Search results for: abnormal activity detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9845

Search results for: abnormal activity detection

8855 Direct Assessment of Cellular Immune Responses to Ovalbumin with a Secreted Luciferase Transgenic Reporter Mouse Strain IFNγ-Lucia

Authors: Martyna Chotomska, Aleksandra Studzinska, Marta Lisowska, Justyna Szubert, Aleksandra Tabis, Jacek Bania, Arkadiusz Miazek

Abstract:

Objectives: Assessing antigen-specific T cell responses is of utmost importance for the pre-clinical testing of prototype vaccines against intracellular pathogens and tumor antigens. Mainly two types of in vitro assays are used for this purpose 1) enzyme-linked immunospot (ELISpot) and 2) intracellular cytokine staining (ICS). Both are time-consuming, relatively expensive, and require manual dexterity. Here, we assess if a straightforward detection of luciferase activity in blood samples of transgenic reporter mice expressing a secreted Lucia luciferase under the transcriptional control of IFN-γ promoter parallels the sensitivity of IFNγ ELISpot assay. Methods: IFN-γ-LUCIA mouse strain carrying multiple copies of Lucia luciferase transgene under the transcriptional control of IFNγ minimal promoter were generated by pronuclear injection of linear DNA. The specificity of transgene expression and mobilization was assessed in vitro using transgenic splenocytes exposed to various mitogens. The IFN-γ-LUCIA mice were immunized with 50mg of ovalbumin (OVA) emulsified in incomplete Freund’s adjuvant three times every two weeks by subcutaneous injections. Blood samples were collected before and five days after each immunization. Luciferase activity was assessed in blood serum. Peripheral blood mononuclear cells were separated and assessed for frequencies of OVA-specific IFNγ-secreting T cells. Results: We show that in vitro cultured splenocytes of IFN-γ-LUCIA mice respond by 2 and 3 fold increase in secreted luciferase activity to T cell mitogens concanavalin A and phorbol myristate acetate, respectively but fail to respond to B cell-stimulating E.coli lipopolysaccharide. Immunization of IFN-γ-LUCIA mice with OVA leads to over 4 fold increase in luciferase activity in blood serum five days post-immunization with a barely detectable increase in OVA-specific, IFNγ-secreting T cells by ELISpot. Second and third immunizations, further increase the luciferase activity and coincidently also increase the frequencies of OVA-specific T cells by ELISpot. Conclusions: We conclude that minimally invasive monitoring of luciferase secretions in blood serum of IFN-γ-LUCIA mice constitutes a sensitive method for evaluating primary and memory Th1 responses to protein antigens. As such, this method may complement existing methods for rapid immunogenicity assessment of prototype vaccines.

Keywords: ELISpot, immunogenicity, interferon-gamma, reporter mice, vaccines

Procedia PDF Downloads 172
8854 A Data-Driven Monitoring Technique Using Combined Anomaly Detectors

Authors: Fouzi Harrou, Ying Sun, Sofiane Khadraoui

Abstract:

Anomaly detection based on Principal Component Analysis (PCA) was studied intensively and largely applied to multivariate processes with highly cross-correlated process variables. Monitoring metrics such as the Hotelling's T2 and the Q statistics are usually used in PCA-based monitoring to elucidate the pattern variations in the principal and residual subspaces, respectively. However, these metrics are ill suited to detect small faults. In this paper, the Exponentially Weighted Moving Average (EWMA) based on the Q and T statistics, T2-EWMA and Q-EWMA, were developed for detecting faults in the process mean. The performance of the proposed methods was compared with that of the conventional PCA-based fault detection method using synthetic data. The results clearly show the benefit and the effectiveness of the proposed methods over the conventional PCA method, especially for detecting small faults in highly correlated multivariate data.

Keywords: data-driven method, process control, anomaly detection, dimensionality reduction

Procedia PDF Downloads 299
8853 Synthesis, Electrochemical and Fluorimetric Analysis of Caffeic Cinnamic and Acid-Conjugated Hemorphin Derivatives Designed as Potential Anticonvulsant Agents

Authors: Jana Tchekalarova, Stela Georgieva, Petia Peneva, Petar Todorov

Abstract:

In the present study, a series of bioconjugates of N-modified hemorphine analogs containing second pharmacophore cinnamic acids (CA) or caffeic (KA) were synthesized by a traditional solid-phase Fmoc chemistry method for peptide synthesis. Electrochemical and fluorimetrical analysis and in vivo anticonvulsant activity in mice were conducted on the compounds. The three CA acids (H4-CA, H5-CA, and H7-CA) and three KA acids (H4-KA, H5-KA, and H7-KA)-conjugated hemorphine derivatives showed dose-dependent anticonvulsant activity in the maximal electroshock test (MES) in mice. The KA-conjugated H5-KA derivate was the only compound that suppressed clonic seizures at the lowest dose of 0.5 µg/mouse in the scPTZ test. The activity against the psychomotor seizures in the 6-Hz test was detected only for the H4-CA (0.5 µg) and H4-KA (0.5 µg and 1 µg), respectively. The peptide derivates did not exhibit neurotoxicity in the rotarod test. Our findings suggest that conjugated CA and KA hemorphine peptides can be used as a background for developing hemorphin-related analogs with anticonvulsant activity. Acknowledgements: This study is funded by the European Union-NextGenerationEU, through the National Recovery and Resilience Plan of the Republic of Bulgaria, project № BG-RRP-2.004-0002, "BiOrgaMCT".

