Search results for: lung computed tomography (CT) images
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3758

Search results for: lung computed tomography (CT) images

2768 Principle Component Analysis on Colon Cancer Detection

Authors: N. K. Caecar Pratiwi, Yunendah Nur Fuadah, Rita Magdalena, R. D. Atmaja, Sofia Saidah, Ocky Tiaramukti

Abstract:

Colon cancer or colorectal cancer is a type of cancer that attacks the last part of the human digestive system. Lymphoma and carcinoma are types of cancer that attack human’s colon. Colon cancer causes deaths about half a million people every year. In Indonesia, colon cancer is the third largest cancer case for women and second in men. Unhealthy lifestyles such as minimum consumption of fiber, rarely exercising and lack of awareness for early detection are factors that cause high cases of colon cancer. The aim of this project is to produce a system that can detect and classify images into type of colon cancer lymphoma, carcinoma, or normal. The designed system used 198 data colon cancer tissue pathology, consist of 66 images for Lymphoma cancer, 66 images for carcinoma cancer and 66 for normal / healthy colon condition. This system will classify colon cancer starting from image preprocessing, feature extraction using Principal Component Analysis (PCA) and classification using K-Nearest Neighbor (K-NN) method. Several stages in preprocessing are resize, convert RGB image to grayscale, edge detection and last, histogram equalization. Tests will be done by trying some K-NN input parameter setting. The result of this project is an image processing system that can detect and classify the type of colon cancer with high accuracy and low computation time.

Keywords: carcinoma, colorectal cancer, k-nearest neighbor, lymphoma, principle component analysis

Procedia PDF Downloads 205
2767 Electroencephalography (EEG) Analysis of Alcoholic and Control Subjects Using Multiscale Permutation Entropy

Authors: Lal Hussain, Wajid Aziz, Sajjad Ahmed Nadeem, Saeed Arif Shah, Abdul Majid

Abstract:

Brain electrical activity as reflected in Electroencephalography (EEG) have been analyzed and diagnosed using various techniques. Among them, complexity measure, nonlinearity, disorder, and unpredictability play vital role due to the nonlinear interconnection between functional and anatomical subsystem emerged in brain in healthy state and during various diseases. There are many social and economical issues of alcoholic abuse as memory weakness, decision making, impairments, and concentrations etc. Alcoholism not only defect the brains but also associated with emotional, behavior, and cognitive impairments damaging the white and gray brain matters. A recently developed signal analysis method i.e. Multiscale Permutation Entropy (MPE) is proposed to estimate the complexity of long-range temporal correlation time series EEG of Alcoholic and Control subjects acquired from University of California Machine Learning repository and results are compared with MSE. Using MPE, coarsed grained series is first generated and the PE is computed for each coarsed grained time series against the electrodes O1, O2, C3, C4, F2, F3, F4, F7, F8, Fp1, Fp2, P3, P4, T7, and T8. The results computed against each electrode using MPE gives higher significant values as compared to MSE as well as mean rank differences accordingly. Likewise, ROC and Area under the ROC also gives higher separation against each electrode using MPE in comparison to MSE.

Keywords: electroencephalogram (EEG), multiscale permutation entropy (MPE), multiscale sample entropy (MSE), permutation entropy (PE), mann whitney test (MMT), receiver operator curve (ROC), complexity measure

Procedia PDF Downloads 495
2766 In Silico Exploration of Quinazoline Derivatives as EGFR Inhibitors for Lung Cancer: A Multi-Modal Approach Integrating QSAR-3D, ADMET, Molecular Docking, and Molecular Dynamics Analyses

Authors: Mohamed Moussaoui

Abstract:

A series of thirty-one potential inhibitors targeting the epidermal growth factor receptor kinase (EGFR), derived from quinazoline, underwent 3D-QSAR analysis using CoMFA and CoMSIA methodologies. The training and test sets of quinazoline derivatives were utilized to construct and validate the QSAR models, respectively, with dataset alignment performed using the lowest energy conformer of the most active compound. The best-performing CoMFA and CoMSIA models demonstrated impressive determination coefficients, with R² values of 0.981 and 0.978, respectively, and Leave One Out cross-validation determination coefficients, Q², of 0.645 and 0.729, respectively. Furthermore, external validation using a test set of five compounds yielded predicted determination coefficients, R² test, of 0.929 and 0.909 for CoMFA and CoMSIA, respectively. Building upon these promising results, eighteen new compounds were designed and assessed for drug likeness and ADMET properties through in silico methods. Additionally, molecular docking studies were conducted to elucidate the binding interactions between the selected compounds and the enzyme. Detailed molecular dynamics simulations were performed to analyze the stability, conformational changes, and binding interactions of the quinazoline derivatives with the EGFR kinase. These simulations provided deeper insights into the dynamic behavior of the compounds within the active site. This comprehensive analysis enhances the understanding of quinazoline derivatives as potential anti-cancer agents and provides valuable insights for lead optimization in the early stages of drug discovery, particularly for developing highly potent anticancer therapeutics

Keywords: 3D-QSAR, CoMFA, CoMSIA, ADMET, molecular docking, quinazoline, molecular dynamic, egfr inhibitors, lung cancer, anticancer

Procedia PDF Downloads 50
2765 Improving Flash Flood Forecasting with a Bayesian Probabilistic Approach: A Case Study on the Posina Basin in Italy

Authors: Zviad Ghadua, Biswa Bhattacharya

Abstract:

The Flash Flood Guidance (FFG) provides the rainfall amount of a given duration necessary to cause flooding. The approach is based on the development of rainfall-runoff curves, which helps us to find out the rainfall amount that would cause flooding. An alternative approach, mostly experimented with Italian Alpine catchments, is based on determining threshold discharges from past events and on finding whether or not an oncoming flood has its magnitude more than some critical discharge thresholds found beforehand. Both approaches suffer from large uncertainties in forecasting flash floods as, due to the simplistic approach followed, the same rainfall amount may or may not cause flooding. This uncertainty leads to the question whether a probabilistic model is preferable over a deterministic one in forecasting flash floods. We propose the use of a Bayesian probabilistic approach in flash flood forecasting. A prior probability of flooding is derived based on historical data. Additional information, such as antecedent moisture condition (AMC) and rainfall amount over any rainfall thresholds are used in computing the likelihood of observing these conditions given a flash flood has occurred. Finally, the posterior probability of flooding is computed using the prior probability and the likelihood. The variation of the computed posterior probability with rainfall amount and AMC presents the suitability of the approach in decision making in an uncertain environment. The methodology has been applied to the Posina basin in Italy. From the promising results obtained, we can conclude that the Bayesian approach in flash flood forecasting provides more realistic forecasting over the FFG.

