Search results for: double curved surface
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7831

Search results for: double curved surface

6841 Effects of Increased Green Surface on a Densely Built Urban Fabric: The Case of Budapest

Authors: Viktória Sugár, Orsolya Frick, Gabriella Horváth, A. Bendegúz Vöröss, Péter Leczovics, Géza Baráth

Abstract:

Urban greenery has multiple positive effects both on the city and its residents. Apart from the visual advantages, it changes the micro-climate by cooling and shading, also increasing vapor and oxygen, reducing dust and carbon-dioxide content at the same time. The above are all critical factors of livability of an urban fabric. Unfortunately, in a dense, historical district there are restricted possibilities to build green surfaces. The present study collects and systemizes the applicable green solutions in the case of a historical downtown district of Budapest. The study contains a GIS-based measurement of the eligible surfaces for greenery, and also calculates the potential of oxygen production, carbon-dioxide reduction and cooling effect of an increased green surface.  It can be concluded that increasing the green surface has measurable effects on a densely built urban fabric, including air quality, micro-climate and other environmental factors.

Keywords: urban greenery, green roof, green wall, green surface potential, sustainable city, oxygen production, carbon-dioxide reduction, geographical information system

Procedia PDF Downloads 227
6840 Solventless C−C Coupling of Low Carbon Furanics to High Carbon Fuel Precursors Using an Improved Graphene Oxide Carbocatalyst

Authors: Ashish Bohre, Blaž Likozar, Saikat Dutta, Dionisios G. Vlachos, Basudeb Saha

Abstract:

Graphene oxide, decorated with surface oxygen functionalities, has emerged as a sustainable alternative to precious metal catalysts for many reactions. Herein, we report for the first time that graphene oxide becomes super active for C-C coupling upon incorporation of multilayer crystalline features, highly oxidized surface, Brønsted acidic functionalities and defect sites on the surface and edges via modified oxidation. The resulting improved graphene oxide (IGO) demonstrates superior activity to commonly used framework zeolites for upgrading of low carbon biomass furanics to long carbon chain aviation fuel precursors. A maximum 95% yield of C15 fuel precursor with high selectivity is obtained at low temperature (60 C) and neat conditions via hydroxyalkylation/alkylation (HAA) of 2-methylfuran (2-MF) and furfural. The coupling of 2-MF with carbonyl molecules ranging from C3 to C6 produced the precursors of carbon numbers 12 to 21. The catalyst becomes inactive in the 4th cycle due to the loss of oxygen functionalities, defect sites and multilayer features; however, regains comparable activity upon regeneration. Extensive microscopic and spectroscopic characterization of the fresh and reused IGO is presented to elucidate high activity of IGO and to establish a correlation between activity and surface and structural properties. Kinetic Monte Carlo (KMC) and density functional theory (DFT) calculations are presented to further illustrate the surface features and the reaction mechanism.

Keywords: methacrylic acid, itaconic acid, biomass, monomer, solid base catalyst

Procedia PDF Downloads 176
6839 Using Passive Cooling Strategies to Reduce Thermal Cooling Load for Coastal High-Rise Buildings of Jeddah, Saudi Arabia

Authors: Ahmad Zamzam

Abstract:

With the development of the economy in recent years, Saudi Arabia has been maintaining high economic growth. Therefore, its energy consumption has increased dramatically. This economic growth reflected on the expansion of high-rise tower's construction. Jeddah coastal strip (cornice) has many high-rise buildings planned to start next few years. These projects required a massive amount of electricity that was not planned to be supplied by the old infrastructure. This research studies the effect of the building envelope on its thermal performance. It follows a parametric simulation methodology using Ecotect software to analyze the effect of the building envelope design on its cooling energy load for an office high-rise building in Jeddah, Saudi Arabia, which includes building geometrical form, massing treatments, orientation and glazing type effect. The research describes an integrated passive design approach to reduce the cooling requirement for high-rise building through an improved building envelope design. The research used Ecotect to make four simulation studies; the first simulation compares the thermal performance of five high-rise buildings, presenting the basic shape of the plan. All the buildings have the same plan area and same floor height. The goal of this simulation is to find out the best shape for the thermal performance. The second simulation studies the effect of orientation on the thermal performance by rotating the same building model to find out the best and the worst angle for the building thermal performance. The third simulation studies the effect of the massing treatment on the total cooling load. It compared five models with different massing treatment, but with the same total built up area. The last simulation studied the effect of the glazing type by comparing the total cooling load of the same building using five different glass type and also studies the feasibility of using these glass types by studying the glass cost effect. The results indicate that using the circle shape as building plan could reduce the thermal cooling load by 40%. Also, using shading devices could reduce the cooling loads by 5%. The study states that using any of the massing grooving, recess or any treatment that could increase the outer exposed surface is not preferred and will decrease the building thermal performance. Also, the result shows that the best direction for glazing and openings from thermal performance viewpoint in Jeddah is the North direction while the worst direction is the East one. The best direction angle for openings - regarding the thermal performance in Jeddah- is 15 deg West and the worst is 250 deg West (110 deg East). Regarding the glass type effect, comparing to the double glass with air fill type as a reference case, the double glass with Air-Low-E will save 14% from the required amount of the thermal cooling load annually. Argon fill and triple glass will save 16% and 17% from the total thermal cooling load respectively, but for the glass cost purpose, using the Argon fill and triple glass is not feasible.

