition should be reduced or at least not increased. Rations with a higher amount of crude fiber can be used (rations with straw or late mowed grass silage). Fermentative digestion of fiber is slow and incomplete; that’s why the fermentative process in the rumen can be reduced over a long feeding time. Viewed in this context, feed intake of suckler cows (8 weeks before calving) in different rations and fermentation in the rumen should be checked by taking rumen fluid. Eight suckler cows (Charolais) were feeding a Total Mixed Ration (TMR) in the last eight weeks before calving and grass silage after calving. By the addition of straw (30 % [TMR1] vs. 60 % [TMR2] of dry matter) was varied the amount of crude fiber in the TMR (grass silage, straw, mineral) before calving. After calving of the cow's grass, silage [GS] was fed ad libitum, and the last measurement of rumen fluid took place on the pasture [PS]. Rumen fluid, plasma, body weight, and backfat thickness were collected. Rumen fluid pH was assessed using an electronic pH meter. Volatile fatty acids (VFA), sedimentation, methylene-blue, and amount of infusorians were measured. From these 4 parameters, an “index of rumen fermentation” [IRF] in the rumen was formed. Fixed effects of treatment (TMR1, TMR2, GS, and PS) and a number of lactations (3-7 lactations) were analyzed by ANOVA using SPSS Version 25.0 (significant by p ≤ 5 %). Rumen fluid pH was significantly influenced by variants (TMR 1 by 6.6; TMR 2 by 6.9; GS by 6.6 and PS by 6.9) but was not affected by other effects. The IRF showed disturbed fermentation in the rumen by feeding the TMR 1+2 with a high amount of crude fiber (Score: > 10.0 points) and a very good environment for fermentation during grazing the pasture (Score: 6.9 points). Furthermore, significant differences were found for VFA, methylene blue, and the number of infusorians. The use of rations with a high amount of crude fiber from weaning to calving may cause deviations from undisturbed fermentation in the rumen and adversely affect the utilization of the feed in the rumen.Keywords: rumen fermentation, suckler cow, digestibility organic matter, crude fiber
Procedia PDF Downloads 1482351 Effect of Several Soil Amendments on Water Quality in Mine Soils: Leaching Columns
Authors: Carmela Monterroso, Marc Romero-Estonllo, Carlos Pascual, Beatriz Rodríguez-Garrido
Abstract:
The mobilization of heavy metals from polluted soils causes their transfer to natural waters, with consequences for ecosystems and human health. Phytostabilization techniques are applied to reduce this mobility, through the establishment of a vegetal cover and the application of soil amendments. In this work, the capacity of different organic amendments to improve water quality and reduce the mobility of metals in mine-tailings was evaluated. A field pilot test was carried out with leaching columns installed on an old Cu mine ore (NW of Spain) which forms part of the PhytoSUDOE network of phytomanaged contaminated field sites (PhytoSUDOE/ Phy2SUDOE Projects (SOE1/P5/E0189 and SOE4/P5/E1021)). Ten columns (1 meter high by 25 cm in diameter) were packed with untreated mine tailings (control) or those treated with organic amendments. Applied amendments were based on different combinations of municipal wastes, bark chippings, biomass fly ash, and nanoparticles like aluminum oxides or ferrihydrite-type iron oxides. During the packing of the columns, rhizon-samplers were installed at different heights (10, 20, and 50 cm) from the top, and pore water samples were obtained by suction. Additionally, in each column, a bottom leachate sample was collected through a valve installed at the bottom of the column. After packing, the columns were sown with grasses. Water samples were analyzed for: pH and redox potential, using combined electrodes; salinity by conductivity meter: bicarbonate by titration, sulfate, nitrate, and chloride, by ion chromatography (Dionex 2000); phosphate by colorimetry with ammonium molybdate/ascorbic acid; Ca, Mg, Fe, Al, Mn, Zn, Cu, Cd, and Pb by flame atomic absorption/emission spectrometry (Perkin Elmer). Porewater and leachate from the control columns (packed with unamended mine tailings) were extremely acidic and had a high concentration of Al, Fe, and Cu. In these columns, no plant development was observed. The application of organic amendments improved soil conditions, which allowed the establishment of a dense cover of grasses in the rest of the columns. The combined effect of soil amendment and plant growth had a positive impact on water quality and reduced mobility of aluminum and heavy metals.Keywords: leaching, organic amendments, phytostabilization, polluted soils
Procedia PDF Downloads 1172350 Study of Biological Denitrification using Heterotrophic Bacteria and Natural Source of Carbon
Authors: Benbelkacem Ouerdia
Abstract:
Heterotrophic denitrification has been proven to be one of the most feasible processes for removing nitrate from wastewater and drinking water. In this process, heterotrophic bacteria use organic carbon for both growth and as an electron source. Underground water pollution by nitrates become alarming in Algeria. A survey carried out revealed that the nitrate concentration is in continual increase. Studies in some region revealed contamination exceeding the recommended permissible dose which is 50 mg/L. Worrying values in the regions of Mascara, Ouled saber, El Eulma, Bouira and Algiers are respectively 72 mg/L, 75 mg/L, 97 mg/L, 102 mg/L, and 158 mg/L. High concentration of nitrate in drinking water is associated with serious health risks. Research on nitrate removal technologies from municipal water supplies is increasing because of nitrate contamination. Biological denitrification enables the transformation of oxidized nitrogen compounds by a wide spectrum of heterotrophic bacteria into harmless nitrogen gas with accompanying carbon removal. Globally, denitrification is commonly employed in biological nitrogen removal processes to enhance water quality The study investigated the valorization of a vegetable residue as a carbon source (dates nodes) in water treatment using the denitrification process. Throughout the study, the effect of inoculums addition, pH, and initial concentration of nitrates was also investigated. In this research, a natural organic substance: dates nodes were investigated as a carbon source in the biological denitrification of drinking water. This material acts as a solid substrate and bio-film carrier. The experiments were carried out in batch processes. Complete denitrification was achieved varied between 80 and 100% according to the type of process used. It was found that the nitrate removal rate based on our results, we concluded that the removal of organic matter and nitrogen compounds depended mainly on the initial concentration of nitrate. The effluent pH was mainly affected by the C/N ratio, where a decrease increases pH.Keywords: biofilm, carbon source, dates nodes, heterotrophic denitrification, nitrate, nitrite
Procedia PDF Downloads 4882349 Valorization of Dates Nodes as a Carbon Source Using Biological Denitrification
Authors: Ouerdia Benbelkacem Belouanas
Abstract:
Heterotrophic denitrification has been proven to be one of the most feasible processes for removing nitrate from waste water and drinking water. In this process, heterotrophic bacteria use organic carbon for both growth and as an electron source. Underground water pollution by nitrates become alarming in Algeria. A survey carried out revealed that the nitrate concentration is in continual increase. Studies in some region revealed contamination exceeding the recommended permissible dose which is 50 mg/L. Worrying values in the regions of Mascara, Ouled saber, El Eulma, Bouira and Algiers are respectively 72 mg/L, 75 mg/L, 97 mg/L, 102 mg/L, and 158 mg/L. High concentration of nitrate in drinking water is associated with serious health risks. Research on nitrate removal technologies from municipal water supplies is increasing because of nitrate contamination. Biological denitrification enables transformation of oxidized nitrogen compounds by a wide spectrum of heterotrophic bacteria into harmless nitrogen gas with accompanying carbon removal. Globally, denitrification is commonly employed in biological nitrogen removal processes to enhance water quality. The study investigated the valorization of a vegetable residue as a carbon source (dates nodes) in water treatment using the denitrification process. Throughout the study, the effect of inoculums addition, pH, and initial concentration of nitrates was also investigated. In this research, a natural organic substance: dates nodes were investigated as a carbon source in the biological denitrification of drinking water. This material acts as a solid substrate and bio-film carrier. The experiments were carried out in batch processes. Complete denitrification was achieved varied between 80 and 100% according to the type of process used. It was found that the nitrate removal rate based on our results, we concluded that the removal of organic matter and nitrogen compounds depended mainly on initial concentration of nitrate. The effluent pH was mainly affected by the C/N ratio, where a decrease increases pH.Keywords: biofilm, carbon source, dates nodes, heterotrophic denitrification, nitrate, nitrite