Keywords: hemorphins, caffeic/cinnamic acid, anticonvulsant activity, electrochemistry, fluorimetry

Procedia PDF Downloads 108
8852 Differences in Activity Patterns between Adult and U-21 Major League Players in Four Field Positions

Authors: U. Harel, E. Carmeli

Abstract:

The Purpose was to measure differences in activity patterns between major league adult and U-21 soccer players. Four U-21 players and four adult team players were evaluated using a repeated measures technique. All eight players were affiliated with the Maccabi Haifa soccer club from the Israeli professional and U-21major leagues, depending on the player’s age. GPS sensors were attached to the players during five consecutive games to identify patterns regarding running distance and speed according to the field positions. There was no significant difference in the total running distances covered by two age groups. When measuring running speed, an advantage was observed in the adult group when comparing two players from different age groups that played the same position. Differences in activity patterns were evident between adult and U-21 major league soccer players. Furthermore, differences in within group activity pattern emerged between the positions under investigation. These findings provide valuable knowledge that may serve the principle of training specificity.

Keywords: physical fitness, soccer, positional differences, GPS, training specificity

Procedia PDF Downloads 155
8851 Preliminary Phytochemical Screening, Analysis of Phenolic Compounds and Antioxidant Activity of Genista cephalantha Spach. (Fabaceae)

Authors: Chebbah Kaoutar, Marchioni Eric, Menad Ahmed, Mekkiou Ratiba, Sarri Djamel, Ameddah Souad, Boumaza Ouahiba, Seghiri Ramdane, Benayache Samir, Benayache Fadila

Abstract:

This study was designed to estabilish a preliminary phytochemical screening, evaluate the phenolic and flavonoid content according to the Folin-Ciocalteu procedure, and aluminum chloride method respectively and to determine qualitatively, using HPLC-UV method, the most important products present in ethyl acetate (EtOAc) and n-butanol (n-BuOH) extracts of the aerial parts of Genista cephalantha Spach. from East Algeria. The antioxidant activity of these extracts was spectrophotometrically tested by measuring their ability to scavenge a stable DPPH free radical and by β-Carotene/linoleic acid bleaching assay. Evaluated extracts showed a good activity in both antioxidant system assays.

Keywords: phenolic compounds, flavonoids, HPLC-DAD-UV, antioxidant activity, genista cephalantha, fabaceae

Procedia PDF Downloads 532
8850 Enzyme Inhibition Activity of Schiff Bases Against Mycobacterium Tuberculosis Using Molecular Docking

Authors: Imran Muhammad

Abstract:

The main cause of infectious disease in the modern world is Mycobacterium Tuberculosis (MT). To combat tuberculosis, new and efficient drugs are an urgent need in the modern world. Schif bases are potent for their biological pharmacophore activity. Thus we selected different Vanillin-based Schiff bases for their binding activity against target enzymes of Mycobacterium tuberculosis that is (DprE1 (decaprenyl phosphoryl-β-D-ribose 2′-epimerase), and DNA gyrase subunit-A), using molecular docking. We evaluate the inhibition potential, interaction, and binding mode of these compounds with the target enzymes.

Keywords: schiff bases, tuberculosis, DNA gyrase, DprE1, docking

Procedia PDF Downloads 75
8849 Evaluating the Educational Intervention Based on Web and Integrative Model of Behavior Prediction to Promote Physical Activities and HS-CRP Factor among Nurses

Authors: Arsalan Ghaderi

Abstract:

Introduction: Inactivity is one of the most important risk factors for cardiovascular disease. According to the study prevalence of inactivity in Iran, about 67.5% and in the staff, and especially nurses, are similar. The inflammatory index (HS-CRP) is highly predictive of the progression of these diseases. Physical activity education is very important in preventing these diseases. One of the modern educational methods is web-based theory-based education. Methods: This is a semi-experimental interventional study which was conducted in Isfahan and Kurdistan universities of medical sciences in two stages. A cross-sectional study was done to determine the status of physical activity and its predictive factors. Then, intervention was performed, and six months later the data were retrieved. The data was collected using a demographic questionnaire, an integrative model of behavior prediction constructs, a standard physical activity questionnaire and (HS-CRP) test. Data were analyzed by SPSS software. Results: Physical activity was low in 66.6% of nurses, 25.4% were moderate and 8% severe. According to Pearson correlation matrix, the highest correlation was found between behavioral intention and skill structures (0.553**), subjective norms (0.222**) and self-efficacy (0.198**). The relationship between age and physical activity in the first study was reverse and significant. After intervention, there was a significant change in attitudes, self-efficacy, skill and behavioral intention in the intervention group. This change was significant in attitudes, self-efficacy and environmental conditions of the control group. HS-CRP index decreased significantly after intervention in both groups, but there was not a significant relationship between inflammatory index and physical activity score. The change in physical activity level was significant only in the control group. Conclusion: Despite the effect of educational intervention on attitude, self-efficacy, skill, and behavioral intention, the results showed that if factors such as environmental factors are not corrected, training and changing structures cannot lead to physical activity behavior. On the other hand, no correlation between physical activity and HS-CRP showed that this index can be influenced by other factors, and this should be considered in any intervention to reduce the HS-CRP index.

Keywords: HS-CRP, integrative model of behavior prediction, physical activity, nurses, web-based education

Procedia PDF Downloads 117
8848 Localization of Radioactive Sources with a Mobile Radiation Detection System using Profit Functions

Authors: Luís Miguel Cabeça Marques, Alberto Manuel Martinho Vale, José Pedro Miragaia Trancoso Vaz, Ana Sofia Baptista Fernandes, Rui Alexandre de Barros Coito, Tiago Miguel Prates da Costa

Abstract:

The detection and localization of hidden radioactive sources are of significant importance in countering the illicit traffic of Special Nuclear Materials and other radioactive sources and materials. Radiation portal monitors are commonly used at airports, seaports, and international land borders for inspecting cargo and vehicles. However, these equipment can be expensive and are not available at all checkpoints. Consequently, the localization of SNM and other radioactive sources often relies on handheld equipment, which can be time-consuming. The current study presents the advantages of real-time analysis of gamma-ray count rate data from a mobile radiation detection system based on simulated data and field tests. The incorporation of profit functions and decision criteria to optimize the detection system's path significantly enhances the radiation field information and reduces survey time during cargo inspection. For source position estimation, a maximum likelihood estimation algorithm is employed, and confidence intervals are derived using the Fisher information. The study also explores the impact of uncertainties, baselines, and thresholds on the performance of the profit function. The proposed detection system, utilizing a plastic scintillator with silicon photomultiplier sensors, boasts several benefits, including cost-effectiveness, high geometric efficiency, compactness, and lightweight design. This versatility allows for seamless integration into any mobile platform, be it air, land, maritime, or hybrid, and it can also serve as a handheld device. Furthermore, integration of the detection system into drones, particularly multirotors, and its affordability enable the automation of source search and substantial reduction in survey time, particularly when deploying a fleet of drones. While the primary focus is on inspecting maritime container cargo, the methodologies explored in this research can be applied to the inspection of other infrastructures, such as nuclear facilities or vehicles.