Keywords: passive cooling, reduce thermal load, Jeddah, building shape, energy

Procedia PDF Downloads 132
6838 Need for Standardization of Manual Inspection in Small and Medium-Scale Manufacturing Industries

Authors: Adithya Nadig

Abstract:

In the field of production, characterization of surface roughness plays a vital role in assessing the quality of a manufactured product. The defined parameters for this assessment, each, have their own drawbacks in describing a profile surface. From the purview of small-scale and medium-scale industries, an increase in time spent for manual inspection of a product for various parameters adds to the cost of the product. In order to reduce this, a uniform and established standard is necessary for quantifying a profile of a manufactured product. The inspection procedure in the small and medium-scale manufacturing units at Jigani Industrial area, Bangalore, was observed. The parameters currently in use in those industries are described in the paper and a change in the inspection method is proposed.

Keywords: efficiency of quality assessment, manual areal profiling technique, manufacturing in small and medium-scale industries product-oriented inspection, standardization of manual inspection, surface roughness characterization

Procedia PDF Downloads 559
6837 Simulation of Red Blood Cells in Complex Micro-Tubes

Authors: Ting Ye, Nhan Phan-Thien, Chwee Teck Lim, Lina Peng, Huixin Shi

Abstract:

In biofluid flow systems, often the flow problems of fluids of complex structures, such as the flow of red blood cells (RBCs) through complex capillary vessels, need to be considered. In this paper, we aim to apply a particle-based method, Smoothed Dissipative Particle Dynamics (SDPD), to simulate the motion and deformation of RBCs in complex micro-tubes. We first present the theoretical models, including SDPD model, RBC-fluid interaction model, RBC deformation model, RBC aggregation model, and boundary treatment model. After that, we show the verification and validation of these models, by comparing our numerical results with the theoretical, experimental and previously-published numerical results. Finally, we provide some simulation cases, such as the motion and deformation of RBCs in rectangular, cylinder, curved, bifurcated, and constricted micro-tubes, respectively.

Keywords: aggregation, deformation, red blood cell, smoothed dissipative particle dynamics

Procedia PDF Downloads 176
6836 X-Ray Photoelectron Spectroscopy Characterization of the Surface Layer on Inconel 625 after Exposition in Molten Salt

Authors: Marie Kudrnova, Jana Petru

Abstract:

This study is part of the international research - Materials for Molten Salt Reactors (MSR) and addresses the part of the project dealing with the corrosion behavior of candidate construction materials. Inconel 625 was characterized by x-ray photoelectron spectroscopy (XPS) before and after high–temperature experiment in molten salt. The experiment was performed in a horizontal tube furnace molten salt reactor, at 450 °C in argon, at atmospheric pressure, for 150 hours. Industrially produced HITEC salt was used (NaNO3, KNO3, NaNO2). The XPS study was carried out using the ESCAProbe P apparatus (Omicron Nanotechnology Ltd.) equipped with a monochromatic Al Kα (1486.6 eV) X-ray source. The surface layer on alloy 625 after exposure contains only Na, C, O, and Ni (as NiOx) and Nb (as NbOx BE 206.8 eV). Ni was detected in the metallic state (Ni0 – Ni 2p BE-852.7 eV, NiOx - Ni 2p BE-854.7 eV) after a short Ar sputtering because the oxide layer on the surface was very thin. Nickel oxides can form a protective layer in the molten salt, but only future long-term exposures can determine the suitability of Inconel 625 for MSR.

Keywords: Inconel 625, molten salt, oxide layer, XPS

Procedia PDF Downloads 145
6835 Effect of Catalyst on Castor Oil Based Polyurethane with Different Hard/Soft Segment Ratio

Authors: Swarnalata Sahoo, Smita Mohanty, S. K. Nayak

Abstract:

Environmentally friendly Polyurethane(PU) synthesis from Castor oil(CO) has been studied extensively. Probably due to high proportion of fatty hydroxy acids and unsaturated bond, CO showed better performance than other oil, can be easily utilized as commercial applications. In this work, cured PU polymers having different –NCO/OH ratio with and without catalyst were synthesized by using partially biobased Isocyanate with castor oil (CO). Curing time has been studied by observing at the time of reaction, which can be confirmed by AT-FTIR. DSC has been studied to monitor the reaction between CO & Isocyanates using non Isothermal process. Curing kinetics have also been studied to investigate the catalytic effect of the NCO / OH ratio of Polyurethane. Adhesion properties were evaluated from Lapshear test. Tg of the PU polymer was evaluated by DSC which can be compared by DMA. Surface Properties were studied by contact angle measurement. Improvement of the interfacial adhesion between the nonpolar surface of Aluminum substrate and the polar adhesive has been studied by modifying surface.

Keywords: polyurethane, partially bio-based isocyanate, castor oil, catalyst

Procedia PDF Downloads 454
6834 Optimization of Tilt Angle for Solar Collectors: A Case Study for Bursa, Turkey

Authors: N. Arslanoglu

Abstract:

This paper deals with the optimum tilt angle for the solar collector in order to collect the maximum solar radiation. The optimum angle for tilted surfaces varying from 0 to 90 in steps of 1was computed. In present study, a theoretical model is used to predict the global solar radiation on a tilted surface and to obtain the optimum tilt angle for a solar collector in Bursa, Turkey. Global solar energy radiation on the solar collector surface with an optimum tilt angle is calculated for specific periods. It is determined that the optimum slope angle varies between 0 (June) and 59 (December) throughout the year. In winter (December, January, and February) the tilt should be 55, in spring (March, April, and May) 19.6, in summer (June, July, and August) 5.6, and in autumn (September, October, and November) 44.3. The yearly average of this value was obtained to be 31.1 and this would be the optimum fixed slope throughout the year.