Procedia PDF Downloads 4232348 Risks of Traditional Practices: Chemical and Health Assessment of Bakhour
Authors: Yehya Elsayed, Sarah Dalibalta, Fareedah Alqtaishat, Ioline Gomes, Nagelle Fernandes
Abstract:
Bakhour or Arabian incense is traditionally used to perfume houses, shops and clothing as part of cultural or religious practices in several Middle Eastern countries. Conventionally, Bakhour consists of a mixture of natural ingredients such as chips of agarwood (oud), musk and sandalwoods that are soaked in scented oil. Bakhour is usually burned by charcoal or by using gas or electric burners to produce the scented smoke. It is necessary to evaluate the impact of such practice on human health and environment especially that the burning of Bakhour is usually done on a regular basis and in closed areas without proper ventilation. Although significant amount of research has been reported in scientific literature on the chemical analysis of various types of incense smoke, unfortunately only very few of them focused specifically on the health impacts of Bakhour. Raw Bakhour samples, their smoke emissions and the ash residue were analyzed to assess the existence of toxic ingredients and their possible influence on health and the environment. Three brands of Bakhour samples were analyzed for the presence of harmful heavy metals and organic compounds. Thermal Desorption Gas Chromatography-Mass Spectrometry (TD-GC-MS) was used to identify organic compounds while Inductively Coupled Plasma (ICP) and Scanning Electron Microscope-Energy Dispersive X-Ray Spectrometer (SEM-EDS) were used to analyze the presence of toxic and heavy metals. Organic compounds from the smoke were collected on specific tenax and activated carbon adsorption tubes. More than 850 chemical compounds were identified. The presence of 19 carcinogens, 23 toxins and 173 irritants were confirmed. Additionally, heavy metals were detected in amounts similar to those present in cigarettes. However, it was noticed that many of the detected compounds in the smoke lacked clinical studies on their health effects which shows the need for further clinical studies to be devoted to this area of study.Keywords: Bakhour, incense smoke, pollution, indoor environment, health risk, chemical analysis
Procedia PDF Downloads 4322347 Chemical and Health Assessment of Bakhour: Risks of Traditional Practices
Authors: Yehya Elsayed, Sarah Dalibalta, Fareedah Alqtaishat, Ioline Gomes, Nagelle Fernandes
Abstract:
Bakhour, or Arabian incense, is traditionally used to perfume houses, shops and clothing as part of cultural or religious practices in several Middle Eastern countries. Conventionally, Bakhour consists of a mixture of natural ingredients such as chips of agarwood (oud), musk and sandalwoods that are soaked in scented oil. Bakhour is usually burned by charcoal or by using gas or electric burners to produce the scented smoke. It is necessary to evaluate the impact of such practice on human health and environment especially that the burning of Bakhour is usually done on a regular basis and in closed areas without proper ventilation. Although significant amount of research has been reported in scientific literature on the chemical analysis of various types of incense smoke, unfortunately, only very few of them focused specifically on the health impacts of Bakhour. Raw Bakhour samples, their smoke emissions and the ash residue were analyzed to assess the existence of toxic ingredients and their possible influence on health and the environment. Three brands of Bakhour samples were analyzed for the presence of harmful heavy metals and organic compounds. Thermal Desorption Gas Chromatography-Mass Spectrometry (TD-GC-MS) was used to identify organic compounds while Inductively Coupled Plasma (ICP) and Scanning Electron Microscope-Energy Dispersive X-Ray Spectrometer (SEM-EDS) were used to analyze the presence of toxic and heavy metals.. Organic compounds from the smoke were collected on specific tenax and activated carbon adsorption tubes. More than 850 chemical compounds were identified. The presence of 19 carcinogens, 23 toxins, and 173 irritants were confirmed. Additionally, heavy metals were detected in amounts similar to those present in cigarettes. However, it was noticed that many of the detected compounds in the smoke lacked clinical studies on their health effects which shows the need for further clinical studies to be devoted to this area of study.Keywords: bakhour, incense smoke, pollution, indoor environment, health risk, chemical analysis
Procedia PDF Downloads 2982346 Biochar-induced Metals Immobilization in the Soil as Affected by Citric Acid
Authors: Md. Shoffikul Islam, Hongqing Hu
Abstract:
Reducing trace elements' mobility and bioavailability through amendment addition, especially biochar (BC), is a cost-effective and efficient method to address their toxicity in the soil environment. However, the low molecular weight organic acids (LMWOAs) in the rhizosphere could affect BC's efficiency to stabilize trace metals as the LMWOAs could either mobilize or fix metals in the soils. Therefore, understanding the BC's and LMWOAs' interaction mechanisms on metals stabilization in the rhizosphere is crucial. The present study explored the impact of BC derived from rice husk and citric acid (CA) and the combination of BC and CA on the redistribution of cadmium (Cd), lead (Pb), and zinc (Zn) among their geochemical forms through incubation experiment. The changes of zeta potential and X-ray diffraction (XRD) pattern of BC and BC-amended soils to investigate the probable mechanisms of trace elements' immobilization by BC under the CA attack were also examined. The rice husk BC at 5% (w/w) was mixed with the air-dry soil (an Anthrosols) contaminated with Cd, Pb, and Zn in the plastic pot. The 2, 5, 10, and 20 mM kg-1 (w/v) of CA were added separately into the pot. All the ingredients were mixed thoroughly with the soil. A control (CK) treatment was also prepared without BC and CA addition. After 7, 15, and 60 days of incubation with 60% (w/v) moisture level at 25 °C, the incubated soils were determined for pH and EC and were sequentially extracted to assess the metals' transformation in soil. The electronegative charges and XRD peaks of BC and BC-amended soils were also measured. Compared to CK, the application of BC, low level of CA (2 mM kg-1 soil) (CA2), and BC plus the low concentration of CA (BC-CA2) considerably declined the acid-soluble Cd, Pb, and Zn in which BC-CA2 was found to be the most effective treatment. The reversed trends were observed concerning the high levels of CA (>5-20 mM kg-1 soil) and the BC plus high concentrations of CA treatments. BC-CA2 changed the highest amounts of acid-soluble and reducible metals to the oxidizable and residual forms with time. The most increased electronegative charges of BC-CA2 indicate its (BC-CA2) highest Cd, Pb, and Zn immobilizing efficiency, probably through metals adsorption and fixation with the negative charge sites. The XRD study revealed the presence of P, O, CO32-, and Cl1- in BC, which might be responsible for the precipitation of CdCO3, pyromorphite, and hopeite in the case of Cd, Pb, and Zn immobilization, respectively. The findings depicted that the low concentration of CA increased metals' stabilization, whereas the high levels of CA enhanced their mobilization. The BC-CA2 emerged as the best amendment among treatments for metals stabilization in contaminated soils.Keywords: Biochar, citric acid, immobilization, trace elements contaminated soil
Procedia PDF Downloads 872345 Biochemical Characterization and Structure Elucidation of a New Cytochrome P450 Decarboxylase