Keywords: plastic scintillators, profit functions, path planning, gamma-ray detection, source localization, mobile radiation detection system, security scenario

Procedia PDF Downloads 118
8847 Insecticidal Activity of Extracts Essential Oils of Mentha Rotundifolia

Authors: Bouziane Zehaira

Abstract:

Essential oils derived from aromatic or medicinal plants have recently proven useful in a variety of fields including the production of medicines, perfumes and foodstuffs. The purpose of this research is to determine the insecticidal activity of essential oils extracted from Mentha rotundifolia species against Aphis fabae. The bioassay used to determine essential oils toxicity to pest insect Aphis fabae revealed a very high effective repellent. The effect with concentrations of 100% and 30% were found to be statistically significant (F=64.800, P<0.0001) with an average of 7.66 and 7, respectively. According to the findings, the plant under consideration is promising as a source of natural pesticides and lends itself well to research in the field of pest control using biochemical alternatives.

Keywords: pest, mentha, activity, effective

Procedia PDF Downloads 61
8846 Hexane Extract of Thymus serpyllum L.: GC-MS Profile, Antioxidant Potential and Anticancer Impact on HepG2 (Liver Carcinoma) Cell Line

Authors: Salma Baig, Bakrudeen Ali Ahmad, Ainnul Hamidah Syahadah Azizan, Hapipah Mohd Ali, Elham Rouhollahi, Mahmood Ameen Abdulla

Abstract:

Free radical damage induced by reactive oxygen species (ROS) contributes to etiology of many chronic diseases, cancer being one of them. Recent studies have been successful in ROS targeted therapies via antioxidants using mouse models in cancer therapeutics. The present study was designed to scrutinize anticancer activity, antioxidant activity of 5 different extracts of Thymus serpyllum in MDA-MB-231, MCF-7, HepG2, HCT-116, PC3, and A549. Identification of the phytochemicals present in the most active extract of Thymus serpyllum was conducted using gas chromatography coupled with mass spectrophotometry and antioxidant activity was measured by using DPPH radical scavenging and FRAP assay. Anticancer impact of the extract in terms of IC50 was evaluated using MTT cell viability assay. Results revealed that the hexane extract showed the best anticancer activity in HepG2 (Liver Carcinoma Cell Line) with an IC50 value of 23 ± 0.14 µg/ml followed by 25 µg/ml in HCT-116 (Colon Cancer Cell Line), 30 µm/ml in MCF-7 (Breast Cancer Cell Line), 35 µg/ml in MDA-MB-231 (Breast Cancer Cell Line), 57 µg/ml in PC3 (Prostate Cancer Cell Line) and 60 µg/ml in A549 (Lung Carcinoma Cell Line). GC-MS profile of the hexane extract showed the presence of 31 compounds with carvacrol, thymol and thymoquione being the major compounds. Phenolics such as Vitamin E, terpinen-4-ol, borneol and phytol were also identified. Hence, here we present the first report on cytotoxicity of hexane extract of Thymus serpyllum extract in HepG2 cell line with a robust anticancer activity with an IC50 of 23 ± 0.14 µg/ml.

Keywords: Thymus serpyllum L., hexane extract, GC-MS profile, antioxidant activity, anticancer activity, HepG2 cell line

Procedia PDF Downloads 517
8845 A Deep Learning Approach to Calculate Cardiothoracic Ratio From Chest Radiographs

Authors: Pranav Ajmera, Amit Kharat, Tanveer Gupte, Richa Pant, Viraj Kulkarni, Vinay Duddalwar, Purnachandra Lamghare

Abstract:

The cardiothoracic ratio (CTR) is the ratio of the diameter of the heart to the diameter of the thorax. An abnormal CTR, that is, a value greater than 0.55, is often an indicator of an underlying pathological condition. The accurate prediction of an abnormal CTR from chest X-rays (CXRs) aids in the early diagnosis of clinical conditions. We propose a deep learning-based model for automatic CTR calculation that can assist the radiologist with the diagnosis of cardiomegaly and optimize the radiology flow. The study population included 1012 posteroanterior (PA) CXRs from a single institution. The Attention U-Net deep learning (DL) architecture was used for the automatic calculation of CTR. A CTR of 0.55 was used as a cut-off to categorize the condition as cardiomegaly present or absent. An observer performance test was conducted to assess the radiologist's performance in diagnosing cardiomegaly with and without artificial intelligence (AI) assistance. The Attention U-Net model was highly specific in calculating the CTR. The model exhibited a sensitivity of 0.80 [95% CI: 0.75, 0.85], precision of 0.99 [95% CI: 0.98, 1], and a F1 score of 0.88 [95% CI: 0.85, 0.91]. During the analysis, we observed that 51 out of 1012 samples were misclassified by the model when compared to annotations made by the expert radiologist. We further observed that the sensitivity of the reviewing radiologist in identifying cardiomegaly increased from 40.50% to 88.4% when aided by the AI-generated CTR. Our segmentation-based AI model demonstrated high specificity and sensitivity for CTR calculation. The performance of the radiologist on the observer performance test improved significantly with AI assistance. A DL-based segmentation model for rapid quantification of CTR can therefore have significant potential to be used in clinical workflows.