Keywords: Bursa, global solar radiation, optimum tilt angle, tilted surface

Procedia PDF Downloads 262
6833 Method for Controlling the Groundwater Polluted by the Surface Waters through Injection Wells

Authors: Victorita Radulescu

Abstract:

Introduction: The optimum exploitation of agricultural land in the presence of an aquifer polluted by the surface sources requires close monitoring of groundwater level in both periods of intense irrigation and in absence of the irrigations, in times of drought. Currently in Romania, in the south part of the country, the Baragan area, many agricultural lands are confronted with the risk of groundwater pollution in the absence of systematic irrigation, correlated with the climate changes. Basic Methods: The non-steady flow of the groundwater from an aquifer can be described by the Bousinesq’s partial differential equation. The finite element method was used, applied to the porous media needed for the water mass balance equation. By the proper structure of the initial and boundary conditions may be modeled the flow in drainage or injection systems of wells, according to the period of irrigation or prolonged drought. The boundary conditions consist of the groundwater levels required at margins of the analyzed area, in conformity to the reality of the pollutant emissaries, following the method of the double steps. Major Findings/Results: The drainage condition is equivalent to operating regimes on the two or three rows of wells, negative, as to assure the pollutant transport, modeled with the variable flow in groups of two adjacent nodes. In order to obtain the level of the water table, in accordance with the real constraints, are needed, for example, to be restricted its top level below of an imposed value, required in each node. The objective function consists of a sum of the absolute values of differences of the infiltration flow rates, increased by a large penalty factor when there are positive values of pollutant. In these conditions, a balanced structure of the pollutant concentration is maintained in the groundwater. The spatial coordinates represent the modified parameters during the process of optimization and the drainage flows through wells. Conclusions: The presented calculation scheme was applied to an area having a cross-section of 50 km between two emissaries with various levels of altitude and different values of pollution. The input data were correlated with the measurements made in-situ, such as the level of the bedrock, the grain size of the field, the slope, etc. This method of calculation can also be extended to determine the variation of the groundwater in the aquifer following the flood wave propagation in envoys.

Keywords: environmental protection, infiltrations, numerical modeling, pollutant transport through soils

Procedia PDF Downloads 159
6832 Towards the Rapid Synthesis of High-Quality Monolayer Continuous Film of Graphene on High Surface Free Energy Existing Plasma Modified Cu Foil

Authors: Maddumage Don Sandeepa Lakshad Wimalananda, Jae-Kwan Kim, Ji-Myon Lee

Abstract:

Graphene is an extraordinary 2D material that shows superior electrical, optical, and mechanical properties for the applications such as transparent contacts. Further, chemical vapor deposition (CVD) technique facilitates to synthesizing of large-area graphene, including transferability. The abstract is describing the use of high surface free energy (SFE) and nano-scale high-density surface kinks (rough) existing Cu foil for CVD graphene growth, which is an opposite approach to modern use of catalytic surfaces for high-quality graphene growth, but the controllable rough morphological nature opens new era to fast synthesis (less than the 50s with a short annealing process) of graphene as a continuous film over conventional longer process (30 min growth). The experiments were shown that high SFE condition and surface kinks on Cu(100) crystal plane existing Cu catalytic surface facilitated to synthesize graphene with high monolayer and continuous nature because it can influence the adsorption of C species with high concentration and which can be facilitated by faster nucleation and growth of graphene. The fast nucleation and growth are lowering the diffusion of C atoms to Cu-graphene interface, which is resulting in no or negligible formation of bilayer patches. High energy (500W) Ar plasma treatment (inductively Coupled plasma) was facilitated to form rough and high SFE existing (54.92 mJm-2) Cu foil. This surface was used to grow the graphene by using CVD technique at 1000C for 50s. The introduced kink-like high SFE existing point on Cu(100) crystal plane facilitated to faster nucleation of graphene with a high monolayer ratio (I2D/IG is 2.42) compared to another different kind of smooth morphological and low SFE existing Cu surfaces such as Smoother surface, which is prepared by the redeposit of Cu evaporating atoms during the annealing (RRMS is 13.3nm). Even high SFE condition was favorable to synthesize graphene with monolayer and continuous nature; It fails to maintain clean (surface contains amorphous C clusters) and defect-free condition (ID/IG is 0.46) because of high SFE of Cu foil at the graphene growth stage. A post annealing process was used to heal and overcome previously mentioned problems. Different CVD atmospheres such as CH4 and H2 were used, and it was observed that there is a negligible change in graphene nature (number of layers and continuous condition) but it was observed that there is a significant difference in graphene quality because the ID/IG ratio of the graphene was reduced to 0.21 after the post-annealing with H2 gas. Addition to the change of graphene defectiveness the FE-SEM images show there was a reduction of C cluster contamination of the surface. High SFE conditions are favorable to form graphene as a monolayer and continuous film, but it fails to provide defect-free graphene. Further, plasma modified high SFE existing surface can be used to synthesize graphene within 50s, and a post annealing process can be used to reduce the defectiveness.