Authors: Leticia Leandro Rade, Amanda Silva de Sousa, Suman Das, Wesley Generoso, Mayara Chagas Ávila, Plinio Salmazo Vieira, Antonio Bonomi, Gabriela Persinoti, Mario Tyago Murakami, Thomas Michael Makris, Leticia Maria Zanphorlin
Abstract:
Alkenes have an economic appeal, especially in the biofuels field, since they are precursors for drop-in biofuels production, which have similar chemical and physical properties to the conventional fossil fuels, with no oxygen in their composition. After the discovery of the first P450 CYP152 OleTJE in 2011, reported with its unique property of decarboxylating fatty acids (FA), by using hydrogen peroxide as a cofactor and producing 1-alkenes as the main product, the scientific and technological interest in this family of enzymes vastly increased. In this context, the present work presents a new decarboxylase (OleTRN) with low similarity with OleTJE (32%), its biochemical characterization, and structure elucidation. As main results, OleTRN presented a high yield of expression and purity, optimum reaction conditions at 35 °C and pH from 6.5 to 8.0, and higher specificity for oleic acid. Besides that, structure-guided mutations were performed and according to the functional characterizations, it was observed that some mutations presented different specificity and chemoselectivity by varying the chain-length of FA substrates from 12 to 20 carbons. These results are extremely interesting from a biotechnological perspective as those characteristics could diversify the applications and contribute to designing better cytochrome P450 decarboxylases. Considering that peroxygenases have the potential activity of decarboxylating and hydroxylating fatty acids and that the elucidation of the intriguing mechanistic involved in the decarboxylation preferential from OleTJE is still a challenge, the elucidation of OleTRN structure and the functional characterizations of OleTRN and its mutants contribute to new information about CYP152. Besides that, the work also contributed to the discovery of a new decarboxylase with a different selectivity profile from OleTJE, which allows a wide range of applications.Keywords: P450, decarboxylases, alkenes, biofuels
Procedia PDF Downloads 2082344 Various Sources of N-3 Polyunsaturated Fatty Acid Supplementation Modulate Mitochondria Membrane Composition and Function
Authors: Wen-Ting Wang, Wei-An Tsai, Rong-Hong Hsieh
Abstract:
Long term taking high fat diet can lead to over production of energy, result in accumulation of body fat, dyslipidemia and increased lipid metabolism in the body. Over metabolism of lipid results in excessive reactive oxygen species and oxidative stress, may also cause mitochondrial dysfunction and cell death. Krill oil, fish oil and linseed oil are good sources of n-3 polyunsaturated fatty acids (PUFA). The present study investigated the effect of high fat diet and various oil rich of n-3 fatty acids on mitochondrial function and cell membrane composition. Six-weeks old male Spraque-Dawley rats were randomly divided into 8 groups including: control group, high fat diet group, low dosage and high dosage krill oil group, low dosage and high dosage fish oil group, and low dosage and high dosage linseed oil group. After 12 weeks of experimental period, the low dosage krill oil, fish oil group and linseed oil group with different dosage prevented mitochondrial dysfunction caused by high fat diet. The supplementation of different oils increased plasma, erythrocyte and mitochondrial n-3/n-6 ratio and further increased the proportion of PUFA in erythrocyte and mitochondrial membrane. It also decreased serum triglyceride (TG) and low density lipoprotein cholesterol (LDL-C) concentration. However, there was no significant change in serum total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), biomarker of liver function, glucose, insulin, homeostasis model assessment-insulin resistance (HOMA-IR) and plasma malonadialdehyde (MDA) concentration when compared with high fat diet group. The supplementation of different sources of n-3 PUFA can maintain mitochondrial function and modulate cell membrane fatty acid composition in high fat diet conditions, and there is a positive relationship between mitochondrial function and mitochondrial membrane composition.Keywords: fish oil, linseed oil, mitochondria, n-3 PUFA
Procedia PDF Downloads 4142343 Organic Farming Profitability: Evidence from South Korea
Authors: Saem Lee, Thanh Nguyen, Hio-Jung Shin, Thomas Koellner
Abstract:
Land-use management has an influence on the provision of ecosystem service in dynamic, agricultural landscapes. Agricultural land use is important for maintaining the productivity and sustainability of agricultural ecosystems. However, in Korea, intensive farming activities in this highland agricultural zone, the upper stream of Soyang has led to contaminated soil caused by over-use pesticides and fertilizers. This has led to decrease in water and soil quality, which has consequences for ecosystem services and human wellbeing. Conventional farming has still high percentage in this area and there is no special measure to prevent low water quality caused by farming activities. Therefore, the adoption of environmentally friendly farming has been considered one of the alternatives that lead to improved water quality and increase in biomass production. Concurrently, farm households with environmentally friendly farming have occupied still low rates. Therefore, our research involved a farm household survey spanning conventional farming, the farm in transition and organic farming in Soyang watershed. Another purpose of our research was to compare economic advantage of the farmers adopting environmentally friendly farming and non-adaptors and to investigate the different factors by logistic regression analysis with socio-economic and benefit-cost ratio variables. The results found that farmers with environmentally friendly farming tended to be younger than conventional farming and farmer in transition. They are similar in terms of gender which was predominately male. Farmers with environmentally friendly farming were more educated and had less farming experience than conventional farming and farmer in transition. Based on the benefit-cost analysis, total costs that farm in transition farmers spent for one year are about two times as much as the sum of costs in environmentally friendly farming. The benefit of organic farmers was assessed with 2,800 KRW per household per year. In logistic regression, the factors having statistical significance are subsidy and district, residence period and benefit-cost ratio. And district and residence period have the negative impact on the practice of environmentally friendly farming techniques. The results of our research make a valuable contribution to provide important information to describe Korean policy-making for agricultural and water management and to consider potential approaches to policy that would substantiate ways beneficial for sustainable resource management.Keywords: organic farming, logistic regression, profitability, agricultural land-use
Procedia PDF Downloads 4062342 Active Filtration of Phosphorus in Ca-Rich Hydrated Oil Shale Ash Filters: The Effect of Organic Loading and Form of Precipitated Phosphatic Material
Authors: Päärn Paiste, Margit Kõiv, Riho Mõtlep, Kalle Kirsimäe
Abstract:
For small-scale wastewater management, the treatment wetlands (TWs) as a low cost alternative to conventional treatment facilities, can be used. However, P removal capacity of TW systems is usually problematic. P removal in TWs is mainly dependent on the physico–chemical and hydrological properties of the filter material. Highest P removal efficiency has been shown trough Ca-phosphate precipitation (i.e. active filtration) in Ca-rich alkaline filter materials, e.g. industrial by-products like hydrated oil shale ash (HOSA), metallurgical slags. In this contribution we report preliminary results of a full-scale TW system using HOSA material for P removal for a municipal wastewater at Nõo site, Estonia. The main goals of this ongoing project are to evaluate: a) the long-term P removal efficiency of HOSA using real waste water; b) the effect of high organic loading rate; c) variable P-loading effects on the P removal mechanism (adsorption/direct precipitation); and d) the form and composition of phosphate precipitates. Onsite full-scale experiment with two concurrent filter systems for treatment of municipal wastewater was established in September 2013. System’s pretreatment steps include septic tank (2 m2) and vertical down-flow LECA filters (3 m2 each), followed by horizontal subsurface HOSA filters (effective volume 8 m3 each). Overall organic and hydraulic loading rates of both systems are the same. However, the first system is operated in a stable hydraulic loading regime and the second in variable loading regime that imitates the wastewater production in an average household. Piezometers for water and perforated sample containers for filter material sampling were incorporated inside the filter beds to allow for continuous in-situ monitoring. During the 18 months of operation the median removal efficiency (inflow to outflow) of both systems were over 99% for TP, 93% for COD and 57% for TN. However, we observed significant differences in the samples collected in different points inside the filter systems. In both systems, we observed development of preferred flow paths and zones with high and low loadings. The filters show formation and a gradual advance of a “dead” zone along the flow path (zone with saturated filter material characterized by ineffective removal rates), which develops more rapidly in the system working under variable loading regime. The formation of the “dead” zone is accompanied by the growth of organic substances on the filter material particles that evidently inhibit the P removal. Phase analysis of used filter materials using X-ray diffraction method reveals formation of minor amounts of amorphous Ca-phosphate precipitates. This finding is supported by ATR-FTIR and SEM-EDS measurements, which also reveal Ca-phosphate and authigenic carbonate precipitation. Our first experimental results demonstrate that organic pollution and loading regime significantly affect the performance of hydrated ash filters. The material analyses also show that P is incorporated into a carbonate substituted hydroxyapatite phase.Keywords: active filtration, apatite, hydrated oil shale ash, organic pollution, phosphorus
Procedia PDF Downloads 2812341 Functional Nanomaterials for Environmental Applications
Authors: S. A. M. Sabrina, Gouget Lammel, Anne Chantal, Chazalviel, Jean Noël, Ozanam François, Etcheberry Arnaud, Tighlit Fatma Zohra, B. Samia, Gabouze Noureddine
Abstract:
The elaboration and characterization of hybrid nano materials give rise to considerable interest due to the new properties that arising. They are considered as an important category of new materials having innovative characteristics by combining the specific intrinsic properties of inorganic compounds (semiconductors) with the grafted organic species. This open the way to improved properties and spectacular applications in various and important fields, especially in the environment. In this work, nano materials based-semiconductors were elaborated by chemical route. The obtained surfaces were grafted with organic functional groups. The functionalization process was optimized in order to confer to the hybrid nano material a good stability as well as the right properties required for the subsequent applications. Different characterization techniques were used to investigate the resulting nano structures, such as SEM, UV-Visible, FTIR, Contact angle and electro chemical measurements. Finally, applications were envisaged in environmental area. The elaborated nano structures were tested for the detection and the elimination of pollutants.Keywords: hybrid materials, porous silicon, peptide, metal detection
Procedia PDF Downloads 5052340 Flocculation on the Treatment of Olive Oil Mill Wastewater: Pre-Treatment
Authors: G. Hodaifa, J. A. Páez, C. Agabo, E. Ramos, J. C. Gutiérrez, A. Rosal
Abstract:
Currently, the continuous two-phase decanter process used for olive oil production is the more internationally widespread. The wastewaters generated from this industry (OMW) is a real environmental problem because of its high organic load. Among proposed treatments for these wastewaters, the advanced oxidation technologies (Fenton process, ozone, photoFenton, etc.) are the most favourable. The direct application of these processes is somewhat expensive. Therefore, the application of a previous stage based on a flocculation-sedimentation operation is of high importance. In this research five commercial flocculants (three cationic, and two anionic) have been used to achieve the separation of phases (liquid clarified-sludge). For each flocculant, different concentrations (0-1000 mg/L) have been studied. In these experiments, sludge volume formed over time and the final water quality were determined. The final removal percentages of total phenols (11.3-25.1%), COD (5.6-20.4%), total carbon (2.3-26.5%), total organic carbon (1.50-23.8%), total nitrogen (1.45-24.8%), and turbidity (27.9-61.4%) were obtained. Also, the variation on the electric conductivity reduction percentage (1-8%) was determined. Finally, the best flocculants with highest removal percentages have been determined (QG2001 and Flocudex CS49).Keywords: flocculants, flocculation, olive oil mill wastewater, water quality
Procedia PDF Downloads 5422339 Geochemical Study of Natural Bitumen, Condensate and Gas Seeps from Sousse Area, Central Tunisia
Authors: Belhaj Mohamed, M. Saidi, N. Boucherab, N. Ouertani, I. Bouazizi, M. Ben Jrad
Abstract:
Natural hydrocarbon seepage has helped petroleum exploration as a direct indicator of gas and/or oil subsurface accumulations. Surface macro-seeps are generally an indication of a fault in an active Petroleum Seepage System belonging to a Total Petroleum System. This paper describes a case study in which multiple analytical techniques were used to identify and characterize trace petroleum-related hydrocarbons and other volatile organic compounds in groundwater samples collected from Sousse aquifer (Central Tunisia). The analytical techniques used for analyses of water samples included gas chromatography-mass spectrometry (GC-MS), capillary GC with flame-ionization detection, Compund Specific Isotope Analysis, Rock Eval Pyrolysis. The objective of the study was to confirm the presence of gasoline and other petroleum products or other volatile organic pollutants in those samples in order to assess the respective implication of each of the potentially responsible parties to the contamination of the aquifer. In addition, the degree of contamination at different depths in the aquifer was also of interest. The oil and gas seeps have been investigated using biomarker and stable carbon isotope analyses to perform oil-oil and oil-source rock correlations. The seepage gases are characterized by high CH4 content, very low δ13CCH4 values (-71,9 ‰) and high C1/C1–5 ratios (0.95–1.0), light deuterium–hydrogen isotope ratios (-198 ‰) and light δ13CC2 and δ13CCO2 values (-23,8‰ and-23,8‰ respectively) indicating a thermogenic origin with the contribution of the biogenic gas. An organic geochemistry study was carried out on the more ten oil seep samples. This study includes light hydrocarbon and biomarkers analyses (hopanes, steranes, n-alkanes, acyclic isoprenoids, and aromatic steroids) using GC and GC-MS. The studied samples show at least two distinct families, suggesting two different types of crude oil origins: the first oil seeps appears to be highly mature, showing evidence of chemical and/or biological degradation and was derived from a clay-rich source rock deposited in suboxic conditions. It has been sourced mainly by the lower Fahdene (Albian) source rocks. The second oil seeps was derived from a carbonate-rich source rock deposited in anoxic conditions, well correlated with the Bahloul (Cenomanian-Turonian) source rock.Keywords: biomarkers, oil and gas seeps, organic geochemistry, source rock
Procedia PDF Downloads 4472338 Role of Natural Products in Drug Discovery of Anti-Biotic and Anti-Cancer Agents
Authors: Sunil Kumar
Abstract:
For many years, small organic molecules derived naturally from microbes and plants have delivered a number of expedient therapeutic drug agents. The search for naturally occurring lead compounds has continued in recent years as well, with the constituents of marine flora and fauna along with those of telluric microorganisms and plants being investigated for their anti-bacterial and anti-cancer activities. It has been observed that such promising lead molecules incline to promptly generate substantial attention among scientists like synthetic organic chemists and biologists. Subsequently, the availability of a given precious natural product sample may be enriched, and it may be possible to determine a preliminary idea of structure-activity relationships to develop synthetic analogues. For instance, anti-tumor drug topotecan is a synthetic chemical compound similar in chemical structure to camptothecin which is found in extracts of Camptotheca acuminate. Similarly, researchers at AstraZeneca discovered anti-biotic pyrrolamide through a fragment-based lead generation approach from kibdelomycin, which is isolated from Staphylococcus aureuss.Keywords: anticancer, antibiotic, lead molecule, natural product, synthetic analogues
Procedia PDF Downloads 1562337 Effects of Branched-Chain Amino Acid Supplementation on Sarcopenic Patients with Liver Cirrhosis
Authors: Deepak Nathiya1, Ramesh Roop Rai, Pratima Singh1, Preeti Raj1, Supriya Suman, Balvir Singh Tomar
Abstract:
Background: Sarcopenia is a catabolic state in liver cirrhosis (LC), accelerated with a breakdown of skeletal muscle to release amino acids which adversely affects survival, health-related quality of life, and response to any underlying disease. The primary objective of the study was to investigate the long-term effect of branched-chain amino acids (BCAA) supplementations on parameters associated with improved prognosis in sarcopenic patients with LC, as well as to evaluate its impact on cirrhotic-related events. Methods: We carried out a 24 week, single-center, randomized, open-label, controlled, two cohort parallel-group intervention trial comparing the efficacy of BCAA against lactoalbumin (L-ALB) on 106 sarcopenic liver cirrhotics. The BCAA (intervention) group was treated with 7.2 g BCAA per whereas, the lactoalbumin group was also given 6.3 g of L-Albumin. The primary outcome was to assess the impact of BCAA on parameters of sarcopenia: muscle mass, muscle strength, and physical performance. The secondary outcomes were to study combined survival and maintenance of liver function changes in laboratory and clinical markers in the duration of six months. Results: Treatment with BCAA leads to significant improvement in sarcopenic parameters: muscle strength, muscle function, and muscle mass. The total cirrhotic-related complications and cumulative event-free survival occurred fewer in the BCAA group than in the L-ALB group. Prognostic markers also improved significantly in the study. Conclusion: The current clinical trial demonstrated that long-term BCAAs supplementation improved sarcopenia and prognostic markers in patients with advanced liver cirrhosis.Keywords: sarcopenia, liver cirrhosis, BCAA, quality of life
Procedia PDF Downloads 1442336 Kinetics and Thermodynamics Adsorption of Phenolic Compounds on Organic-Inorganic Hybrid Mesoporous Material
Authors: Makhlouf Mourad, Messabih Sidi Mohamed, Bouchher Omar, Houali Farida, Benrachedi Khaled
Abstract:
Mesoporous materials are very commonly used as adsorbent materials for removing phenolic compounds. However, the adsorption mechanism of these compounds is still poorly controlled. However, understanding the interactions mesoporous materials/adsorbed molecules is very important in order to optimize the processes of liquid phase adsorption. The difficulty of synthesis is to keep an orderly and cubic pore structure and achieve a homogeneous surface modification. The grafting of Si(CH3)3 was chosen, to transform hydrophilic surfaces hydrophobic surfaces. The aim of this work is to study the kinetics and thermodynamics of two volatile organic compounds VOC phenol (PhOH) and P hydroxy benzoic acid (4AHB) on a mesoporous material of type MCM-48 grafted with an organosilane of the Trimethylchlorosilane (TMCS) type, the material thus grafted or functionalized (hereinafter referred to as MCM-48-G). In a first step, the kinetic and thermodynamic study of the adsorption isotherms of each of the VOCs in mono-solution was carried out. In a second step, a similar study was carried out on a mixture of these two compounds. Kinetic models (pseudo-first order, pseudo-second order) were used to determine kinetic adsorption parameters. The thermodynamic parameters of the adsorption isotherms were determined by the adsorption models (Langmuir, Freundlich). The comparative study of adsorption of PhOH and 4AHB proved that MCM-48-G had a high adsorption capacity for PhOH and 4AHB; this may be related to the hydrophobicity created by the organic function of TMCS in MCM-48-G. The adsorption results for the two compounds using the Freundlich and Langmuir models show that the adsorption of 4AHB was higher than PhOH. The values obtained by the adsorption thermodynamics show that the adsorption interactions for our sample with the phenol and 4AHB are of a physical nature. The adsorption of our VOCs on the MCM-48 (G) is a spontaneous and exothermic process.Keywords: adsorption, kinetics, isotherm, mesoporous materials, Phenol, P-hydroxy benzoique acid
Procedia PDF Downloads 2132335 Transfer Rate of Organic Water Contaminants through a Passive Sampler Membrane of Polyethersulfone (PES)
Authors: Hamidreza Sharifan, Audra Morse
Abstract:
Accurate assessments of contaminant concentrations based on traditional grab sampling methods are not always possible. Passive samplers offer an attractive alternative to traditional sampling methods that overcomes these limitations. The POCIS approach has been used as a screening tool for determining the presence/absence, possible sources and relative amounts of organic compounds at field sites. The objective for the present research is on mass transfer of five water contaminants (atrazine, caffeine, bentazon, ibuprofen, atenolol) through the Water Boundary Layer (WBL) and membrane. More specific objectives followed by establishing a relationship between the sampling rate and water solubility of the compounds, as well as comparing the molecular weight of the compounds and concentration of the compounds at the time of equilibrium. To determine whether water boundary layer effects transport rate through the membrane is another main objective in this paper. After GC mass analysis of compounds, regarding the WBL effect in this experiment, Sherwood number for the experimental tank developed. A close relationship between feed concentration of compound and sampling rate has been observed.Keywords: passive sampler, water contaminants, PES-transfer rate, contaminant concentrations
Procedia PDF Downloads 4592334 Levels of Heavy Metals and Arsenic in Sediment and in Clarias Gariepinus, of Lake Ngami
Authors: Nashaat Mazrui, Oarabile Mogobe, Barbara Ngwenya, Ketlhatlogile Mosepele, Mangaliso Gondwe
Abstract:
Over the last several decades, the world has seen a rapid increase in activities such as deforestation, agriculture, and energy use. Subsequently, trace elements are being deposited into our water bodies, where they can accumulate to toxic levels in aquatic organisms and can be transferred to humans through fish consumption. Thus, though fish is a good source of essential minerals and omega-3 fatty acids, it can also be a source of toxic elements. Monitoring trace elements in fish is important for the proper management of aquatic systems and the protection of human health. The aim of this study was to determine concentrations of trace elements in sediment and muscle tissues of Clarias gariepinus at Lake Ngami, in the Okavango Delta in northern Botswana, during low floods. The fish were bought from local fishermen, and samples of muscle tissue were acid-digested and analyzed for iron, zinc, copper, manganese, molybdenum, nickel, chromium, cadmium, lead, and arsenic using inductively coupled plasma optical emission spectroscopy (ICP-OES). Sediment samples were also collected and analyzed for the elements and for organic matter content. Results show that in all samples, iron was found in the greatest amount while cadmium was below the detection limit. Generally, the concentrations of elements in sediment were higher than in fish except for zinc and arsenic. While the concentration of zinc was similar in the two media, arsenic was almost 3 times higher in fish than sediment. To evaluate the risk to human health from fish consumption, the target hazard quotient (THQ) and cancer risk for an average adult in Botswana, sub-Saharan Africa, and riparian communities in the Okavango Delta was calculated for each element. All elements were found to be well below regulatory limits and do not pose a threat to human health except arsenic. The results suggest that other benthic feeding fish species could potentially have high arsenic levels too. This has serious implications for human health, especially riparian households to whom fish is a key component of food and nutrition security.Keywords: Arsenic, African sharp tooth cat fish, Okavango delta, trace elements