Keywords: cardiomegaly, deep learning, chest radiograph, artificial intelligence, cardiothoracic ratio

Procedia PDF Downloads 100
8844 Dynamics of Antioxidant and Anti-Radical Activity of the Extracts of Certain Plants of Kazakhstan

Authors: A. Kazbekova, A. Kudaibergenov, G. Atazhanova, S. Adekenov

Abstract:

In recent years, it achieved some progress such a direction as to study the possibility of correlation between different types of biological activity. In particular, in our work, we consider questions such as: the impact of the qualitative composition of total substances in the example of plant extracts on antioxidant and antiradical activity, the presents of correlation between these types of activity, etc. It is known that there is a relationship between the values of optical density of working solutions of extracts and corresponding bioactivity in vitro, in particular, the antioxidant and hepatoprotective effects. In this study, we have identified that among some studied species of wormwood (Artemisia viridis Wild, Artemisia jacutica Drob, Artemisia annua L, Artemisia siversiana Wild, Artemisia adamsii Bess, Artemisia tianschanica, Artemisia obtusiloba Ledeb., Artemisia heptopotamica), as well as extracts of Inula caspica, Аjania tenuifolia, Abies sibirica, Galatella songorica, Mentha asiatica and Thymus mugodzharicus it was identified that the highest content of polyphenol compounds is in Thymus mugodzharicus. At the same time, we determined the antioxidant and antiradical activity, which was the highest for the Thymus mugodzharicus. Butylhydroxyanisole and ascorbic acid were used as comparison substances. Also, it was established that antioxidant and anti-radical activities depend on the concentration of the of all investigated samples. Based on obtained data, we believe that the extract of Thymus mugodzharicus can be recommended for further study on the antioxidant and antiradical activity in vivo, as well as the opportunity of this sample to demonstrate hepatoprotective effect. The study was sponsored by SANTO academic program.

Keywords: in vitro, in vivo, antioxidant, hepatoprotective effect

Procedia PDF Downloads 317
8843 Teaching, Learning and Evaluation Enhancement of Information Communication Technology Education in Schools through Pedagogical and E-Learning Techniques in the Sri Lankan Context

Authors: M. G. N. A. S. Fernando

Abstract:

This study uses a researchable framework to improve the quality of ICT education and the Teaching Learning Assessment/ Evaluation (TLA/TLE) process. It utilizes existing resources while improving the methodologies along with pedagogical techniques and e-Learning approaches used in the secondary schools of Sri Lanka. The study was carried out in two phases. Phase I focused on investigating the factors which affect the quality of ICT education. Based on the key factors of phase I, the Phase II focused on the design of an Experimental Application Model with 6 activity levels. Each Level in the Activity Model covers one or more levels in the Revised Bloom’s Taxonomy. Towards further enhancement of activity levels, other pedagogical techniques (activity based learning, e-learning techniques, problem solving activities and peer discussions etc.) were incorporated to each level in the activity model as appropriate. The application model was validated by a panel of teachers including a domain expert and was tested in the school environment too. The validity of performance was proved using 6 hypotheses testing and other methodologies. The analysis shows that student performance with problem solving activities increased by 19.5% due to the different treatment levels used. Compared to existing process it was also proved that the embedded techniques (mixture of traditional and modern pedagogical methods and their applications) are more effective with skills development of teachers and students.

Keywords: activity models, Bloom’s taxonomy, ICT education, pedagogies

Procedia PDF Downloads 165
8842 Open-Source YOLO CV For Detection of Dust on Solar PV Surface

Authors: Jeewan Rai, Kinzang, Yeshi Jigme Choden

Abstract:

Accumulation of dust on solar panels impacts the overall efficiency and the amount of energy they produce. While various techniques exist for detecting dust to schedule cleaning, many of these methods use MATLAB image processing tools and other licensed software, which can be financially burdensome. This study will investigate the efficiency of a free open-source computer vision library using the YOLO algorithm. The proposed approach has been tested on images of solar panels with varying dust levels through an experiment setup. The experimental findings illustrated the effectiveness of using the YOLO-based image classification method and the overall dust detection approach with an accuracy of 90% in distinguishing between clean and dusty panels. This open-source solution provides a cost effective and accessible alternative to commercial image processing tools, offering solutions for optimizing solar panel maintenance and enhancing energy production.

Keywords: YOLO, openCV, dust detection, solar panels, computer vision, image processing

Procedia PDF Downloads 36
8841 Quantitative Structure-Activity Relationship Analysis of Binding Affinity of a Series of Anti-Prion Compounds to Human Prion Protein

Authors: Strahinja Kovačević, Sanja Podunavac-Kuzmanović, Lidija Jevrić, Milica Karadžić

Abstract:

The present study is based on the quantitative structure-activity relationship (QSAR) analysis of eighteen compounds with anti-prion activity. The structures and anti-prion activities (expressed in response units, RU%) of the analyzed compounds are taken from CHEMBL database. In the first step of analysis 85 molecular descriptors were calculated and based on them the hierarchical cluster analysis (HCA) and principal component analysis (PCA) were carried out in order to detect potential significant similarities or dissimilarities among the studied compounds. The calculated molecular descriptors were physicochemical, lipophilicity and ADMET (absorption, distribution, metabolism, excretion and toxicity) descriptors. The first stage of the QSAR analysis was simple linear regression modeling. It resulted in one acceptable model that correlates Henry's law constant with RU% units. The obtained 2D-QSAR model was validated by cross-validation as an internal validation method. The validation procedure confirmed the model’s quality and therefore it can be used for prediction of anti-prion activity. The next stage of the analysis of anti-prion activity will include 3D-QSAR and molecular docking approaches in order to select the most promising compounds in treatment of prion diseases. These results are the part of the project No. 114-451-268/2016-02 financially supported by the Provincial Secretariat for Science and Technological Development of AP Vojvodina.