Keywords: chemical vapor deposition, graphene, morphology, plasma, surface free energy

Procedia PDF Downloads 247
6831 Effect of Scarp Topography on Seismic Ground Motion

Authors: Haiping Ding, Rongchu Zhu, Zhenxia Song

Abstract:

Local irregular topography has a great impact on earthquake ground motion. For scarp topography, using numerical simulation method, the influence extent and scope of the scarp terrain on scarp's upside and downside ground motion are discussed in case of different vertical incident SV waves. The results show that: (1) The amplification factor of scarp's upside region is greater than that of the free surface, while the amplification factor of scarp's downside part is less than that of the free surface; (2) When the slope angle increases, for x component, amplification factors of the scarp upside also increase, while the downside part decrease with it. For z component, both of the upside and downside amplification factors will increase; (3) When the slope angle changes, the influence scope of scarp's downside part is almost unchanged, but for the upside part, it slightly becomes greater with the increase of slope angle; (4) Due to the existence of the scarp, the z component ground motion appears at the surface. Its amplification factor increases for larger slope angle, and the peaks of the surface responses are related with incident waves. However, the input wave has little effects on the x component amplification factors.

Keywords: scarp topography, ground motion, amplification factor, vertical incident wave

Procedia PDF Downloads 267
6830 Using T-Splines to Model Point Clouds from Terrestrial Laser Scanner

Authors: G. Kermarrec, J. Hartmann

Abstract:

Spline surfaces are a major representation of freeform surfaces in the computer-aided graphic industry and were recently introduced in the field of geodesy for processing point clouds from terrestrial laser scanner (TLS). The surface fitting consists of approximating a trustworthy mathematical surface to a large numbered 3D point cloud. The standard B-spline surfaces lack of local refinement due to the tensor-product construction. The consequences are oscillating geometry, particularly in the transition from low-to-high curvature parts for scattered point clouds with missing data. More economic alternatives in terms of parameters on how to handle point clouds with a huge amount of observations are the recently introduced T-splines. As long as the partition of unity is guaranteed, their computational complexity is low, and they are flexible. T-splines are implemented in a commercial package called Rhino, a 3D modeler which is widely used in computer aided design to create and animate NURBS objects. We have applied T-splines surface fitting to terrestrial laser scanner point clouds from a bridge under load and a sheet pile wall with noisy observations. We will highlight their potential for modelling details with high trustworthiness, paving the way for further applications in terms of deformation analysis.

Keywords: deformation analysis, surface modelling, terrestrial laser scanner, T-splines

Procedia PDF Downloads 145
6829 Phytoplankton Community Structure in the Moroccan Coast of the Mediterranean Sea: Case Study of Saiidia, Three Forks Cape

Authors: H. Idmoussi, L. Somoue, O. Ettahiri, A. Makaoui, S. Charib, A. Agouzouk, A. Ben Mhamed, K. Hilmi, A. Errhif

Abstract:

The study on the composition, abundance, and distribution of phytoplankton was conducted along the Moroccan coast of the Mediterranean Sea (Saiidia - Three Forks Cape) in April 2018. Samples were collected at thirteen stations using Niskin bottles within two layers (surface and deep layers). The identification and enumeration of phytoplankton were carried out according to the Utermöhl method (1958). A total number of 54 phytoplankton species were identified over the entire survey area. Thirty-six species could be found both in the surface and the deep layers while eleven species were observed only in the surface layer and seven in the deep layer. The phytoplankton throughout the study area was dominated by diatoms represented mainly by Nitzschia sp., Pseudonitzschia sp., Chaetoceros sp., Cylindrotheca closterium, Leptocylindrus minimus, Leptocylindrus danicus, Dactyliosolen fragilissimus. Dinoflagellates were dominated by Gymnodinium sp., Scrippsiella sp., Gyrodinium spirale, Noctulica sp, Prorocentrum micans. Euglenophyceae, Silicoflagellates and Raphidophyceae were present in low numbers. Most of the phytoplankton were concentrated in the surface layer, particularly towards the Three Forks Cape (25200 cells·l⁻¹). Shannon species diversity (ranging from 2 and 4 Bits) and evenness index (broadly > 0.7) suggested that phytoplankton community is generally diversified and structured in the studied area.

Keywords: abundance, diversity, Mediterranean Sea, phytoplankton

Procedia PDF Downloads 164
6828 Two-Dimensional Seismic Response of Concrete Gravity Dams Including Base Sliding

Authors: Djamel Ouzandja, Boualem Tiliouine

Abstract:

The safety evaluation of the concrete gravity dams subjected to seismic excitations is really very complex as the earthquake response of the concrete gravity dam depends upon its contraction joints with foundation soil. This paper presents the seismic response of concrete gravity dams considering friction contact and welded contact. Friction contact is provided using contact elements. Two-dimensional (2D) finite element model of Oued Fodda concrete gravity dam, located in Chlef at the west of Algeria, is used for this purpose. Linear and nonlinear analyses considering dam-foundation soil interaction are performed using ANSYS software. The reservoir water is modeled as added mass using the Westergaard approach. The Drucker-Prager model is preferred for dam and foundation rock in nonlinear analyses. The surface-to-surface contact elements based on the Coulomb's friction law are used to describe the friction. These contact elements use a target surface and a contact surface to form a contact pair. According to this study, the seismic analysis of concrete gravity dams including base sliding. When the friction contact is considered in joints, the base sliding displacement occurs along the dam-foundation soil contact interface. Besides, the base sliding may generally decrease the principal stresses in the dam.