Procedia PDF Downloads 1962333 Assessment of Bioaerosol and Microbial Volatile Organic Compounds in Different Sections of Library
Authors: Himanshu Lal, Bipasha Ghosh, Arun Srivastava
Abstract:
A pilot study of indoor air quality in terms of bioaerosol (fungus and bacteria) and few selective microbial volatile organic compounds (MVOCs) was carried out in different indoor sections of a library for two seasons, namely monsoon and post monsoon. Bioaerosol sampling was carried out using Anderson six stage viable sampler at a flow rate of 28.3 L/min while MVOCs were collected on activated charcoal tubes ORBOTM 90 Carboxen 564.Collected MVOCs were desorbed using carbon disulphide (CS2) and analysed by GC-FID. Microscopic identification for fungus was only carried out. Surface dust was collected by sterilised buds and cultured to identify fungal contaminants. Unlike bacterial size distribution, fungal bioaerosol concentration was found to be highest in the fourth stage in different sections of the library. In post monsoon season both fungal bioaerosol (710 to 3292cfu/m3) and bacterial bioaerosol (298 to 1475cfu/m3) were fund at much greater concentration than in monsoon. In monsoon season unlike post monsoon, I/O ratio for both the bioaerosol fractions was more than one. Rain washout could be the reason of lower outdoor concentration in monsoon season. On the contrary most of the MVOCs namely 1-hexene, 1-pentanol and 1-octen-3-ol were found in the monsoon season instead of post monsoon season with the highest being 1-hexene with 7.09µg/m3 concentration. Among the six identified fungal bioaerosol Aspergillus, Cladosporium and Penicillium were found in maximum concentration while Aspergillus niger, Curvuleria lunata, Cladosporium cladosporioides and Penicillium sp., was indentified in surface dust samples. According to regression analysis apart from environmental factors other factors also played an important role. Thus apart from outdoor infiltration and human sources, accumulated surface dust mostly on organic materials like books, wooden furniture and racks can be attributed to being one of the major sources of both fungal bioaerosols as well as MVOCs found in the library.Keywords: bacteria, Fungi, indoor air, MVOCs
Procedia PDF Downloads 3232332 Corrosion of Steel in Relation with Hydrogen Activity of Concentrated HClO4 Media: Realisation Sensor and Reference Electrode
Authors: B. Hammouti, H. Oudda, A. Benabdellah, A. Benayada, A. Aouniti
Abstract:
Corrosion behaviour of carbon steel was studied in various concentrated HClO4 solutions. To explain the acid attack in relation of H+ activity, new sensor was realised: two carbon paste electrodes (CPE) were constructed by incorporating ferrocene (Fc) and orthoquinone into the carbon paste matrix and crossed by weak current to stabilize potential difference. The potentiometric method at imposed weak current between these two electrodes permits the in situ determination of both concentration and acidity level of various concentrated HClO4 solutions. The different factors affecting the potential at imposed current as current intensity, temperature and H+ ion concentration are studied. The potentials measured between ferrocene and chloranil electrodes are directly linked to the acid concentration. The acidity Ri(H) function defined represents the determination of the H+ activity and constitutes the extend of pH is concentrated acid solutions. Ri(H) has been determined and compared to Strehlow Ro(H), Janata HGF and Hammett Ho functions. The collected data permit to give a scale of strength of mineral concentrated acids at a given concentration. Ri(H) is numerically equal to the thermodynamic Ro(H), but deviated from Hammett functions based on indicator determination. The CPE electrode with inserted ferrocene in presence of ferricinium (Fc+) ion in concentrated HClO4 at various concentrations is realized without junction potential and may plays the role of a practical reference electrode (FRE) in concentrated acids. Fc+ was easily prepared in biphasic medium HClO4-acid by the quantitative oxidation of ferrocene by the ortho-chloranil (oQ). Potential of FRE is stable with time. The variation of equilibrium potential of the interface Fc/ Fc+ at various concentrations of Fc+ (10-4 - 2 10-2 M) obeyed to the Nernst equation with a slope 0.059 Volt per decade. Corrosion rates obtained by weight loss and electrochemical techniques were then easily linked to acidity level.Keywords: ferrocene, strehlow, concentrated acid, corrosion, Generalised pH, sensor carbon paste electrode
Procedia PDF Downloads 3612331 Engineering of Reagentless Fluorescence Biosensors Based on Single-Chain Antibody Fragments
Authors: Christian Fercher, Jiaul Islam, Simon R. Corrie
Abstract:
Fluorescence-based immunodiagnostics are an emerging field in biosensor development and exhibit several advantages over traditional detection methods. While various affinity biosensors have been developed to generate a fluorescence signal upon sensing varying concentrations of analytes, reagentless, reversible, and continuous monitoring of complex biological samples remains challenging. Here, we aimed to genetically engineer biosensors based on single-chain antibody fragments (scFv) that are site-specifically labeled with environmentally sensitive fluorescent unnatural amino acids (UAA). A rational design approach resulted in quantifiable analyte-dependent changes in peak fluorescence emission wavelength and enabled antigen detection in vitro. Incorporation of a polarity indicator within the topological neighborhood of the antigen-binding interface generated a titratable wavelength blueshift with nanomolar detection limits. In order to ensure continuous analyte monitoring, scFv candidates with fast binding and dissociation kinetics were selected from a genetic library employing a high-throughput phage display and affinity screening approach. Initial rankings were further refined towards rapid dissociation kinetics using bio-layer interferometry (BLI) and surface plasmon resonance (SPR). The most promising candidates were expressed, purified to homogeneity, and tested for their potential to detect biomarkers in a continuous microfluidic-based assay. Variations of dissociation kinetics within an order of magnitude were achieved without compromising the specificity of the antibody fragments. This approach is generally applicable to numerous antibody/antigen combinations and currently awaits integration in a wide range of assay platforms for one-step protein quantification.Keywords: antibody engineering, biosensor, phage display, unnatural amino acids
Procedia PDF Downloads 1502330 Polymer Impregnated Sulfonated Carbon Composite as a Solid Acid Catalyst for the Dehydration of Xylose to Furfural
Authors: Praveen K. Khatri, Neha Karanwal, Savita Kaul, Suman L. Jain
Abstract:
Conversion of biomass through green chemical routes is of great industrial importance as biomass is considered to be most widely available inexpensive renewable resource that can be used as a raw material for the production of bio fuel and value-added organic products. In this regard, acid catalyzed dehydration of biomass derived pentose sugar (mainly D-xylose) to furfural is a process of tremendous research interest in current scenario due to the wider industrial applications of furfural. Furfural is an excellent organic solvent for refinement of lubricants and separation of butadiene from butene mixture in synthetic rubber fabrication. In addition it also serve as a promising solvent for many organic materials, such as resins, polymers and also used as a building block for synthesis of various valuable chemicals such as furfuryl alcohol, furan, pharmaceutical, agrochemicals and THF. Here in a sulfonated polymer impregnated carbon composite solid acid catalyst (P-C-SO3H) was prepared by the pyrolysis of a polymer matrix impregnated with glucose followed by its sulfonation and used for the dehydration of xylose to furfural. The developed catalyst exhibited excellent activity and provided almost quantitative conversion of xylose with the selective synthesis of furfural. The higher catalytic activity of P-C-SO3H may be due to the more even distribution of polycyclic aromatic hydrocarbons generated from incomplete carbonization of glucose along the polymer matrix network, leading to more available sites for sulfonation which resulted in greater sulfonic acid density in P-C-SO3H as compared to sulfonated carbon catalyst (C-SO3H). In conclusion, we have demonstrated sulfonated polymer impregnated carbon composite (P-C-SO3H) as an efficient and selective solid acid catalyst for the dehydration of xylose to furfural. After completion of the reaction, the catalyst was easily recovered and reused for several runs without noticeable loss in its activity and selectivity.Keywords: Solid acid , Biomass conversion, Xylose Dehydration, Heterogeneous catalyst