Keywords: flash flood, Bayesian, flash flood guidance, FFG, forecasting, Posina

Procedia PDF Downloads 137
2764 Neuron Imaging in Lateral Geniculate Nucleus

Authors: Sandy Bao, Yankang Bao

Abstract:

The understanding of information that is being processed in the brain, especially in the lateral geniculate nucleus (LGN), has been proven challenging for modern neuroscience and for researchers with a focus on how neurons process signals and images. In this paper, we are proposing a method to image process different colors within different layers of LGN, that is, green information in layers 4 & 6 and red & blue in layers 3 & 5 based on the surface dimension of layers. We take into consideration the images in LGN and visual cortex, and that the edge detected information from the visual cortex needs to be considered in order to return back to the layers of LGN, along with the image in LGN to form the new image, which will provide an improved image that is clearer, sharper, and making it easier to identify objects in the image. Matrix Laboratory (MATLAB) simulation is performed, and results show that the clarity of the output image has significant improvement.

Keywords: lateral geniculate nucleus, matrix laboratory, neuroscience, visual cortex

Procedia PDF Downloads 280
2763 Analysis of Aspergillus fumigatus IgG Serologic Cut-Off Values to Increase Diagnostic Specificity of Allergic Bronchopulmonary Aspergillosis

Authors: Sushmita Roy Chowdhury, Steve Holding, Sujoy Khan

Abstract:

The immunogenic responses of the lung towards the fungus Aspergillus fumigatus may range from invasive aspergillosis in the immunocompromised, fungal ball or infection within a cavity in the lung in those with structural lung lesions, or allergic bronchopulmonary aspergillosis (ABPA). Patients with asthma or cystic fibrosis are particularly predisposed to ABPA. There are consensus guidelines that have established criteria for diagnosis of ABPA, but uncertainty remains on the serologic cut-off values that would increase the diagnostic specificity of ABPA. We retrospectively analyzed 80 patients with severe asthma and evidence of peripheral blood eosinophilia ( > 500) over the last 3 years who underwent all serologic tests to exclude ABPA. Total IgE, specific IgE and specific IgG levels against Aspergillus fumigatus were measured using ImmunoCAP Phadia-100 (Thermo Fisher Scientific, Sweden). The Modified ISHAM working group 2013 criteria (obligate criteria: asthma or cystic fibrosis, total IgE > 1000 IU/ml or > 417 kU/L and positive specific IgE Aspergillus fumigatus or skin test positivity; with ≥ 2 of peripheral eosinophilia, positive specific IgG Aspergillus fumigatus and consistent radiographic opacities) was used in the clinical workup for the final diagnosis of ABPA. Patients were divided into 3 groups - definite, possible, and no evidence of ABPA. Specific IgG Aspergillus fumigatus levels were not used to assign the patients into any of the groups. Of 80 patients (males 48, females 32; mean age 53.9 years ± SD 15.8) selected for the analysis, there were 30 patients who had positive specific IgE against Aspergillus fumigatus (37.5%). 13 patients fulfilled the Modified ISHAM working group 2013 criteria of ABPA (‘definite’), while 15 patients were ‘possible’ ABPA and 52 did not fulfill the criteria (not ABPA). As IgE levels were not normally distributed, median levels were used in the analysis. Median total IgE levels of patients with definite and possible ABPA were 2144 kU/L and 2597 kU/L respectively (non-significant), while median specific IgE Aspergillus fumigatus at 4.35 kUA/L and 1.47 kUA/L respectively were significantly different (comparison of standard deviations F-statistic 3.2267, significance level p=0.040). Mean levels of IgG anti-Aspergillus fumigatus in the three groups (definite, possible and no evidence of ABPA) were compared using ANOVA (Statgraphics Centurion Professional XV, Statpoint Inc). Mean levels of IgG anti-Aspergillus fumigatus (Gm3) in definite ABPA was 125.17 mgA/L ( ± SD 54.84, with 95%CI 92.03-158.32), while mean Gm3 levels in possible and no ABPA were 18.61 mgA/L and 30.05 mgA/L respectively. ANOVA showed a significant difference between the definite group and the other groups (p < 0.001). This was confirmed using multiple range tests (Fisher's least significant difference procedure). There was no significant difference between the possible ABPA and not ABPA groups (p > 0.05). The study showed that a sizeable proportion of patients with asthma are sensitized to Aspergillus fumigatus in this part of India. A higher cut-off value of Gm3 ≥ 80 mgA/L provides a higher serologic specificity towards definite ABPA. Long-term studies would provide us more information if those patients with 'possible' APBA and positive Gm3 later develop clear ABPA, and are different from the Gm3 negative group in this respect. Serologic testing with clear defined cut-offs are a valuable adjunct in the diagnosis of ABPA.