Keywords: concrete gravity dam, dynamic soil-structure interaction, friction contact, sliding

Procedia PDF Downloads 412
6827 Wind Energy Loss Phenomenon Over Volumized Building Envelope with Porous Air Portals

Authors: Ying-chang Yu, Yuan-lung Lo

Abstract:

More and more building envelopes consist of the construction of balconies, canopies, handrails, sun-shading, vertical planters or gardens, maintenance platforms, display devices, lightings, ornaments, and also the most commonly seen double skin system. These components form a uniform but three-dimensional disturbance structure and create a complex surface wind field in front of the actual watertight building interface. The distorted wind behavior would affect the façade performance and building ventilation. Comparing with sole windscreen walls, these three-dimensional structures perform like distributed air portal assembly, and each portal generates air turbulence and consume wind pressure and energy simultaneously. In this study, we attempted to compare the behavior of 2D porous windscreens without internal construction, porous tubular portal windscreens, porous tapered portal windscreens, and porous coned portal windscreens. The wind energy reduction phenomenon is then compared to the different distributed air portals. The experiments are conducted in a physical wind tunnel with 1:25 in scale to simulate the three-dimensional structure of a real building envelope. The experimental airflow was set up to smooth flow. The specimen is designed as a plane with a distributed tubular structure behind, and the control group uses different tubular shapes but the same fluid volume to observe the wind damping phenomenon of various geometries.

Keywords: volumized building envelope, porous air portal, wind damping, wind tunnel test, wind energy loss

Procedia PDF Downloads 139
6826 High Friction Surface Treatment Highway Safety Improvement Program Funded Pilot Project Maricopa County D. O. T.

Authors: Maz Muradvich

Abstract:

The Federal Highway Administration's Everyday Counts (EDC) initiative is designed to identify and deploy innovations, enhancing the safety of our roadways. According to and as referenced in FHWA everyday counts (2) website, High friction surface treatment (HFST) is an emerging surface application that has been proven to reduce crashes. High Friction Surface Treatment involves the application of Calcined Bauxite, very high-quality aggregate to the pavement using a polymer binder to restore and maintain pavement friction at existing or potentially high crash areas. Bauxite is a byproduct of manufacturing aluminum resulting in very hard aggregate and is abrasion and polish resistant. HFST is an approach that has been recognized nationally and internationally and has provided considerable increases in friction for curves and intersections spot applications. Maricopa County qualified and received HSIP (Highway Safety Improvement Program) funding that was applied towards HFST application on 2 locations in Maricopa County. The project was successfully completed in December 2019. Four years later MCDOT continues to conduct wet and dry ABS and Non-ABS friction coefficient testing in pursuit of after studies evaluation of HFST application.

Keywords: roadway departure, sever crashes, coefficient of friction, break meter technology

Procedia PDF Downloads 53
6825 Performance Assessment of Carbon Nano Tube Based Cutting Fluid in Machining Process

Authors: Alluru Gopala Krishna, Thella Babu Rao

Abstract:

In machining, there is always a problem with heat generation and friction produced during the process as they consequently affect tool wear and surface finish. An instant heat transfer mechanism could protect the cutting tool edge and enhance the tool life by cooling the cutting edge of the tool. In the present work, carbon nanotube (CNT) based nano-cutting fluid is proposed for machining a hard-to-cut material. Tool wear and surface roughness are considered for the evaluation of the nano-cutting fluid in turning process. The performance of nanocoolant is assessed against the conventional coolant and dry machining conditions and it is observed that the proposed nanocoolant has produced better performance than the conventional coolant.

Keywords: CNT based nano cutting fluid, tool wear, turning, surface roughness

Procedia PDF Downloads 268
6824 Synergistic Studies of Multi-Flame Retarders Using Silica Nanoparticles, and Nitrogen and Phosphorus-Based Compounds for Polystyrene Using Response Surface Methodology

Authors: Florencio D. De Los Reyes, Magdaleno R. Vasquez Jr., Mark Daniel G. De Luna, Peerasak Paoprasert

Abstract:

The effect of adding silica nanoparticles (SiNPs) obtained from rice husk, and phosphorus and nitrogen based compounds namely 9,10-dihydro-9-oxa-10-phosphaphenantrene-10-oxide (DOPO) and melamine, respectively, on the flammability of polystyrene (PS) was studied using response surface methodology (RSM). The flammability of PS was reduced as the limiting oxygen index (LOI) values increased when the flame retardant additives were added. DOPO exhibited the best retarding property increasing the LOI value of PS by 42.4%. A quadratic model for LOI was obtained from the RSM results, with percent loading of SiNPs, DOPO, and melamine, as independent variables. The observed increase in the LOI value as the percent loading of the flame retardant additives is increased, was attributed both to the main effects and synergistic effects of the parameters, as the LOI response of SiNPs is greatly enhanced by the addition of DOPO and melamine, as shown by the response surface plots. This indicates the potential of producing a cheaper, effective, and non-toxic multi-flame retardant system for the polymeric system via different flame retarding mechanisms.