Keywords: anti-prion activity, chemometrics, molecular modeling, QSAR

Procedia PDF Downloads 304
8840 Design of an Ensemble Learning Behavior Anomaly Detection Framework

Authors: Abdoulaye Diop, Nahid Emad, Thierry Winter, Mohamed Hilia

Abstract:

Data assets protection is a crucial issue in the cybersecurity field. Companies use logical access control tools to vault their information assets and protect them against external threats, but they lack solutions to counter insider threats. Nowadays, insider threats are the most significant concern of security analysts. They are mainly individuals with legitimate access to companies information systems, which use their rights with malicious intents. In several fields, behavior anomaly detection is the method used by cyber specialists to counter the threats of user malicious activities effectively. In this paper, we present the step toward the construction of a user and entity behavior analysis framework by proposing a behavior anomaly detection model. This model combines machine learning classification techniques and graph-based methods, relying on linear algebra and parallel computing techniques. We show the utility of an ensemble learning approach in this context. We present some detection methods tests results on an representative access control dataset. The use of some explored classifiers gives results up to 99% of accuracy.

Keywords: cybersecurity, data protection, access control, insider threat, user behavior analysis, ensemble learning, high performance computing

Procedia PDF Downloads 128
8839 Clove Essential Oil Improves Lipid Peroxidation and Antioxidant Activity in Tilapia Fish Fillet Cooked by Grilling and Microwaving

Authors: E. Oskoueian, E. Maroufyan, Y. M. Goh, E. Ramezani-Fard, M. Ebrahimi

Abstract:

The fish meat plays an important role in the human health as it contains high quality protein. The tilapia fish considered as the third largest group of farmed fish. The oxidative deterioration of fish meat may occur during the cooking process. The proper cooking process and using natural antioxidant to prevent oxidation and enhance the quality of the tilapia fish fillet is necessary. Hence, this research was carried out to evaluate the potential of clove essential oil to prevent lipid peroxidation and enhance the antioxidant activity of tilapia fish fillet cooked using microwave and griller. The results showed that cooking using microwave significantly (p < 0.05) increased the lipid peroxidation and decreased the DPPH and ferric reducing activity power of the fish fillet as compared to grilling. The fortification of fish fillet using clove essential oil prevented from lipid peroxidation and enhanced the antioxidant activity of the fish fillet significantly (p < 0.05). Consequently, fortification of tilapia fish fillet using clove essential oil followed by cooking using griller to have high quality cooked fish meat is recommended.

Keywords: antioxidant activity, fillet, fish, fortification, lipid peroxidation

Procedia PDF Downloads 455
8838 Antioxidant Activity of Selected Medicinal Plants Used in Folk Medicine in Libya

Authors: Salmin Alshalmani, Ghazall M Benhusein, Ebtisam Alhadi Absomaha, Marwa I. Meshri, Hamdoon A. Mohammed, Jamal Mezogi

Abstract:

Eight wild medicinal plants used by Libyan and growing in Al-Jebel Al-Akhdar, Libya were suspected to estimate the antioxidant activity using 2,2-Diphenyl-1-Picrylhydrazyl stable free radical (DPPH). Incidences of purple colour reduction of the DPPH by testing extracts in addition to quercetin and vitamin C as positive controls reflect its ability to scavenge free radicals. All testing plants extract showed noticeable strength as antioxidant regarding its abilities to scavenge DPPH with an especial regards to Sarcopoterium spinosum.

Keywords: antioxidant, scavenging activity, folk medicine, methanol extracts

Procedia PDF Downloads 602
8837 The Importance of Conserving Pre-Historical, Historical and Cultural Heritage and Its Tourist Exploitation

Authors: Diego Renan G. Tudela, Veruska C. Dutra, Mary Lucia Gomes Silveira de Senna, Afonso R. Aquino

Abstract:

Tourism in the present is the largest industry in the world, being an important global activity that has grown a lot in recent times. In this context, the activity of cultural tourism is growing, being seen as an important source of knowledge and information enjoyed by visitors. This article aims to discuss the cultural tourism, archaeological records and indigenous communities and the importance of preserving these invaluable sources of information, focusing on the records of the first peoples inhabiting the South American and North American lands. The study was based on discussions, theoretical studies, bibliographical research. Archaeological records are an important source of knowledge and information. Indigenous ethnic tourism represents a rescue of the authenticity of indigenous traditional cultures and their relation to the natural habitat. Cultural and indigenous tourism activity requires long-term planning to make it a sustainable activity.

Keywords: tourism, culture, preservation, discussions

Procedia PDF Downloads 262
8836 Telomerase, a Biomarker in Oral Cancer Cell Proliferation and Tool for Its Prevention at Initial Stage

Authors: Shaista Suhail

Abstract:

As cancer populations is increasing sharply, the incidence of oral squamous cell carcinoma (OSCC) has also been expected to increase. Oral carcinogenesis is a highly complex, multistep process which involves accumulation of genetic alterations that lead to the induction of proteins promoting cell growth (encoded by oncogenes), increased enzymatic (telomerase) activity promoting cancer cell proliferation. The global increase in frequency and mortality, as well as the poor prognosis of oral squamous cell carcinoma, has intensified current research efforts in the field of prevention and early detection of this disease. The advances in the understanding of the molecular basis of oral cancer should help in the identification of new markers. The study of the carcinogenic process of the oral cancer, including continued analysis of new genetic alterations, along with their temporal sequencing during initiation, promotion and progression, will allow us to identify new diagnostic and prognostic factors, which will provide a promising basis for the application of more rational and efficient treatments. Telomerase activity has been readily found in most cancer biopsies, in premalignant lesions or germ cells. Activity of telomerase is generally absent in normal tissues. It is known to be induced upon immortalization or malignant transformation of human cells such as in oral cancer cells. Maintenance of telomeres plays an essential role during transformation of precancer to malignant stage. Mammalian telomeres, a specialized nucleoprotein structures are composed of large conctamers of the guanine-rich sequence 5_-TTAGGG-3_. The roles of telomeres in regulating both stability of genome and replicative immortality seem to contribute in essential ways in cancer initiation and progression. It is concluded that activity of telomerase can be used as a biomarker for diagnosis of malignant oral cancer and a target for inactivation in chemotherapy or gene therapy. Its expression will also prove to be an important diagnostic tool as well as a novel target for cancer therapy. The activation of telomerase may be an important step in tumorgenesis which can be controlled by inactivating its activity during chemotherapy. The expression and activity of telomerase are indispensable for cancer development. There are no drugs which can effect extremely to treat oral cancers. There is a general call for new emerging drugs or methods that are highly effective towards cancer treatment, possess low toxicity, and have a minor environment impact. Some novel natural products also offer opportunities for innovation in drug discovery. Natural compounds isolated from medicinal plants, as rich sources of novel anticancer drugs, have been of increasing interest with some enzyme (telomerase) blockage property. The alarming reports of cancer cases increase the awareness amongst the clinicians and researchers pertaining to investigate newer drug with low toxicity.