Keywords: allergic bronchopulmonary aspergillosis, Aspergillus fumigatus, asthma, IgE level

Procedia PDF Downloads 211
2762 Contribution of Remote Sensing and GIS to the Study of the Impact of the Salinity of Sebkhas on the Quality of Groundwater: Case of Sebkhet Halk El Menjel (Sousse)

Authors: Gannouni Sonia, Hammami Asma, Saidi Salwa, Rebai Noamen

Abstract:

Water resources in Tunisia have experienced quantitative and qualitative degradation, especially when talking about wetlands and Sbekhas. Indeed, the objective of this work is to study the spatio-temporal evolution of salinity for 29 years (from 1987 to 2016). A study of the connection between surface water and groundwater is necessary to know the degree of influence of the Sebkha brines on the water table. The evolution of surface salinity is determined by remote sensing based on Landsat TM and OLI/TIRS satellite images of the years 1987, 2007, 2010, and 2016. The processing of these images allowed us to determine the NDVI(Normalized Difference Vegetation Index), the salinity index, and the surface temperature around Sebkha. In addition, through a geographic information system(GIS), we could establish a map of the distribution of salinity in the subsurface of the water table of Chott Mariem and Hergla/SidiBouAli/Kondar. The results of image processing and the calculation of the index and surface temperature show an increase in salinity downstream of in addition to the sebkha and the development of vegetation cover upstream and the western part of the sebkha. This richness may be due both to contamination by seawater infiltration from the barrier beach of Hergla as well as the passage of groundwater to the sebkha.

Keywords: spatio-temporal monitoring, salinity, satellite images, NDVI, sebkha

Procedia PDF Downloads 133
2761 Measuring Development through Extreme Observations: An Archetypal Analysis Approach to Index Construction

Authors: Claudeline D. Cellan

Abstract:

Development is multifaceted, and efforts to hasten growth in all these facets have been gaining traction in recent years. Thus, producing a composite index that is reflective of these multidimensional impacts captures the interests of policymakers. The problem lies in going through a mixture of theoretical, methodological and empirical decisions and complexities which, when done carelessly, can lead to inconsistent and unreliable results. This study looks into index computation from a different and less complex perspective. Borrowing the idea of archetypes or ‘pure types’, archetypal analysis looks for points in the convex hull of the multivariate data set that captures as much information in the data as possible. The archetypes or 'pure types' are estimated such that they are convex combinations of all the observations, which in turn are convex combinations of the archetypes. This ensures that the archetypes are realistically observable, therefore achievable. In the sense of composite indices, we look for the best among these archetypes and use this as a benchmark for index computation. Its straightforward and simplistic approach does away with aggregation and substitutability problems which are commonly encountered in index computation. As an example of the application of archetypal analysis in index construction, the country data for the Human Development Index (HDI 2017) of the United Nations Development Programme (UNDP) is used. The goal of this exercise is not to replicate the result of the UNDP-computed HDI, but to illustrate the usability of archetypal analysis in index construction. Here best is defined in the context of life, education and gross national income sub-indices. Results show that the HDI from the archetypal analysis has a linear relationship with the UNDP-computed HDI.

Keywords: archetypes, composite index, convex combination, development

Procedia PDF Downloads 128
2760 The Effect of Spark Physical Program (Sports, Play and Active Recreation for Kids) on Quality of Life and Spirometry in 6-18-Year-Old Children with Cystic Fibrosis

Authors: Saeedeh Eshkil, Seyedeh Farnaz Mousavi, Hamid Reza Kianifar, Seyed Java Sayyedi, Mehdi Sohrabi, Elham Bakhtiari, Morteza Mashoughi, Ezzat Khodashenas

Abstract:

Background: The effect of the SPARK physical education program on lung function in cystic fibrosis patients is not yet determined.).SPARK is Sports, play and active recreation for kids, including moving skills, aerobic games, jogging or walking, aerobic dance and jump rope. Regarding the high prevalence of cystic fibrosis and its destructive effects on the lungs, the aim of this study is to evaluate lung function and quality of life before and after undergoing the SPARK physical education program in children with cystic fibrosis. Method: In this quasi-experimental study, all patients with cystic fibrosis aged 6-18 years referred to the cystic fibrosis clinic of Dr. Sheikh Hospital were enrolled. The patients went under 12 weeks of SPARK training program (3 sessions per week, each session 45 minutes). The quality of life questionnaire ( Cystic Fibrosis Questionnaire includes self-examination, parental ) for patients with cystic fibrosis and spirometry indices (FEV1, FVC, FEV1/FVC, FEF25-75) was filled out before and after intervention for all patients. Results The mean and standard deviation of patients' age were 9.85±2.67 years, and 65% of patients were female. The FEV1 was significantly different before and after the SPARK physical education program (P=0.03), and the respiratory component of quality of life significantly increased after intervention (P=0.002). The overall score of quality of life from parents’ point of view was 2.87 ± 0.38, which increased to 2.99 ± 0.38 after the intervention. Conclusion: The SPARK training program may improve the spirometric parameters in children with cystic fibrosis. It also had a significant effect on improving the quality of life of patients, especially in the respiratory component.

Keywords: cystic fibrosis, pediatrics, SPARK motor program, spirometry

Procedia PDF Downloads 23
2759 Effect of Site Amplification on Seismic Safety Evaluation of Flyover Pier

Authors: Mohammad Raihan Mukhlis, M. Abdur Rahman Bhuiyan

Abstract:

Bangladesh is a developing country in which a lot of multi-span simply/continuous supported flyovers are being constructed in its major cities. Being situated in a seismically active region, seismic safety evaluation of flyovers is essential for seismic risk reduction. Effects of site amplification on seismic safety evaluation of flyover piers are the main concern of this study. In this regard, failure mode, lateral strength and displacement ductility of piers of a typical multi-span simply supported flyover have been evaluated by Japan Road Association (JRA) recommended guidelines, with and without considering site amplification. Ultimate flexural strengths of piers have been computed using the pushover analysis results. Shear capacity of piers has been calculated using the guidelines of JRA. Lateral strengths have been determined depending on the failure modes of the piers. Displacement ductility of piers has been computed using yield and ultimate displacements of the piers obtained from the pushover analysis results. Selected earthquake time history is used in seismic safety evaluation of the flyover piers. Finally, the ductility design method is used to conduct the seismic safety evaluation of the piers with and without considering site amplification. From the numerical results, it has been revealed that the effects of site amplification on seismic safety evaluation of bridge structures should be carefully taken into account.