Keywords: flame retardancy, polystyrene, response surface methodology, rice husk, silica nanoparticle

Procedia PDF Downloads 291
6823 Microfluidic Construction of Responsive Photonic Microcapsules for Microsensors

Authors: Lingling Shui, Shuting Xie

Abstract:

As alternatives to electronic devices, optically active structures from responsive nanomaterials offer great opportunity buildup smart functional sensors. Hereby, we report on droplet microfluidics enabled construction and application of photonic microcapsules (PMCs) for colorimetric temperature microsensors, enabling miniaturization for injectable local micro-area sensing and integration for large-area sensing. Monodispersed PMCs are produced by in-situ photopolymerization of hydrogel shells of cholesteric liquid crystal (CLC)-in-water-in-oil double emulsion droplets prepared using microfluidic devices, with controllable physical structures and chemical compositions. Constructed PMCs exhibit thermal responsive structural color according to the selective Bragg reflection of CLC’s periodical helical structures within the microdroplet’s spherical confinement. Constructed PMCs with tunable size and composition have been successfully applied for monitoring the living cell extracellular temperature via co-incubation with cell suspension, and for detecting human body temperature via a flexible device from assembled PMCs. These PMCs could be flexibly applied in either micro-environment or large-area surface, enabling wide applications for precision temperature monitoring biological activities (e.g. cells or organs), optoelectronic devices working conditions (e.g. temperature indicators under extreme conditions), and etc.

Keywords: droplet, microfluidics, assembly, soft materials, microsensor

Procedia PDF Downloads 84
6822 Comparative Study of Vertical and Horizontal Triplex Tube Latent Heat Storage Units

Authors: Hamid El Qarnia

Abstract:

This study investigates the impact of the eccentricity of the central tube on the thermal and fluid characteristics of a triplex tube used in latent heat energy storage technologies. Two triplex tube orientations are considered in the proposed study: vertical and horizontal. The energy storage material, which is a phase change material (PCM), is placed in the space between the inside and outside tubes. During the thermal energy storage period, a heat transfer fluid (HTF) flows inside the two tubes, transmitting the heat to the PCM through two heat exchange surfaces instead of one heat exchange surface as it is the case for double tube heat storage systems. A CFD model is developed and validated against experimental data available in the literature. The mesh independency study is carried out to select the appropriate mesh. In addition, different time steps are examined to determine a time step ensuring accuracy of the numerical results and reduction in the computational time. The numerical model is then used to conduct numerical investigations of the thermal behavior and thermal performance of the storage unit. The effects of eccentricity of the central tube and HTF mass flow rate on thermal characteristics and performance indicators are examined for two flow arrangements: co-current and counter current flows. The results are given in terms of isotherm plots, streamlines, melting time and thermal energy storage efficiency.

Keywords: energy storage, heat transfer, melting, solidification

Procedia PDF Downloads 61
6821 Impact of Landuse Change on Surface Temperature in Ibadan, Nigeria

Authors: Abegunde Linda, Adedeji Oluwatola

Abstract:

It has become increasingly evident that large developments influence the climate within the immediate region and there are concerns that rising temperatures over developed areas could have negative impact and increase living discomfort within city boundaries. Temperature trends in Ibadan city have received minor attention, yet the area has experienced heavy urban expansion between 1972 and 2014. This research aims at examining the impact of landuse change on temperature knowing that the built environment absorbs and stores solar energy, the temperature in cities can be several degrees higher than in adjacent rural areas. This is known as the urban heat island (UHI) effect. The Landsat imagery were used to examine the landuse change for a time period of 42years (1972-2014) and Land surface temperature (LST) was obtained by converting the thermal band to a surface temperature map and zonal statistic analyses was further used to examine the relationship between landuse and temperature emission. The results showed that the settlement area increased by 200km2 while the area covered by vegetation also reduced to about 42.6% during the study period. The spatial and temporal trends of temperature are related to the gradual change in urban landcover and the settlement area has the highest emission of land surface temperature. This research provides useful insight into the temporal behavior of the Ibadan city.

Keywords: landuse, LST, remote sensing, UHI

Procedia PDF Downloads 278
6820 Real-Time Optimisation and Minimal Energy Use for Water and Environment Efficient Irrigation

Authors: Kanya L. Khatri, Ashfaque A. Memon, Rod J. Smith, Shamas Bilal

Abstract:

The viability and sustainability of crop production is currently threatened by increasing water scarcity. Water scarcity problems can be addressed through improved water productivity and the options usually presumed in this context are efficient water use and conversion of surface irrigation to pressurized systems. By replacing furrow irrigation with drip or centre pivot systems, the water efficiency can be improved by up to 30 to 45%. However, the installation and application of pumps and pipes, and the associated fuels needed for these alternatives increase energy consumption and cause significant greenhouse gas emissions. Hence, a balance between the improvement in water use and the potential increase in energy consumption is required keeping in view adverse impact of increased carbon emissions on the environment. When surface water is used, pressurized systems increase energy consumption substantially, by between 65% to 75%, and produce greenhouse gas emissions around 1.75 times higher than that of gravity based irrigation. With gravity based surface irrigation methods the energy consumption is assumed to be negligible. This study has shown that a novel real-time infiltration model REIP has enabled implementation of real-time optimization and control of surface irrigation and surface irrigation with real-time optimization has potential to bring significant improvements in irrigation performance along with substantial water savings of 2.92 ML/ha which is almost equivalent to that given by pressurized systems. Thus real-time optimization and control offers a modern, environment friendly and water efficient system with close to zero increase in energy consumption and minimal greenhouse gas emissions.

Keywords: pressurised irrigation, carbon emissions, real-time, environmentally-friendly, REIP

Procedia PDF Downloads 507
6819 Approximating a Funicular Shape with a Translational Surface, Example of a Glass Canopy

Authors: Raphaël Menard, Etienne Fayette, Paul Azzopardi

Abstract:

This paper presents the method to generate the geometry of an actual glass canopy project in Rennes, France, by architect Bruno Gaudin, with aim to achieve the best structural efficiency possible using only quadrangle meshing. The paper includes equation of the translational surface generated, the level of accuracy in approximating the funicular shape and the method of constructive implementation.

