Search results for: international energy investments
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12280

Search results for: international energy investments

2170 An Empirical Assessment of Indoor Environmental Quality in Developing Sub-Saharan Countries: Evaluation of Existing Gaps and Potential Risk

Authors: Jean-Paul Kapuya Bulaba Nyembwe, John Omomoluwa Ogundiran, Manuel Carlos Gameiro da Silva

Abstract:

Indoor environmental quality (IEQ) remains a global concern because it impacts people's comfort, health, performance, and general well-being. People spend a significant amount of time in buildings or while commuting, hence ensuring the minimal risk in indoor spaces by ensuring suitable IEQ. IEQ studies are limited regarding developing sub-Saharan countries, whereas there is also a huge risk and concern for the current population and geometric growth as many cities in the region will become mega-cities by 2040 (World Bank report). The absence of suitable IEQ regulations and energy poverty are reasons to assess the IEQ gaps for increased awareness of sustainable interventions to minimize the associated risk. This study evaluates the gaps and potential hazards that exist in the IEQ of sub-Saharan countries using empirical studies of hospital occupants and BRT bus passengers and drivers. The Surveys were conducted in 3 cities of the Democratic Republic of Congo and Lagos metropolis of Nigeria. The results suggest that gaps exist in IEQ for these regions. The gaps indicate existential risk to people’s health, comfort, and well-being. The inferential conclusions are that there is a need for further scientific studies, improvement in IEQ conditions, and ensuring suitable regulations for developing sub-Saharan countries.

Keywords: health hazards, hospitals indoor environmental quality, indoor spaces, occupants, sub-Saharan countries, vehicles

Procedia PDF Downloads 71
2169 Fast Generation of High-Performance Driveshafts: A Digital Approach to Automated Linked Topology and Design Optimization

Authors: Willi Zschiebsch, Alrik Dargel, Sebastian Spitzer, Philipp Johst, Robert Böhm, Niels Modler

Abstract:

In this article, we investigate an approach that digitally links individual development process steps by using the drive shaft of an aircraft engine as a representative example of a fiber polymer composite. Such high-performance, lightweight composite structures have many adjustable parameters that influence the mechanical properties. Only a combination of optimal parameter values can lead to energy efficient lightweight structures. The development tools required for the Engineering Design Process (EDP) are often isolated solutions, and their compatibility with each other is limited. A digital framework is presented in this study, which allows individual specialised tools to be linked via the generated data in such a way that automated optimization across programs becomes possible. This is demonstrated using the example of linking geometry generation with numerical structural analysis. The proposed digital framework for automated design optimization demonstrates the feasibility of developing a complete digital approach to design optimization. The methodology shows promising potential for achieving optimal solutions in terms of mass, material utilization, eigenfrequency, and deformation under lateral load with less development effort. The development of such a framework is an important step towards promoting a more efficient design approach that can lead to stable and balanced results.

Keywords: digital linked process, composite, CFRP, multi-objective, EDP, NSGA-2, NSGA-3, TPE

Procedia PDF Downloads 76
2168 Modeling and Simulating Drop Interactions in Spray Structure of High Torque Low Speed Diesel Engine

Authors: Rizwan Latif, Syed Adnan Qasim, Muzaffar Ali

Abstract:

Fuel direct injection represents one of the key aspects in the development of the diesel engines, the idea of controlling the auto-ignition and the consequent combustion of a liquid spray injected in a reacting atmosphere during a time scale of few milliseconds has been a challenging task for the engine community and pushed forward to a massive research in this field. The quality of the air-fuel mixture defines the combustion efficiency, and therefore the engine efficiency. A droplet interaction in dense as well as thin portion of the spray receives equal importance as other parameters in spray structure. Usually, these are modeled along with breakup process and analyzed alike. In this paper, droplet interaction is modeled and simulated for high torque low speed scenario. Droplet interactions may further be subdivided into droplet collision and coalescence, spray wall impingement, droplets drag, etc. Droplet collisions may occur in almost all spray applications, but especially in diesel like conditions such as high pressure sprays as utilized in combustion engines. These collisions have a strong influence on the mean droplet size and its spatial distribution and can, therefore, affect sub-processes of spray combustion such as mass, momentum and energy transfer between gas and droplets. Similarly, for high-pressure injection systems spray wall impingement is an inherent sub-process of mixture formation. However, its influence on combustion is in-explicit.