Keywords: oral carcinoma, telomere, telomerase, blockage

Procedia PDF Downloads 175
8835 Seismic Perimeter Surveillance System (Virtual Fence) for Threat Detection and Characterization Using Multiple ML Based Trained Models in Weighted Ensemble Voting

Authors: Vivek Mahadev, Manoj Kumar, Neelu Mathur, Brahm Dutt Pandey

Abstract:

Perimeter guarding and protection of critical installations require prompt intrusion detection and assessment to take effective countermeasures. Currently, visual and electronic surveillance are the primary methods used for perimeter guarding. These methods can be costly and complicated, requiring careful planning according to the location and terrain. Moreover, these methods often struggle to detect stealthy and camouflaged insurgents. The object of the present work is to devise a surveillance technique using seismic sensors that overcomes the limitations of existing systems. The aim is to improve intrusion detection, assessment, and characterization by utilizing seismic sensors. Most of the similar systems have only two types of intrusion detection capability viz., human or vehicle. In our work we could even categorize further to identify types of intrusion activity such as walking, running, group walking, fence jumping, tunnel digging and vehicular movements. A virtual fence of 60 meters at GCNEP, Bahadurgarh, Haryana, India, was created by installing four underground geophones at a distance of 15 meters each. The signals received from these geophones are then processed to find unique seismic signatures called features. Various feature optimization and selection methodologies, such as LightGBM, Boruta, Random Forest, Logistics, Recursive Feature Elimination, Chi-2 and Pearson Ratio were used to identify the best features for training the machine learning models. The trained models were developed using algorithms such as supervised support vector machine (SVM) classifier, kNN, Decision Tree, Logistic Regression, Naïve Bayes, and Artificial Neural Networks. These models were then used to predict the category of events, employing weighted ensemble voting to analyze and combine their results. The models were trained with 1940 training events and results were evaluated with 831 test events. It was observed that using the weighted ensemble voting increased the efficiency of predictions. In this study we successfully developed and deployed the virtual fence using geophones. Since these sensors are passive, do not radiate any energy and are installed underground, it is impossible for intruders to locate and nullify them. Their flexibility, quick and easy installation, low costs, hidden deployment and unattended surveillance make such systems especially suitable for critical installations and remote facilities with difficult terrain. This work demonstrates the potential of utilizing seismic sensors for creating better perimeter guarding and protection systems using multiple machine learning models in weighted ensemble voting. In this study the virtual fence achieved an intruder detection efficiency of over 97%.

Keywords: geophone, seismic perimeter surveillance, machine learning, weighted ensemble method

Procedia PDF Downloads 81
8834 Fault Detection and Isolation in Sensors and Actuators of Wind Turbines

Authors: Shahrokh Barati, Reza Ramezani

Abstract:

Due to the countries growing attention to the renewable energy producing, the demand for energy from renewable energy has gone up among the renewable energy sources; wind energy is the fastest growth in recent years. In this regard, in order to increase the availability of wind turbines, using of Fault Detection and Isolation (FDI) system is necessary. Wind turbines include of various faults such as sensors fault, actuator faults, network connection fault, mechanical faults and faults in the generator subsystem. Although, sensors and actuators have a large number of faults in wind turbine but have discussed fewer in the literature. Therefore, in this work, we focus our attention to design a sensor and actuator fault detection and isolation algorithm and Fault-tolerant control systems (FTCS) for Wind Turbine. The aim of this research is to propose a comprehensive fault detection and isolation system for sensors and actuators of wind turbine based on data-driven approaches. To achieve this goal, the features of measurable signals in real wind turbine extract in any condition. The next step is the feature selection among the extract in any condition. The next step is the feature selection among the extracted features. Features are selected that led to maximum separation networks that implemented in parallel and results of classifiers fused together. In order to maximize the reliability of decision on fault, the property of fault repeatability is used.

Keywords: FDI, wind turbines, sensors and actuators faults, renewable energy

Procedia PDF Downloads 401
8833 Antibacterial Activity of Trans-Cinnamaldehyde and Geraniol and Their Potential as Ingredients of Biocidal Polymers

Authors: Daria Olkiewicz, Maciej Walczak

Abstract:

In this paper, the biocidal effects of trans-cinnamaldehyde (a main component of cinnamon oil) and geraniol (a constituent of Pelargonium graveolens essential oil) are presented. The activity of the combination of trans-cinnamaldehyde and geraniol was tested against 3 bacterial strains: Staphylococcus aureus ATCC6538 (Gramm+), Escherichia coli ATCC8739 (Gramm-, Lac+) and Pseudomonas aeruginosa KKP 991(Gramm-, Lac-). The biocidal activity of trans-cinnamaldehyde-geraniol mixture against bacteria mentioned above was evaluated by disk-diffusion method. The model strains were exposed on 1, 2.5, 5 and 10 mg of trans-cinnamaldehyde-geraniol mixture per disk, and all strains were susceptible to this combination of plant compounds. For all microorganisms, also Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC) were estimated. For Staphylococcus aureus MIC was 0.0625 mg/ml of the trans-cinnamaldehyde and geraniol mixture, and MBC was 1.25 mg/ml; For Escherichia coli MIC=0.5 mg/ml, MBC=1 mg/ml, and finally Pseudomonas aeruginosa was inhibited in 0.5 mg/ml, and minimal biocidal concentration of tested mixture for it was 1.25 mg/ml. There are also reports about the synergistic working of trans-cinnamaldehyde and geraniol against microorganisms and the antimicrobial activity of polymers enriched with trans-cinnamaldehyde or geraniol, therefore the successful development and introduction to the today life of biocidal polymer enriched with trans-cinnamaldehyde and geraniol are possible.