Keywords: funicular shape, glass canopy, glass panels, lowered arches, mathematics, penalization, shell structure

Procedia PDF Downloads 557
6818 Viability of Irrigation Water Conservation Practices in the Low Desert of California

Authors: Ali Montazar

Abstract:

California and the Colorado River Basin are facing increasing uncertainty concerning water supplies. The Colorado River is the main source of irrigation water in the low desert of California. Currently, due to an increasing water-use competition and long-term drought at the Colorado River Basin, efficient use of irrigation water is one of the highest conservation priorities in the region. This study aims to present some of current irrigation technologies and management approaches in the low desert and assess the viability and potential of these water management practices. The results of several field experiments are used to assess five water conservation practices of sub-surface drip irrigation, automated surface irrigation, sprinkler irrigation, tail-water recovery system, and deficit irrigation strategy. The preliminary results of several ongoing studies at commercial fields are presented, particularly researches in alfalfa, sugar beets, kliengrass, sunflower, and spinach fields. The findings indicate that all these practices have significant potential to conserve water (an average of 1 ac-ft/ac) and enhance the efficiency of water use (15-25%). Further work is needed to better understand the feasibility of each of these applications and to help maintain profitable and sustainable agricultural production system in the low desert as water and labor costs, and environmental issues increase.

Keywords: automated surface irrigation, deficit irrigation, low desert of California, sprinkler irrigation, sub-surface drip irrigation, tail-water recovery system

Procedia PDF Downloads 160
6817 Advancing OER Catalysis with Mn-Doped CoFe-LDH: A Scalable 3D Nanostructured Catalyst for Sustainable and High-Performance Energy Technologies

Authors: Rajini Murugesan, Anantharaj Sengeni, Arthanareeswari Maruthapillai

Abstract:

The global transition to renewable energy hinges on breakthroughs in catalysis for the oxygen evolution reaction (OER) a bottleneck in fuel cell and water-splitting technologies. The 3D nanostructured Mn-doped CoFe-LDH catalyst merges high-performance engineering with next-generation material design. By leveraging the synergistic effects of Mn doping within the CoFe-LDH framework, this self-supported catalyst achieves a quantum leap in OER efficiency. The strategically tailored 3D architecture amplifies active surface areas and facilitates seamless electron transport, while Mn incorporation fine-tunes the electronic structure, unlocking new catalytic pathways. Synthesized through an accessible hydrothermal approach, the material redefines scalability in catalyst production. The Mn-doped CoFe-LDH delivers industry-leading performance, with an impressively low overpotential of 255 mV at 20 mA cm⁻², combined with enduring stability over 24 hours of rigorous operation in alkaline media. This remarkable performance not only rivals state-of-the-art alternatives but also offers a sustainable, cost-effective solution tailored for real-world energy applications. Our findings bridge the gap between material innovation and practical implementation, setting a benchmark for OER catalysis in the era of clean energy. The Mn-doped CoFe-LDH isn’t just a catalyst; it’s a vision for the future of sustainable energy technologies.

Keywords: clean energy, fuel cells, layered double hydroxides (LDH), oxygen evolution reaction (OER).

Procedia PDF Downloads 11
6816 Finite Element Modelling and Analysis of Human Knee Joint

Authors: R. Ranjith Kumar

Abstract:

Computer modeling and simulation of human movement is playing an important role in sports and rehabilitation. Accurate modeling and analysis of human knee join is more complex because of complicated structure whose geometry is not easily to represent by a solid model. As part of this project, from the number of CT scan images of human knee join surface reconstruction is carried out using 3D slicer software, an open source software. From this surface reconstruction model, using mesh lab (another open source software) triangular meshes are created on reconstructed surface. This final triangular mesh model is imported to Solid Works, 3D mechanical CAD modeling software. Finally this CAD model is imported to ABAQUS, finite element analysis software for analyzing the knee joints. The results obtained are encouraging and provides an accurate way of modeling and analysis of biological parts without human intervention.

Keywords: solid works, CATIA, Pro-e, CAD

Procedia PDF Downloads 128
6815 Signal Processing of Barkhausen Noise Signal for Assessment of Increasing Down Feed in Surface Ground Components with Poor Micro-Magnetic Response

Authors: Tanmaya Kumar Dash, Tarun Karamshetty, Soumitra Paul

Abstract:

The Barkhausen Noise Analysis (BNA) technique has been utilized to assess surface integrity of steels. But the BNA technique is not very successful in evaluating surface integrity of ground steels that exhibit poor micro-magnetic response. A new approach has been proposed for the processing of BN signal with Fast Fourier transforms while Wavelet transforms has been used to remove noise from the BN signal, with judicious choice of the ‘threshold’ value, when the micro-magnetic response of the work material is poor. In the present study, the effect of down feed induced upon conventional plunge surface grinding of hardened bearing steel has been investigated along with an ultrasonically cleaned, wet polished and a sample ground with spark out technique for benchmarking. Moreover, the FFT analysis has been established, at different sets of applied voltages and applied frequency and the pattern of the BN signal in the frequency domain is analyzed. The study also depicts the wavelet transforms technique with different levels of decomposition and different mother wavelets, which has been used to reduce the noise value in BN signal of materials with poor micro-magnetic response, in order to standardize the procedure for all BN signals depending on the frequency of the applied voltage.