Keywords: displacement ductility, flyover pier, lateral strength, safety evaluation, site amplification

Procedia PDF Downloads 171
2758 SEMCPRA-Sar-Esembled Model for Climate Prediction in Remote Area

Authors: Kamalpreet Kaur, Renu Dhir

Abstract:

Climate prediction is an essential component of climate research, which helps evaluate possible effects on economies, communities, and ecosystems. Climate prediction involves short-term weather prediction, seasonal prediction, and long-term climate change prediction. Climate prediction can use the information gathered from satellites, ground-based stations, and ocean buoys, among other sources. The paper's four architectures, such as ResNet50, VGG19, Inception-v3, and Xception, have been combined using an ensemble approach for overall performance and robustness. An ensemble of different models makes a prediction, and the majority vote determines the final prediction. The various architectures such as ResNet50, VGG19, Inception-v3, and Xception efficiently classify the dataset RSI-CB256, which contains satellite images into cloudy and non-cloudy. The generated ensembled S-E model (Sar-ensembled model) provides an accuracy of 99.25%.

Keywords: climate, satellite images, prediction, classification

Procedia PDF Downloads 75
2757 Preclinical Studying of Stable Fe-Citrate Effect on 68Ga-Citrate Tissue Distribution

Authors: A. S. Lunev, A. A. Larenkov, O. E. Klementyeva, G. E. Kodina

Abstract:

Background and aims: 68Ga-citrate is one of prospective radiopharmaceutical for PET-imaging of inflammation and infection. 68Ga-citrate is 67Ga-citrate analogue using since 1970s for SPECT-imaging. There's known rebinding reaction occurs past Ga-citrate injection and gallium (similar iron Fe3+) binds with blood transferrin. Then radiolabeled protein complex is delivered to pathological foci (inflammation/infection sites). But excessive gallium bindings with transferrin are cause of slow blood clearance, long accumulation time in foci (24-72 h) and exception of application possibility of the short-lived gallium-68 (T½ = 68 min). Injection of additional chemical agents (e.g. Fe3+ compounds) competing with radioactive gallium to the blood transferrin joining (blocking of its metal binding capacity) is one of the ways to solve formulated problem. This phenomenon can be used for correction of 68Ga-citrate pharmacokinetics for increasing of the blood clearance and accumulation in foci. The aim of real studying is research of effect of stable Fe-citrate on 68Ga-citrate tissue distribution. Materials and methods: 68Ga-citrate without/with extra injection of stable Fe-citrate (III) was injected nonlinear mice with inflammation models (aseptic soft tissue inflammation, lung infection, osteomyelitis). PET/X-RAY Genisys4 (Sofie Bioscience, USA) was used for non-invasive PET imaging (for 30, 60, 120 min past injection 68Ga-citrate) with subsequent reconstruction of imaging and their analysis (value of clearance, distribution volume). Scanning time is 10 min. Results and conclusions: I. v. injection of stable Fe-citrate blocks the metal-binding capability of transferrin serum and allows decreasing gallium-68 radioactivity in blood significantly and increasing accumulation in inflammation (3-5 time). It allows receiving more informative PET-images of inflammation early (for 30-60 min after injection). Pharmacokinetic parameters prove it. Noted there is no statistically significant difference between 68Ga-citrate accumulation for different inflammation model because PET imaging is indication of pathological processes and is not their identification.

Keywords: 68Ga-citrate, Fe-citrate, PET imaging, mice, inflammation, infection

Procedia PDF Downloads 490
2756 Hybrid EMPCA-Scott Approach for Estimating Probability Distributions of Mutual Information

Authors: Thuvanan Borvornvitchotikarn, Werasak Kurutach

Abstract:

Mutual information (MI) is widely used in medical image registration. In the different medical images analysis, it is difficult to choose an optimal bins size number for calculating the probability distributions in MI. As the result, this paper presents a new adaptive bins number selection approach that named a hybrid EMPCA-Scott approach. This work combines an expectation maximization principal component analysis (EMPCA) and the modified Scott’s rule. The proposed approach solves the binning problem from the various intensity values in medical images. Experimental results of this work show the lower registration errors compared to other adaptive binning approaches.

Keywords: mutual information, EMPCA, Scott, probability distributions

Procedia PDF Downloads 249
2755 Localization of Mobile Robots with Omnidirectional Cameras

Authors: Tatsuya Kato, Masanobu Nagata, Hidetoshi Nakashima, Kazunori Matsuo

Abstract:

Localization of mobile robots are important tasks for developing autonomous mobile robots. This paper proposes a method to estimate positions of a mobile robot using an omnidirectional camera on the robot. Landmarks for points of references are set up on a field where the robot works. The omnidirectional camera which can obtain 360 [deg] around images takes photographs of these landmarks. The positions of the robots are estimated from directions of these landmarks that are extracted from the images by image processing. This method can obtain the robot positions without accumulative position errors. Accuracy of the estimated robot positions by the proposed method are evaluated through some experiments. The results show that it can obtain the positions with small standard deviations. Therefore the method has possibilities of more accurate localization by tuning of appropriate offset parameters.