Keywords: antibacterial activity, biocidal polymers, geraniol, trans-cinnamaldehyde

Procedia PDF Downloads 180
8832 Optimization of Hate Speech and Abusive Language Detection on Indonesian-language Twitter using Genetic Algorithms

Authors: Rikson Gultom

Abstract:

Hate Speech and Abusive language on social media is difficult to detect, usually, it is detected after it becomes viral in cyberspace, of course, it is too late for prevention. An early detection system that has a fairly good accuracy is needed so that it can reduce conflicts that occur in society caused by postings on social media that attack individuals, groups, and governments in Indonesia. The purpose of this study is to find an early detection model on Twitter social media using machine learning that has high accuracy from several machine learning methods studied. In this study, the support vector machine (SVM), Naïve Bayes (NB), and Random Forest Decision Tree (RFDT) methods were compared with the Support Vector machine with genetic algorithm (SVM-GA), Nave Bayes with genetic algorithm (NB-GA), and Random Forest Decision Tree with Genetic Algorithm (RFDT-GA). The study produced a comparison table for the accuracy of the hate speech and abusive language detection model, and presented it in the form of a graph of the accuracy of the six algorithms developed based on the Indonesian-language Twitter dataset, and concluded the best model with the highest accuracy.

Keywords: abusive language, hate speech, machine learning, optimization, social media

Procedia PDF Downloads 129
8831 Essential Oil Composition and Antimicrobial Activity of Rosmarinus officinalis L. Grown in Algeria (Djelfa)

Authors: Samah Lakehal, A. Meliani, F. Z. Benrebiha, C. Chaouia

Abstract:

In the last few years, due to the misuse of antibiotics and an increasing incidence of immunodeficiency-related diseases, the development of microbial drug resistance has become more and more of a pressing problem. Recently, natural products from medicinal plants represent a fertile ground for the development of novel antibacterial agents. Plants essential oils have come more into the focus of phytomedicine. The present study describes antimicrobial activity of Rosmarinus officinalis L. essential oil known medicinally for its powerful antibacterial properties. The essential oil of rosemary obtained by hydrodistillation (using Clevenger type apparatus) growing in Algeria (Djelfa city of south Algeria) was investigated by GC-MS. The essential oil yield of the study was 1.4 %. The major components were found to be camphor, camphene, 1,8-cineole. The essential oil has been tested for antimicrobial activity against eight bacteria (Gram-negative and Gram-positive), and three fungi including Candida albicans. Inhibition of growth was tested by the agar diffusion method based on the determination of the diameter of inhibition. The oil was found to have significant antibacterial activity and therefore can be used as a natural antimicrobial agent for the treatment of several infectious diseases caused by those germs, which have developed resistance to antibiotics.

Keywords: antimicrobial activity, Rosmarinus officinalis L., essential oils, GC/MS, camphor

Procedia PDF Downloads 392
8830 The Term Spread Impact on Economic Activity for Transition Economies: Case of Georgia

Authors: L. Totladze

Abstract:

The role of financial sector in supporting economic growth and development is well acknowledged. The term spread (the difference between the yields on long-term and short-term Treasury securities) has been found useful for predicting economic variables as output growth, inflation, industrial production, consumption. The temp spread is one of the leading economic indicators according to NBER methodology. Leading economic indicators are widely used in forecasting of economic activity. Many empirical studies find that the term spread predicts future economic activity. The article shortly explains how the term spread might predict future economic activity. This paper analyses the dynamics of the spread between short and long-term interest rates in countries with transition economies. The research paper analyses term spread dynamics in Georgia and compare it with post-communist countries and transition economies spread dynamics. In Georgia, the banking sector plays an important and dominant role in the financial sector, especially with respect to the mobilization of savings and provision of credit and may impact on economic activity. For this purpose, we study the impact of the term spread on economic growth in Georgia.

Keywords: forecasting, leading economic indicators, term spread, transition economies

Procedia PDF Downloads 176
8829 The Journey of a Malicious HTTP Request

Authors: M. Mansouri, P. Jaklitsch, E. Teiniker

Abstract:

SQL injection on web applications is a very popular kind of attack. There are mechanisms such as intrusion detection systems in order to detect this attack. These strategies often rely on techniques implemented at high layers of the application but do not consider the low level of system calls. The problem of only considering the high level perspective is that an attacker can circumvent the detection tools using certain techniques such as URL encoding. One technique currently used for detecting low-level attacks on privileged processes is the tracing of system calls. System calls act as a single gate to the Operating System (OS) kernel; they allow catching the critical data at an appropriate level of detail. Our basic assumption is that any type of application, be it a system service, utility program or Web application, “speaks” the language of system calls when having a conversation with the OS kernel. At this level we can see the actual attack while it is happening. We conduct an experiment in order to demonstrate the suitability of system call analysis for detecting SQL injection. We are able to detect the attack. Therefore we conclude that system calls are not only powerful in detecting low-level attacks but that they also enable us to detect high-level attacks such as SQL injection.