Keywords: droplet collision, coalescence, low speed, diesel fuel

Procedia PDF Downloads 236
2167 Multifluid Computational Fluid Dynamics Simulation for Sawdust Gasification inside an Industrial Scale Fluidized Bed Gasifier

Authors: Vasujeet Singh, Pruthiviraj Nemalipuri, Vivek Vitankar, Harish Chandra Das

Abstract:

For the correct prediction of thermal and hydraulic performance (bed voidage, suspension density, pressure drop, heat transfer, and combustion kinetics), one should incorporate the correct parameters in the computational fluid dynamics simulation of a fluidized bed gasifier. Scarcity of fossil fuels, and to fulfill the energy demand of the increasing population, researchers need to shift their attention to the alternative to fossil fuels. The current research work focuses on hydrodynamics behavior and gasification of sawdust inside a 2D industrial scale FBG using the Eulerian-Eulerian multifluid model. The present numerical model is validated with experimental data. Further, this model extended for the prediction of gasification characteristics of sawdust by incorporating eight heterogeneous moisture release, volatile cracking, tar cracking, tar oxidation, char combustion, CO₂ gasification, steam gasification, methanation reaction, and five homogeneous oxidation of CO, CH₄, H₂, forward and backward water gas shift (WGS) reactions. In the result section, composition of gasification products is analyzed, along with the hydrodynamics of sawdust and sand phase, heat transfer between the gas, sand and sawdust, reaction rates of different homogeneous and heterogeneous reactions is being analyzed along the height of the domain.

Keywords: devolatilization, Eulerian-Eulerian, fluidized bed gasifier, mathematical modelling, sawdust gasification

Procedia PDF Downloads 107
2166 Development of Fault Diagnosis Technology for Power System Based on Smart Meter

Authors: Chih-Chieh Yang, Chung-Neng Huang

Abstract:

In power system, how to improve the fault diagnosis technology of transmission line has always been the primary goal of power grid operators. In recent years, due to the rise of green energy, the addition of all kinds of distributed power also has an impact on the stability of the power system. Because the smart meters are with the function of data recording and bidirectional transmission, the adaptive Fuzzy Neural inference system, ANFIS, as well as the artificial intelligence that has the characteristics of learning and estimation in artificial intelligence. For transmission network, in order to avoid misjudgment of the fault type and location due to the input of these unstable power sources, combined with the above advantages of smart meter and ANFIS, a method for identifying fault types and location of faults is proposed in this study. In ANFIS training, the bus voltage and current information collected by smart meters can be trained through the ANFIS tool in MATLAB to generate fault codes to identify different types of faults and the location of faults. In addition, due to the uncertainty of distributed generation, a wind power system is added to the transmission network to verify the diagnosis correctness of the study. Simulation results show that the method proposed in this study can correctly identify the fault type and location of fault with more efficiency, and can deal with the interference caused by the addition of unstable power sources.

Keywords: ANFIS, fault diagnosis, power system, smart meter

Procedia PDF Downloads 139
2165 Investigation of Polymer Solar Cells Degradation Behavior Using High Defect States Influence Over Various Polymer Absorber Layers

Authors: Azzeddine Abdelalim, Fatiha Rogti

Abstract:

The degradation phenomenon in polymer solar cells (PCSs) has not been clearly explained yet. In fact, there are many causes that show up and influence these cells in a variety of ways. Also, there has been a growing concern over this degradation in the photovoltaic community. One of the main variables deciding PSCs photovoltaic output is defect states. In this research, devices modeling is carried out to analyze the multiple effects of degradation by applying high defect states (HDS) on ideal PSCs, mainly poly(3-hexylthiophene) (P3HT) absorber layer. Besides, a comparative study is conducted between P3HT and other PSCs by a simulation program called Solar Cell Capacitance Simulator (SCAPS). The adjustments to the defect parameters in several absorber layers explain the effect of HDS on the total output properties of PSCs. The performance parameters for HDS, quantum efficiency, and energy band were therefore examined. This research attempts to explain the degradation process of PSCs and the causes of their low efficiency. It was found that the defects often affect PSCs performance, but defect states have a little effect on output when the defect level is less than 1014cm-3, which gives similar performance values with P3HT cells when these defects is about 1019cm-3. The high defect states can cause up to 11% relative reduction in conversion efficiency of ideal P3HT. In the center of the band gap, defect states become more noxious. This approach is for one of the degradation processes potential of PSCs especially that use fullerene derivative acceptors.

Keywords: degradation, high defect states, polymer solar cells, SCAPS-1D

Procedia PDF Downloads 91
2164 Tribological Response of Self-Mated Zircaloy-4 under Varying Conditions

Authors: Bharat Kumar, Deepak Kumar, Vijay Chaudhry

Abstract:

Zirconium alloys are widely used for the core components of a pressurized heavy water reactor (PHWR) or Canada deuterium (CANDU) reactor due to their low neutron absorption cross-section and excellent mechanical properties. The components made of Zirconium alloys are subjected to flow-induced vibrations, resulting in fretting wear at the interface of; pressure tubes and bearing pads, pressure tubes and calandria tubes, and calandria tubes and Liquid injection shutdown system (LISS) nozzles. There is a need to explore the tribological response under such conditions. Present work simulates the contact between calandria tube and LISS nozzle of PHWR/CANDU reactor as cylinder-on-cylinder contact configuration. Reciprocating tribo-tests were conducted on Zircaloy-4 (Zr-4) under the self-mated condition at varying amplitude, frequency, and sliding time. To understand the active wear mechanism, worn surfaces were analyzed using Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The change in amplitude severely affects the wear than other factors. The wear mechanism transits from adhesion to abrasion with increasing test amplitude. The dominant wear mechanisms are micro-cutting and micro-plowing followed by delamination in some areas. However, the coefficient of friction has indifferent behaviors.