Keywords: mobile robots, localization, omnidirectional camera, estimating positions

Procedia PDF Downloads 442
2754 Simplified Analysis Procedure for Seismic Evaluation of Tall Building at Structure and Component Level

Authors: Tahir Mehmood, Pennung Warnitchai

Abstract:

Simplified static analysis procedures such Nonlinear Static Procedure (NSP) are gaining popularity for the seismic evaluation of buildings. However, these simplified procedures accounts only for the seismic responses of the fundamental vibration mode of the structure. Some other procedures which can take into account the higher modes of vibration, lack in accuracy to determine the component responses. Hence, such procedures are not suitable for evaluating the structures where many vibration modes may participate significantly or where component responses are needed to be evaluated. Moreover, these procedures were found to either computationally expensive or tedious to obtain individual component responses. In this paper, a simplified but accurate procedure is studied. It is called the Uncoupled Modal Response History Analysis (UMRHA) procedure. In this procedure, the nonlinear response of each vibration mode is first computed, and they are later on combined into the total response of the structure. The responses of four tall buildings are computed by this simplified UMRHA procedure and compared with those obtained from the NLRHA procedure. The comparison shows that the UMRHA procedure is able to accurately compute the global responses, i.e., story shears and story overturning moments, floor accelerations and inter-story drifts as well as the component level responses of these tall buildings with heights varying from 20 to 44 stories. The required computational effort is also extremely low compared to that of the Nonlinear Response History Analysis (NLRHA) procedure.

Keywords: higher mode effects, seismic evaluation procedure, tall buildings, component responses

Procedia PDF Downloads 343
2753 The Detection of Implanted Radioactive Seeds on Ultrasound Images Using Convolution Neural Networks

Authors: Edward Holupka, John Rossman, Tye Morancy, Joseph Aronovitz, Irving Kaplan

Abstract:

A common modality for the treatment of early stage prostate cancer is the implantation of radioactive seeds directly into the prostate. The radioactive seeds are positioned inside the prostate to achieve optimal radiation dose coverage to the prostate. These radioactive seeds are positioned inside the prostate using Transrectal ultrasound imaging. Once all of the planned seeds have been implanted, two dimensional transaxial transrectal ultrasound images separated by 2 mm are obtained through out the prostate, beginning at the base of the prostate up to and including the apex. A common deep neural network, called DetectNet was trained to automatically determine the position of the implanted radioactive seeds within the prostate under ultrasound imaging. The results of the training using 950 training ultrasound images and 90 validation ultrasound images. The commonly used metrics for successful training were used to evaluate the efficacy and accuracy of the trained deep neural network and resulted in an loss_bbox (train) = 0.00, loss_coverage (train) = 1.89e-8, loss_bbox (validation) = 11.84, loss_coverage (validation) = 9.70, mAP (validation) = 66.87%, precision (validation) = 81.07%, and a recall (validation) = 82.29%, where train and validation refers to the training image set and validation refers to the validation training set. On the hardware platform used, the training expended 12.8 seconds per epoch. The network was trained for over 10,000 epochs. In addition, the seed locations as determined by the Deep Neural Network were compared to the seed locations as determined by a commercial software based on a one to three months after implant CT. The Deep Learning approach was within \strikeout off\uuline off\uwave off2.29\uuline default\uwave default mm of the seed locations determined by the commercial software. The Deep Learning approach to the determination of radioactive seed locations is robust, accurate, and fast and well within spatial agreement with the gold standard of CT determined seed coordinates.

Keywords: prostate, deep neural network, seed implant, ultrasound

Procedia PDF Downloads 199
2752 The Prevalence of Obesity among a Huge Sample of 5-20 Years Old Jordanian Children and Adolescents Based on CDC Criteria

Authors: Walid Al-Qerem, Ruba Zumot

Abstract:

Background: The rise of obesity among children and adolescents remains a primary challenge for healthcare providers globally and in the Middle East. The aim of the present study is to determine the prevalence of obesity among 5-20 years old Jordanians based on CDC criteria. Method: A total of 5722 Jordanians (37% males; 63% females) aged 5-20 years data were retrieved from the Jordanian Ministry of Health electronic database (Hakeem). As per the CDC selection criteria, the chosen data pertains exclusively to healthy Jordanian children and adolescents who are medically sound, not suffering from health conditions, and not undergoing any treatments that could hinder normal growth patterns, such as severe infection, chronic kidney disease (CKD), Down’s syndrome, attention deficit hyperactivity disorder, cancer, heart disease, lung disease, cystic fibrosis, Crohn’s disease, type 1 diabetes, hormonal disturbances, any stress-related conditions, hormonal therapy such as corticosteroids, Growth hormones (GHS) or gonadotropin-releasing hormone agonists, insulin, and amphetamines or any other stimulants. In addition, participants with missing or invalid data values for anthropometric measurements were excluded from the study. Weight for age and body mass index for age were analyzed comparatively for Jordanian children and adolescents against the international growth standards. The Z-score for each record was computed based on CDC equations. As per CDC classifications, BMI for age percentiles, values ≥85th and < 95th are classified as overweight, and value at ≥ 95th is classified as obesity. Results: The average age of the evaluated sample was 12.33 ±4.39 years (10.79 ±3.39 for males and 13.23 ± 4.66 for females). The mean weight for males and females were 33.16±14.17 Kg and 133.54±17.17 cm for males, 43.86 ±18.82 Kg, and 142.19±18.35 for females, while for BMI the mean was for boys and girls 17.81±3.88 and 20.52±5.03 respectively. The results indicated that based on CDC criteria, 8.9% of males were classified as children/adolescents with overweight, and 9.7% were classified as children/adolescents with obesity, while in females, 17.8% were classified as children/adolescents with overweight and 10.2% were classified as children/adolescents with obesity. Discussion: The high prevalence of obesity reported in the present study emphasizes the importance of applying different strategies to prevent childhood obesity, including encouraging physical activity, promoting healthier food options, and behavioral changes. Conclusion: The results presented in this study indicated the high prevalence of overweight/obesity among Jordanian adolescents and children, which must be tagged by healthcare planners and providers.

Keywords: CDC, obesity, childhood, Jordan

Procedia PDF Downloads 57
2751 Deployment of Matrix Transpose in Digital Image Encryption

Authors: Okike Benjamin, Garba E J. D.