Keywords: Linux system calls, web attack detection, interception, SQL

Procedia PDF Downloads 359
8828 Free Raducal Scavenging Activity of Fractionated Extract and Structural Elucidation of Isolated Compounds from Hydrocotyl Bonariensis Comm. Ex Lam Leaves

Authors: Emmanuel O Ajani, Sabiu S, Mariam Zakari, Fisayo A Bamisaye

Abstract:

Hydrocotyl bonariensis is a plant which anticataractogenic potentials have been reported. In the present study an attempt was made to evaluate the in vitro antioxidant activity of the fractionates of the leaves extract and also characterize some of its chemical constituents. DPPH, H₂O₂, OH and NO free radical scavenging, metal chelating and reducing power activity was used to evaluate the antioxidant activity of the crude extract fractionates. Fresh leaves of Hydrocotyl bonariensis leaves were extracted in 70% methanol. The extract was partitioned with different solvent system of increasing polarity (n-hexane, chloroform, ethyl acetate methanol and water). Compounds were isolated from the aqueous practitionate using accelerated gradient chromatography, vacuum liquid chromatography, preparative TLC and conventional column chromatography. The presence of the chemical groups was established with HPLC and Fourier Transform Infra Red. The structures of isolated compounds were elucidated by spectroscopic study and chemical shifts. Data from the study indicates that all the fractionates contain compounds with free radical scavenging activity. This activity was more pronounced in the aqueous fractionate (DPPH IC₅₀, 0025 ± 0.011 mg/ml, metal chelating capacity 27.5%, OH- scavenging IC₅₀, 0.846 ± 0.037 mg/ml, H₂O₂ scavenging IC₅₀ 0.521 ± 0.015 mg/ml, reducing power IC₅₀ 0.248 ± 0.025 mg/ml and NO scavenging IC₅₀ 0.537 ± 0.038 mg/ml). Two compounds were isolated and when compared with data from the literature; the structures were suggestive of polyphenolic flavonoid, quercetin and 3-O-β-D-glucopyranosyl-sitosterol. The result indicates that H. bonariensis leaves contain bioactive compounds with antioxidant activity.

Keywords: antioxidant, cataract, free radical, flavonoids, hydrocotyl bonariensis

Procedia PDF Downloads 272
8827 Credit Card Fraud Detection with Ensemble Model: A Meta-Heuristic Approach

Authors: Gong Zhilin, Jing Yang, Jian Yin

Abstract:

The purpose of this paper is to develop a novel system for credit card fraud detection based on sequential modeling of data using hybrid deep learning models. The projected model encapsulates five major phases are pre-processing, imbalance-data handling, feature extraction, optimal feature selection, and fraud detection with an ensemble classifier. The collected raw data (input) is pre-processed to enhance the quality of the data through alleviation of the missing data, noisy data as well as null values. The pre-processed data are class imbalanced in nature, and therefore they are handled effectively with the K-means clustering-based SMOTE model. From the balanced class data, the most relevant features like improved Principal Component Analysis (PCA), statistical features (mean, median, standard deviation) and higher-order statistical features (skewness and kurtosis). Among the extracted features, the most optimal features are selected with the Self-improved Arithmetic Optimization Algorithm (SI-AOA). This SI-AOA model is the conceptual improvement of the standard Arithmetic Optimization Algorithm. The deep learning models like Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), and optimized Quantum Deep Neural Network (QDNN). The LSTM and CNN are trained with the extracted optimal features. The outcomes from LSTM and CNN will enter as input to optimized QDNN that provides the final detection outcome. Since the QDNN is the ultimate detector, its weight function is fine-tuned with the Self-improved Arithmetic Optimization Algorithm (SI-AOA).

Keywords: credit card, data mining, fraud detection, money transactions

Procedia PDF Downloads 131
8826 Physical Activity Levels in Qatar: A Pedometer-Based Assessment

Authors: Suzan Sayegh, Izzeldin Ibrahim, Mercia Van Der Walt, Mohamed Al-Kuwari

Abstract:

Background: Walking is the most common form of physical activity which can promote a healthy well-being among people of different age groups. In this regard, pedometers are becoming more popular within research and are considered useful tools in monitoring physical activity levels based on individuals’ daily steps. A value of ˂5,000 steps/day is identified as a sedentary lifestyle index where individuals are physically inactive. Those achieving 5,000-7,499 steps/day have a low active lifestyle as they do not meet the moderate-to-vigorous physical activity (MVPA) recommendations. Moreover, individuals achieving ≥7,500 steps/day are classified as physically active. The objective of this study is to assess the physical activity levels of adult population in Qatar through a pedometer-based program over a one-year period. Methods: A cross-sectional analysis, as part of a longitudinal study, was carried out over one year to assess the daily step count. “Step into Health” is a community-based program launched by Aspire as an approach for the purpose of improving physical activity across the population of Qatar. The program involves distribution of pedometers to registered members which is supported by a self-monitoring online account and linked to a web database. Daily habitual physical activity (daily total step count) was assessed through Omron HJ-324U pedometer. Analyses were done on data extracted from the web database. Results: A total of 1,988 members were included in this study (males: n=1,143, 57%; females: n=845, 43%). Average age was 37.8±10.9 years distributed as 60% of age between age 25-54 (n=1,186), 27% of age 45-64 (n=546), and 13% of age 18-24 years (n=256). Majority were non-Qataris, 81% (n=1,609) compared with 19% of the Qatari nationality (n=379). Average body mass index (BMI) was 27.8±6.1 (kg/m2) where most of them (41%, n=809) were found to be overweight, between 25-30 kg/m2. Total average step count was 5,469±3,884. Majority were found to be sedentary (n=1110, 55.8%). Middle aged individuals were more active than the other two age groups. Males were seen as more active than females. Those who were less active had a higher BMI. Older individuals were more active. There was a variation in the physical activity level throughout the year period. Conclusion: It is essential to further develop the available intervention programs and increase their physical activity behavior. Planning such physical activity interventions for female population should involve aspects such as time, environmental variables and aerobic steps.

Keywords: adults, pedometer, physical activity, step-count

Procedia PDF Downloads 362