Procedia PDF Downloads 4142329 Inkjet Printed Silver Nanowire Network as Semi-Transparent Electrode for Organic Photovoltaic Devices
Authors: Donia Fredj, Marie Parmentier, Florence Archet, Olivier Margeat, Sadok Ben Dkhil, Jorg Ackerman
Abstract:
Transparent conductive electrodes (TCEs) or transparent electrodes (TEs) are a crucial part of many electronic and optoelectronic devices such as touch panels, liquid crystal displays (LCDs), organic light-emitting diodes (OLEDs), solar cells, and transparent heaters. The indium tin oxide (ITO) electrode is the most widely utilized transparent electrode due to its excellent optoelectrical properties. However, the drawbacks of ITO, such as the high cost of this material, scarcity of indium, and the fragile nature, limit the application in large-scale flexible electronic devices. Importantly, flexibility is becoming more and more attractive since flexible electrodes have the potential to open new applications which require transparent electrodes to be flexible, cheap, and compatible with large-scale manufacturing methods. So far, several materials as alternatives to ITO have been developed, including metal nanowires, conjugated polymers, carbon nanotubes, graphene, etc., which have been extensively investigated for use as flexible and low-cost electrodes. Among them, silver nanowires (AgNW) are one of the promising alternatives to ITO thanks to their excellent properties, high electrical conductivity as well as desirable light transmittance. In recent years, inkjet printing became a promising technique for large-scale printed flexible and stretchable electronics. However, inkjet printing of AgNWs still presents many challenges. In this study, a synthesis of stable AgNW that could compete with ITO was developed. This material was printed by inkjet technology directly on a flexible substrate. Additionally, we analyzed the surface microstructure, optical and electrical properties of the printed AgNW layers. Our further research focused on the study of all inkjet-printed organic modules with high efficiency.Keywords: transparent electrodes, silver nanowires, inkjet printing, formulation of stable inks
Procedia PDF Downloads 2282328 Long-Term Conservation Tillage Impact on Soil Properties and Crop Productivity
Authors: Danute Karcauskiene, Dalia Ambrazaitiene, Regina Skuodiene, Monika Vilkiene, Regina Repsiene, Ieva Jokubauskaite
Abstract:
The main ambition for nowadays agriculture is to get the economically effective yield and to secure the soil ecological sustainability. According to the effect on the main soil quality indexes, tillage systems may be separated into two types, conventional and conservation tillage. The goal of this study was to determine the impact of conservation and conventional primary soil tillage methods and soil fertility improvement measures on soil properties and crop productivity. Methods: The soil of the experimental site is Dystric Glossic Retisol (WRB 2014) with texture of sandy loam. The trial was established in 2003 in the experimental field of crop rotation of Vėžaičiai Branch of Lithuanian Research Centre for Agriculture and Forestry. Trial factors and treatments: factor A- primary soil tillage in (autumn): deep ploughing (20-25cm), shallow ploughing (10-12cm), shallow ploughless tillage (8-10cm); factor B – soil fertility improvement measures: plant residues, plant residues + straw, green manure 1st cut + straw, farmyard manure 40tha-1 + straw. The four - course crop rotation consisted of red clover, winter wheat, spring rape and spring barley with undersown. Results: The tillage had no statistically significant effect on topsoil (0-10 cm) pHKCl level, it was 5.5 - 5.7. During all experiment period, the highest soil pHKCl level (5.65) was in the shallow ploughless tillage. The organic fertilizers particularly the biomass of grass and farmyard manure had tendency to increase the soil pHKCl. The content of plant - available phosphorus and potassium significantly increase in the shallow ploughing compared with others tillage systems. The farmyard manure increases those elements in whole arable layer. The dissolved organic carbon concentration was significantly higher in the 0 - 10 cm soil layer in the shallow ploughless tillage compared with deep ploughing. After the incorporation of clover biomass and farmyard manure the concentration of dissolved organic carbon increased in the top soil layer. During all experiment period the largest amount of water stable aggregates was determined in the soil where the shallow ploughless tillage was applied. It was by 12% higher compared with deep ploughing. During all experiment time, the soil moisture was higher in the shallow ploughing and shallow ploughless tillage (9-27%) compared to deep ploughing. The lowest emission of CO2 was determined in the deep ploughing soil. The highest rate of CO2 emission was in shallow ploughless tillage. The addition of organic fertilisers had a tendency to increase the CO2 emission, but there was no statistically significant effect between the different types of organic fertilisers. The crop yield was larger in the deep ploughing soil compared to the shallow and shallow ploughless tillage.Keywords: reduced tillage, soil structure, soil pH, biological activity, crop productivity
Procedia PDF Downloads 2742327 Metal-Organic Frameworks for Innovative Functional Textiles
Authors: Hossam E. Emam
Abstract:
Metal–organic frameworks (MOFs) are new hybrid materials investigated from 15 years ago; they synthesized from metals as inorganic center joined with multidentate organic linkers to form a 1D, 2D or 3D network structure. MOFs have unique properties such as pore crystalline structure, large surface area, chemical tenability and luminescent characters. These significant properties enable MOFs to be applied in many fields such like gas storage, adsorption/separation, drug delivery/biomedicine, catalysis, polymerization, magnetism and luminescence applications. Recently, many of published reports interested in superiority of MOFs for functionalization of textiles to exploit the unique properties of MOFs. Incorporation of MOFs is found to acquire the textiles some additional formidable functions to be used in considerable fields such like water treatment and fuel purification. Modification of textiles with MOFs could be easily performed by two main techniques; Ex-situ (preparation of MOFs then applied onto textiles) and in-situ (ingrowth of MOFs within textiles networks). Uniqueness of MOFs could be assimilated in acquirement of decorative color, antimicrobial character, anti-mosquitos character, ultraviolet radiation protective, self-clean, photo-luminescent and sensor character. Additionally, textiles treatment with MOFs make it applicable as filter in the adsorption of toxic gases, hazardous materials (such as pesticides, dyes and aromatics molecules) and fuel purification (such as removal of oxygenated, nitrogenated and sulfur compounds). Also, the porous structure of MOFs make it mostly utilized in control release of insecticides from the surface of the textile. Moreover, MOF@textiles as recyclable materials lead it applicable as photo-catalyst composites for photo-degradation of different dyes in the day light. Therefore, MOFs is extensively considered for imparting textiles with formidable properties as ingeniousness way for textile functionalization.Keywords: MOF, functional textiles, water treatment, fuel purification, environmental applications
Procedia PDF Downloads 1522326 Some Characteristics Based on Literature, for an Ideal Disinfectant
Authors: Saimir Heta, Ilma Robo, Rialda Xhizdari, Kers Kapaj
Abstract:
The stability of an ideal disinfectant should be constant regardless of the change in the atmospheric conditions of the environment where it is kept. If the conditions such as temperature or humidity change, it is understood that it will also be necessary to approach possible changes in the holding materials such as plastic or glass bottles with the aim of protecting, for example, the disinfectant from the excessive lighting of the environment, which can also be translated as an increase in the temperature of disinfectant as a fluid. Material and Methods: In this study, an attempt was made to find the most recent published data about the best possible combination of disinfectants indicated for use after dental procedures. This purpose of the study was realized by comparing the basic literature that is studied in the field of dentistry by students with the most published data in the literature of recent years about this topic. Each disinfectant is represented by a number called the disinfectant count, in which different factors can influence the increase or reduction of variables whose production remains a specific statistic for a specific disinfectant. Results: The changes in the atmospheric conditions where the disinfectant is deposited and stored in the environment are known to affect the stability of the disinfectant as a fluid; this fact is known and even cited in the leaflets accompanying the manufactured boxes of disinfectants. It is these cares, in the form of advice, which are based not only on the preservation of the disinfectant but also on the application in order to have the desired clinical result. Aldehydes have the highest constant among the types of disinfectants, followed by acids. The lowest value of the constant belongs to the class of glycols, the predecessors of which were the halogens, in which class there are some representatives with disinfection applications. The class of phenols and acids have almost the same intervals of constants. Conclusions: If the goal were to find the ideal disinfectant among the large variety of disinfectants produced, a good starting point would be to find something unchanging or a fixed, unchanging element on the basis of which the comparison can be made properties of different disinfectants. Precisely based on the results of this study, the role of the specific constant according to the specific disinfectant is highlighted. Finding an ideal disinfectant, like finding a medication or the ideal antibiotic, is an ongoing but unattainable goal.Keywords: different disinfectants, ideal, specific constant, dental procedures
Procedia PDF Downloads 792325 Treatment of Pharmaceutical Industrial Effluent by Catalytic Ozonation in a Semi-Batch Reactor: Kinetics, Mass Transfer and Improved Biodegradability Studies
Authors: Sameena Malik, Ghosh Prakash, Sandeep Mudliar, Vishal Waindeskar, Atul Vaidya
Abstract:
In this study, the biodegradability enhancement along with COD color and toxicity removal of pharmaceutical effluent by O₃, O₃/Fe²⁺, O₃/nZVI processes has been evaluated. The nZVI particles were synthesized and characterized by XRD and SEM analysis. Kinetic model was reasonably developed to select the ozone doses to be applied based on the ozonation kinetic and mass transfer coefficient values. Nano catalytic ozonation process (O₃/nZVI) effectively enhanced the biodegradability (BI=BOD₅/COD) of pharmaceutical effluent up to 0.63 from 0.18 of control with a COD, color and toxicity removal of 62.3%, 93%, and 75% respectively compared to O₃, O₃/Fe²⁺ pretreatment processes. From the GC-MS analysis, 8 foremost organic compounds were predominantly detected in the pharmaceutical effluent. The disappearance of the corresponding GC-MS spectral peaks during catalyzed ozonation process indicated the degradation of the effluent. The changes in the FTIR spectra confirms the transformation/destruction of the organic compounds present in the effluent to new compounds. Subsequent aerobic biodegradation of pretreated effluent resulted in biodegradation rate enhancement by 5.31, 2.97, and 1.22 times for O₃, O₃/Fe²⁺ and O₃/nZVI processes respectively.Keywords: iron nanoparticles, pharmaceutical effluent, ozonation, kinetics, mass transfer
Procedia PDF Downloads 2722324 Computation of Natural Logarithm Using Abstract Chemical Reaction Networks
Authors: Iuliia Zarubiieva, Joyun Tseng, Vishwesh Kulkarni
Abstract:
Recent researches has focused on nucleic acids as a substrate for designing biomolecular circuits for in situ monitoring and control. A common approach is to express them by a set of idealised abstract chemical reaction networks (ACRNs). Here, we present new results on how abstract chemical reactions, viz., catalysis, annihilation and degradation, can be used to implement circuit that accurately computes logarithm function using the method of Arithmetic-Geometric Mean (AGM), which has not been previously used in conjunction with ACRNs.Keywords: chemical reaction networks, ratio computation, stability, robustness
Procedia PDF Downloads 1752323 A Novel Nanocomposite Membrane Designed for the Treatment of Oil/Gas Produced Water
Authors: Zhaoyang Liu, Detao Qin, Darren Delai Sun
Abstract:
The onshore production of oil and gas (for example, shale gas) generates large quantities of wastewater, referred to be ‘produced water’, which contains high contents of oils and salts. The direct discharge of produced water, if not appropriately treated, can be toxic to the environment and human health. Membrane filtration has been deemed as an environmental-friendly and cost-effective technology for treating oily wastewater. However, conventional polymeric membranes have their drawbacks of either low salt rejection rate or high membrane fouling tendency when treating oily wastewater. Recent years, forward osmosis (FO) membrane filtration has emerged as a promising technology with its unique advantages of low operation pressure and less membrane fouling tendency. However, until now there is still no report about FO membranes specially designed and fabricated for treating the oily and salty produced water. In this study, a novel nanocomposite FO membrane was developed specially for treating oil- and salt-polluted produced water. By leveraging the recent advance of nanomaterials and nanotechnology, this nanocomposite FO membrane was designed to be made of double layers: an underwater oleophobic selective layer on top of a nanomaterial infused polymeric support layer. Wherein, graphene oxide (GO) nanosheets were selected to add into the polymeric support layer because adding GO nanosheets can optimize the pore structures of the support layer, thus potentially leading to high water flux for FO membranes. In addition, polyvinyl alcohol (PVA) hydrogel was selected as the selective layer because hydrated and chemically-crosslinked PVA hydrogel is capable of simultaneously rejecting oil and salt. After nanocomposite FO membranes were fabricated, the membrane structures were systematically characterized with the instruments of TEM, FESEM, XRD, ATR-FTIR, surface zeta-potential and Contact angles (CA). The membrane performances for treating produced waters were tested with the instruments of TOC, COD and Ion chromatography. The working mechanism of this new membrane was also analyzed. Very promising experimental results have been obtained. The incorporation of GO nanosheets can reduce internal concentration polarization (ICP) effect in the polymeric support layer. The structural parameter (S value) of the new FO membrane is reduced by 23% from 265 ± 31 μm to 205 ± 23 μm. The membrane tortuosity (τ value) is decreased by 20% from 2.55 ± 0.19 to 2.02 ± 0.13 μm, which contributes to the decrease of S value. Moreover, the highly-hydrophilic and chemically-cross-linked hydrogel selective layer present high antifouling property under saline oil/water emulsions. Compared with commercial FO membrane, this new FO membrane possesses three times higher water flux, higher removal efficiencies for oil (>99.9%) and salts (>99.7% for multivalent ions), and significantly lower membrane fouling tendency (<10%). To our knowledge, this is the first report of a nanocomposite FO membrane with the combined merits of high salt rejection, high oil repellency and high water flux for treating onshore oil/gas produced waters. Due to its outstanding performance and ease of fabrication, this novel nanocomposite FO membrane possesses great application potential in wastewater treatment industry.Keywords: nanocomposite, membrane, polymer, graphene oxide
Procedia PDF Downloads 253