Abstract:

Encryption is used to conceal information from prying eyes. Presently, information and data encryption are common due to the volume of data and information in transit across the globe on daily basis. Image encryption is yet to receive the attention of the researchers as deserved. In other words, video and multimedia documents are exposed to unauthorized accessors. The authors propose image encryption using matrix transpose. An algorithm that would allow image encryption is developed. In this proposed image encryption technique, the image to be encrypted is split into parts based on the image size. Each part is encrypted separately using matrix transpose. The actual encryption is on the picture elements (pixel) that make up the image. After encrypting each part of the image, the positions of the encrypted images are swapped before transmission of the image can take place. Swapping the positions of the images is carried out to make the encrypted image more robust for any cryptanalyst to decrypt.

Keywords: image encryption, matrices, pixel, matrix transpose

Procedia PDF Downloads 421
2750 Deep Feature Augmentation with Generative Adversarial Networks for Class Imbalance Learning in Medical Images

Authors: Rongbo Shen, Jianhua Yao, Kezhou Yan, Kuan Tian, Cheng Jiang, Ke Zhou

Abstract:

This study proposes a generative adversarial networks (GAN) framework to perform synthetic sampling in feature space, i.e., feature augmentation, to address the class imbalance problem in medical image analysis. A feature extraction network is first trained to convert images into feature space. Then the GAN framework incorporates adversarial learning to train a feature generator for the minority class through playing a minimax game with a discriminator. The feature generator then generates features for minority class from arbitrary latent distributions to balance the data between the majority class and the minority class. Additionally, a data cleaning technique, i.e., Tomek link, is employed to clean up undesirable conflicting features introduced from the feature augmentation and thus establish well-defined class clusters for the training. The experiment section evaluates the proposed method on two medical image analysis tasks, i.e., mass classification on mammogram and cancer metastasis classification on histopathological images. Experimental results suggest that the proposed method obtains superior or comparable performance over the state-of-the-art counterparts. Compared to all counterparts, our proposed method improves more than 1.5 percentage of accuracy.

Keywords: class imbalance, synthetic sampling, feature augmentation, generative adversarial networks, data cleaning

Procedia PDF Downloads 128
2749 Sign Language Recognition of Static Gestures Using Kinect™ and Convolutional Neural Networks

Authors: Rohit Semwal, Shivam Arora, Saurav, Sangita Roy

Abstract:

This work proposes a supervised framework with deep convolutional neural networks (CNNs) for vision-based sign language recognition of static gestures. Our approach addresses the acquisition and segmentation of correct inputs for the CNN-based classifier. Microsoft Kinect™ sensor, despite complex environmental conditions, can track hands efficiently. Skin Colour based segmentation is applied on cropped images of hands in different poses, used to depict different sign language gestures. The segmented hand images are used as an input for our classifier. The CNN classifier proposed in the paper is able to classify the input images with a high degree of accuracy. The system was trained and tested on 39 static sign language gestures, including 26 letters of the alphabet and 13 commonly used words. This paper includes a problem definition for building the proposed system, which acts as a sign language translator between deaf/mute and the rest of the society. It is then followed by a focus on reviewing existing knowledge in the area and work done by other researchers. It also describes the working principles behind different components of CNNs in brief. The architecture and system design specifications of the proposed system are discussed in the subsequent sections of the paper to give the reader a clear picture of the system in terms of the capability required. The design then gives the top-level details of how the proposed system meets the requirements.

Keywords: sign language, CNN, HCI, segmentation

Procedia PDF Downloads 159
2748 Management of Acute Appendicitis with Preference on Delayed Primary Suturing of Surgical Incision

Authors: N. A. D. P. Niwunhella, W. G. R. C. K. Sirisena

Abstract:

Appendicitis is one of the most encountered abdominal emergencies worldwide. Proper clinical diagnosis and appendicectomy with minimal post operative complications are therefore priorities. Aim of this study was to ascertain the overall management of acute appendicitis in Sri Lanka in special preference to delayed primary suturing of the surgical site, comparing other local and international treatment outcomes. Data were collected prospectively from 155 patients who underwent appendicectomy following clinical and radiological diagnosis with ultrasonography. Histological assessment was done for all the specimens. All perforated appendices were managed with delayed primary closure. Patients were followed up for 28 days to assess complications. Mean age of patient presentation was 27 years; mean pre-operative waiting time following admission was 24 hours; average hospital stay was 72 hours; accuracy of clinical diagnosis of appendicitis as confirmed by histology was 87.1%; post operative wound infection rate was 8.3%, and among them 5% had perforated appendices; 4 patients had post operative complications managed without re-opening. There was no fistula formation or mortality reported. Current study was compared with previously published data: a comparison on management of acute appendicitis in Sri Lanka vs. United Kingdom (UK). The diagnosis of current study was equally accurate, but post operative complications were significantly reduced - (current study-9.6%, compared Sri Lankan study-16.4%; compared UK study-14.1%). During the recent years, there has been an exponential rise in the use of Computerised Tomography (CT) imaging in the assessment of patients with acute appendicitis. Even though, the diagnostic accuracy without using CT, and treatment outcome of acute appendicitis in this study match other local studies as well as with data compared to UK. Therefore CT usage has not increased the diagnostic accuracy of acute appendicitis significantly. Especially, delayed primary closure may have reduced post operative wound infection rate for ruptured appendices, therefore suggest this approach for further evaluation as a safer and an effective practice in other hospitals worldwide as well.