Keywords: barkhausen noise analysis, grinding, magnetic properties, signal processing, micro-magnetic response

Procedia PDF Downloads 671
6814 The Stereotypical Images of Marginalized Women in the Poetry of Rita Dove

Authors: Wafaa Kamal Isaac

Abstract:

This paper attempts to shed light upon the stereotypical images of marginalized black women as shown through the poetry of Rita Dove. Meanwhile, it explores how stereotypical images held by the society and public perceptions perpetuate the marginalization of black women. Dove is considered one of the most fundamental African-American poets who devoted her writings to explore the problem of identity that confronted marginalized women in America. Besides tackling the issue of black women’s stereotypical images, this paper focuses upon the psychological damage which the black women had suffered from due to their stripped identity. In ‘Thomas and Beulah’, Dove reflects the black woman’s longing for her homeland in order to make up for her lost identity. This poem represents atavistic feelings deal with certain recurrent images, both aural and visual, like the image of Beulah who represents the African-American woman who searches for an identity, as she is being denied and humiliated one in the newly founded society. In an attempt to protest against the stereotypical mule image that had been imposed upon black women in America, Dove in ‘On the Bus with Rosa Parks’ tries to ignite the beaten spirits to struggle for their own rights by revitalizing the rebellious nature and strong determination of the historical figure ‘Rosa Parks’ that sparked the Civil Rights Movement. In ‘Daystar’, Dove proves that black women are subjected to double-edged oppression; firstly, in terms of race as a black woman in an unjust white society that violates her rights due to her black origins and secondly, in terms of gender as a member of the female sex that is meant to exist only to serve man’s needs. Similarly, in the ‘Adolescence’ series, Dove focuses on the double marginalization which the black women had experienced. It concludes that the marginalization of black women has resulted from the domination of the masculine world and the oppression of the white world. Moreover, Dove’s ‘Beauty and the Beast’ investigates the African-American women’s problem of estrangement and identity crisis in America. It also sheds light upon the psychological consequences that resulted from the violation of marginalized women’s identity. Furthermore, this poem shows the black women’s self-debasement, helplessness, and double consciousness that emanate from the sense of uprootedness. Finally, this paper finds out that the negative, debased and inferior stereotypical image held by the society did not only contribute to the marginalization of black women but also silenced and muted their voices.

Keywords: stereotypical images, marginalized women, Rita Dove, identity

Procedia PDF Downloads 170
6813 Seismic Impact and Design on Buried Pipelines

Authors: T. Schmitt, J. Rosin, C. Butenweg

Abstract:

Seismic design of buried pipeline systems for energy and water supply is not only important for plant and operational safety, but in particular for the maintenance of supply infrastructure after an earthquake. Past earthquakes have shown the vulnerability of pipeline systems. After the Kobe earthquake in Japan in 1995 for instance, in some regions the water supply was interrupted for almost two months. The present paper shows special issues of the seismic wave impacts on buried pipelines, describes calculation methods, proposes approaches and gives calculation examples. Buried pipelines are exposed to different effects of seismic impacts. This paper regards the effects of transient displacement differences and resulting tensions within the pipeline due to the wave propagation of the earthquake. Other effects are permanent displacements due to fault rupture displacements at the surface, soil liquefaction, landslides and seismic soil compaction. The presented model can also be used to calculate fault rupture induced displacements. Based on a three-dimensional Finite Element Model parameter studies are performed to show the influence of several parameters such as incoming wave angle, wave velocity, soil depth and selected displacement time histories. In the computer model, the interaction between the pipeline and the surrounding soil is modeled with non-linear soil springs. A propagating wave is simulated affecting the pipeline punctually independently in time and space. The resulting stresses mainly are caused by displacement differences of neighboring pipeline segments and by soil-structure interaction. The calculation examples focus on pipeline bends as the most critical parts. Special attention is given to the calculation of long-distance heat pipeline systems. Here, in regular distances expansion bends are arranged to ensure movements of the pipeline due to high temperature. Such expansion bends are usually designed with small bending radii, which in the event of an earthquake lead to high bending stresses at the cross-section of the pipeline. Therefore, Karman's elasticity factors, as well as the stress intensity factors for curved pipe sections, must be taken into account. The seismic verification of the pipeline for wave propagation in the soil can be achieved by observing normative strain criteria. Finally, an interpretation of the results and recommendations are given taking into account the most critical parameters.

Keywords: buried pipeline, earthquake, seismic impact, transient displacement

Procedia PDF Downloads 189
6812 Contact Temperature of Sliding Surfaces in AISI 316 Austenitic Stainless Steel During PIN on Disk Dry Wear Testing

Authors: Dler Abdullah Ahmed, Zozan Ahmed Mohammed

Abstract:

This study looked into contact surface temperature during a pin-on-disk test. Friction and wear between sliding surfaces raised the temperature differential between the contact surface and ambient temperatures Tdiff. Tdiff was significantly influenced by wear test variables. Tdiff rose with the increase of sliding speed and applied load while dropped with the increase in ambient temperature. The highest Tdiff was 289°C during the tests at room temperature and 2.5 m/s sliding speed, while the minimum was only 24 °C during the tests at 400°C and 0.5 m/s. However, the maximum contact temperature Tmax was found during tests conducted at high ambient temperatures. The Tmax was estimated based on the theoretical equation. The comparison of experimental and theoretical Tmax data revealed good agreement.

Keywords: pin on disk test, contact temperature, wear, sliding surface, friction, ambient temperature

Procedia PDF Downloads 88