Keywords: acute appendicitis, computerised tomography, diagnostic accuracy, delayed primary closure

Procedia PDF Downloads 167
2747 Scintigraphic Image Coding of Region of Interest Based on SPIHT Algorithm Using Global Thresholding and Huffman Coding

Authors: A. Seddiki, M. Djebbouri, D. Guerchi

Abstract:

Medical imaging produces human body pictures in digital form. Since these imaging techniques produce prohibitive amounts of data, compression is necessary for storage and communication purposes. Many current compression schemes provide a very high compression rate but with considerable loss of quality. On the other hand, in some areas in medicine, it may be sufficient to maintain high image quality only in region of interest (ROI). This paper discusses a contribution to the lossless compression in the region of interest of Scintigraphic images based on SPIHT algorithm and global transform thresholding using Huffman coding.

Keywords: global thresholding transform, huffman coding, region of interest, SPIHT coding, scintigraphic images

Procedia PDF Downloads 368
2746 Melanoma and Non-Melanoma, Skin Lesion Classification, Using a Deep Learning Model

Authors: Shaira L. Kee, Michael Aaron G. Sy, Myles Joshua T. Tan, Hezerul Abdul Karim, Nouar AlDahoul

Abstract:

Skin diseases are considered the fourth most common disease, with melanoma and non-melanoma skin cancer as the most common type of cancer in Caucasians. The alarming increase in Skin Cancer cases shows an urgent need for further research to improve diagnostic methods, as early diagnosis can significantly improve the 5-year survival rate. Machine Learning algorithms for image pattern analysis in diagnosing skin lesions can dramatically increase the accuracy rate of detection and decrease possible human errors. Several studies have shown the diagnostic performance of computer algorithms outperformed dermatologists. However, existing methods still need improvements to reduce diagnostic errors and generate efficient and accurate results. Our paper proposes an ensemble method to classify dermoscopic images into benign and malignant skin lesions. The experiments were conducted using the International Skin Imaging Collaboration (ISIC) image samples. The dataset contains 3,297 dermoscopic images with benign and malignant categories. The results show improvement in performance with an accuracy of 88% and an F1 score of 87%, outperforming other existing models such as support vector machine (SVM), Residual network (ResNet50), EfficientNetB0, EfficientNetB4, and VGG16.

Keywords: deep learning - VGG16 - efficientNet - CNN – ensemble – dermoscopic images - melanoma

Procedia PDF Downloads 81
2745 New Approaches for the Handwritten Digit Image Features Extraction for Recognition

Authors: U. Ravi Babu, Mohd Mastan

Abstract:

The present paper proposes a novel approach for handwritten digit recognition system. The present paper extract digit image features based on distance measure and derives an algorithm to classify the digit images. The distance measure can be performing on the thinned image. Thinning is the one of the preprocessing technique in image processing. The present paper mainly concentrated on an extraction of features from digit image for effective recognition of the numeral. To find the effectiveness of the proposed method tested on MNIST database, CENPARMI, CEDAR, and newly collected data. The proposed method is implemented on more than one lakh digit images and it gets good comparative recognition results. The percentage of the recognition is achieved about 97.32%.

Keywords: handwritten digit recognition, distance measure, MNIST database, image features

Procedia PDF Downloads 461
2744 Improving Temporal Correlations in Empirical Orthogonal Function Expansions for Data Interpolating Empirical Orthogonal Function Algorithm

Authors: Ping Bo, Meng Yunshan

Abstract:

Satellite-derived sea surface temperature (SST) is a key parameter for many operational and scientific applications. However, the disadvantage of SST data is a high percentage of missing data which is mainly caused by cloud coverage. Data Interpolating Empirical Orthogonal Function (DINEOF) algorithm is an EOF-based technique for reconstructing the missing data and has been widely used in oceanographic field. The reconstruction of SST images within a long time series using DINEOF can cause large discontinuities and one solution for this problem is to filter the temporal covariance matrix to reduce the spurious variability. Based on the previous researches, an algorithm is presented in this paper to improve the temporal correlations in EOF expansion. Similar with the previous researches, a filter, such as Laplacian filter, is implemented on the temporal covariance matrix, but the temporal relationship between two consecutive images which is used in the filter is considered in the presented algorithm, for example, two images in the same season are more likely correlated than those in the different seasons, hence the latter one is less weighted in the filter. The presented approach is tested for the monthly nighttime 4-km Advanced Very High Resolution Radiometer (AVHRR) Pathfinder SST for the long-term period spanning from 1989 to 2006. The results obtained from the presented algorithm are compared to those from the original DINEOF algorithm without filtering and from the DINEOF algorithm with filtering but without taking temporal relationship into account.

Keywords: data interpolating empirical orthogonal function, image reconstruction, sea surface temperature, temporal filter

Procedia PDF Downloads 325
2743 TACTICAL: Ram Image Retrieval in Linux Using Protected Mode Architecture’s Paging Technique

Authors: Sedat Aktas, Egemen Ulusoy, Remzi Yildirim

Abstract:

This article explains how to get a ram image from a computer with a Linux operating system and what steps should be followed while getting it. What we mean by taking a ram image is the process of dumping the physical memory instantly and writing it to a file. This process can be likened to taking a picture of everything in the computer’s memory at that moment. This process is very important for tools that analyze ram images. Volatility can be given as an example because before these tools can analyze ram, images must be taken. These tools are used extensively in the forensic world. Forensic, on the other hand, is a set of processes for digitally examining the information on any computer or server on behalf of official authorities. In this article, the protected mode architecture in the Linux operating system is examined, and the way to save the image sample of the kernel driver and system memory to disk is followed. Tables and access methods to be used in the operating system are examined based on the basic architecture of the operating system, and the most appropriate methods and application methods are transferred to the article. Since there is no article directly related to this study on Linux in the literature, it is aimed to contribute to the literature with this study on obtaining ram images. LIME can be mentioned as a similar tool, but there is no explanation about the memory dumping method of this tool. Considering the frequency of use of these tools, the contribution of the study in the field of forensic medicine has been the main motivation of the study due to the intense studies on ram image in the field of forensics.

Keywords: linux, paging, addressing, ram-image, memory dumping, kernel modules, forensic

Procedia PDF Downloads 119
2742 Oct to Study Efficacy of Avastin in Recurrent Wet Age Related Macular Degeneration and Persistent Diffuse DME

Authors: Srinivasarao Akuthota, Rajasekhar Pabolu, Bharathi Hepattam

Abstract:

Purpose: To assess the efficacy of intravitreal Avastin in subjects with recurrent wet AMD and persistent diffuse DME on the basis of OCT. Design: Retrospective, non-comparative, observational study,single center study. Conclusion: The study showed that intravitreal Avastin has an equivalent effect on recurrent AMD and in persistent diffuse DME.

Keywords: age-related macular degeneration (AMD), diffuse diabetic retinopathy (DME), intravitreal Avastin (IVA), optical coherence tomography (OCT)

Procedia PDF Downloads 366
2741 The Use of Remotely Sensed Data to Extract Wetlands Area in the Cultural Park of Ahaggar, South of Algeria

Authors: Y. Fekir, K. Mederbal, M. A. Hammadouche, D. Anteur

Abstract:

The cultural park of the Ahaggar, occupying a large area of Algeria, is characterized by a rich wetlands area to be preserved and managed both in time and space. The management of a large area, by its complexity, needs large amounts of data, which for the most part, are spatially localized (DEM, satellite images and socio-economic information...), where the use of conventional and traditional methods is quite difficult. The remote sensing, by its efficiency in environmental applications, became an indispensable solution for this kind of studies. Remote sensing imaging data have been very useful in the last decade in very interesting applications. They can aid in several domains such as the detection and identification of diverse wetland surface targets, topographical details, and geological features... In this work, we try to extract automatically wetlands area using multispectral remotely sensed data on-board the Earth Observing 1 (EO-1) and Landsat satellite. Both are high-resolution multispectral imager with a 30 m resolution. The instrument images an interesting surface area. We have used images acquired over the several area of interesting in the National Park of Ahaggar in the south of Algeria. An Extraction Algorithm is applied on the several spectral index obtained from combination of different spectral bands to extract wetlands fraction occupation of land use. The obtained results show an accuracy to distinguish wetlands area from the other lad use themes using a fine exploitation on spectral index.

Keywords: multispectral data, EO1, landsat, wetlands, Ahaggar, Algeria

Procedia PDF Downloads 378
2740 Legal Aspects in Character Merchandising with Reference to Right to Image of Celebrities

Authors: W. R. M. Shehani Shanika

Abstract:

Selling goods and services using images, names and personalities of celebrities has become a common marketing strategy identified in modern physical and online markets. Two concepts called globalization and open economy have given numerous reasons to develop businesses to earn higher profits. Therefore, global market plus domestic markets in various countries have vigorously endorsing images of famous sport stars, film stars, singing stars and cartoon characters for the purpose of increasing demand for goods and services rendered by them. It has been evident that these trade strategies have become a threat to famous personalities in financially and personally. Right to the image is a basic human right which celebrities owned to avoid themselves from various commercial exploitations. In this respect, this paper aims to assess whether the law relating to character merchandising satisfactorily protects right to image of celebrities. However, celebrities can decide how much they receive for each representation to the general public. Simply they have exclusive right to decide monetary value for their image. But most commonly every country uses law relating to unfair competition to regulate matters arise thereof. Legal norms in unfair competition are not enough to protect image of celebrities. Therefore, celebrities must be able to avoid unauthorized use of their images for commercial purposes by fraudulent traders and getting unjustly enriched, as their images have economic value. They have the right for use their image for any commercial purpose and earn profits. Therefore it is high time to recognize right to image as a new dimension to be protected in the legal framework of character merchandising. Unfortunately, to the author’s best knowledge there are no any uniform, single international standard which recognizes right to the image of celebrities in the context of character merchandising. The paper identifies it as a controversial legal barrier faced by celebrities in the rapidly evolving marketplace. Finally, this library-based research concludes with proposals to ensure the right to image more broadly in the legal context of character merchandising.

Keywords: brand endorsement, celebrity, character merchandising, intellectual property rights, right to image, unfair competition

Procedia PDF Downloads 139
2739 Detection of Safety Goggles on Humans in Industrial Environment Using Faster-Region Based on Convolutional Neural Network with Rotated Bounding Box

Authors: Ankit Kamboj, Shikha Talwar, Nilesh Powar

Abstract:

To successfully deliver our products in the market, the employees need to be in a safe environment, especially in an industrial and manufacturing environment. The consequences of delinquency in wearing safety glasses while working in industrial plants could be high risk to employees, hence the need to develop a real-time automatic detection system which detects the persons (violators) not wearing safety glasses. In this study a convolutional neural network (CNN) algorithm called faster region based CNN (Faster RCNN) with rotated bounding box has been used for detecting safety glasses on persons; the algorithm has an advantage of detecting safety glasses with different orientation angles on the persons. The proposed method of rotational bounding boxes with a convolutional neural network first detects a person from the images, and then the method detects whether the person is wearing safety glasses or not. The video data is captured at the entrance of restricted zones of the industrial environment (manufacturing plant), which is further converted into images at 2 frames per second. In the first step, the CNN with pre-trained weights on COCO dataset is used for person detection where the detections are cropped as images. Then the safety goggles are labelled on the cropped images using the image labelling tool called roLabelImg, which is used to annotate the ground truth values of rotated objects more accurately, and the annotations obtained are further modified to depict four coordinates of the rectangular bounding box. Next, the faster RCNN with rotated bounding box is used to detect safety goggles, which is then compared with traditional bounding box faster RCNN in terms of detection accuracy (average precision), which shows the effectiveness of the proposed method for detection of rotatory objects. The deep learning benchmarking is done on a Dell workstation with a 16GB Nvidia GPU.

Keywords: CNN, deep learning, faster RCNN, roLabelImg rotated bounding box, safety goggle detection

Procedia PDF Downloads 131