Keywords: zircaloy-4, tribology, calandria tube, LISS nozzle, PHWR

Procedia PDF Downloads 209
2163 A Review on Application of Phase Change Materials in Textiles Finishing

Authors: Mazyar Ahrari, Ramin Khajavi, Mehdi Kamali Dolatabadi, Tayebeh Toliyat, Abosaeed Rashidi

Abstract:

Fabric as the first and most common layer that is in permanent contact with human skin is a very good interface to provide coverage, as well as heat and cold insulation. Phase change materials (PCMs) are organic and inorganic compounds which have the capability of absorbing and releasing noticeable amounts of latent heat during phase transitions between solid and liquid phases at a low temperature range. PCMs come across phase changes (liquid-solid and solid-liquid transitions) during absorbing and releasing thermal heat; so, in order to use them for a long time, they should have been encapsulated in polymeric shells, so-called microcapsules. Microencapsulation and nanoencapsulation methods have been developed in order to reduce the reactivity of a PCM with outside environment, promoting the ease of handling, decreasing the diffusion and evaporation rates. Methods of incorporation of PCMs in textiles such as electrospinning and determining thermal properties had been summarized. Paraffin waxes catch a lot of attention due to their high thermal storage density, repeatability of phase change, thermal stability, small volume change during phase transition, chemical stability, non-toxicity, non-flammability, non-corrosive and low cost and they seem to play a key role in confronting with climate change and global warming. In this article, we aimed to review the researches concentrating on the characteristics of PCMs and new materials and methods of microencapsulation.

Keywords: thermoregulation, microencapsulation, phase change materials, thermal energy storage, nanoencapsulation

Procedia PDF Downloads 388
2162 Coarse-Grained Molecular Simulations to Estimate Thermophysical Properties of Phase Equilibria

Authors: Hai Hoang, Thanh Xuan Nguyen Thi, Guillaume Galliero

Abstract:

Coarse-Grained (CG) molecular simulations have shown to be an efficient way to estimate thermophysical (static and dynamic) properties of fluids. Several strategies have been developed and reported in the literature for defining CG molecular models. Among them, those based on a top-down strategy (i.e. CG molecular models related to macroscopic observables), despite being heuristic, have increasingly gained attention. This is probably due to its simplicity in implementation and its ability to provide reasonable results for not only simple but also complex systems. Regarding simple Force-Fields associated with these CG molecular models, it has been found that the four parameters Mie chain model is one of the best compromises to describe thermophysical static properties (e.g. phase diagram, saturation pressure). However, parameterization procedures of these Mie-chain GC molecular models given in literature are generally insufficient to simultaneously provide static and dynamic (e.g. viscosity) properties. To deal with such situations, we have extended the corresponding states by using a quantity associated with the liquid viscosity. Results obtained from molecular simulations have shown that our approach is able to yield good estimates for both static and dynamic thermophysical properties for various real non-associating fluids. In addition, we will show that on simple (e.g. phase diagram, saturation pressure) and complex (e.g. thermodynamic response functions, thermodynamic energy potentials) static properties, results of our scheme generally provides improved results compared to existing approaches.

Keywords: coarse-grained model, mie potential, molecular simulations, thermophysical properties, phase equilibria

Procedia PDF Downloads 336
2161 Development of Value Added Product Based on Millets and Hemp Seed (cannabis sativa L.)

Authors: Khushi Kashyap, Pratibha Singh

Abstract:

In the recent years increasing interest in vegetarian diets has been observed, a major problem in this type of diet is to provide the appropriate amount of protein .Value addition of food is current most talked topic because of increasing nutritional awareness among consumers today. An investigation was conducted to develop protein rich multi-millet hemp seed khakhra. The seeds of cannabis sativa L. have been a significant source of food for thousand of year. In recent years, hemp has not been thoroughly explored for its nutritional potential due to the mistaken belief regarding the cannabis plants. Methodology- two variations was prepared referencing standard recipe. Variation 1 was prepared using 25g ragi, 25g bajra,40g whole wheat flour with 10g hemp seed powder, variation 2(RF-25g,BF25g,WWF-35g,HS-15g). The product was subjected to sensory evolution by semi trained panel members using 9 point hedonic on 50 panelists. Result- result of the sensory evaluation revealed that the product incorporated with 15g of hemp seed were similar to control I texture, taste and overall quality and was more acceptable by the panelist and was selected as final product seed. On estimation of the nutrient content 30g of khakhra provides 107kcal of energy,12g protein,75g carbohydrate, and 9.6g of fats with shelf life of 3 months. Conclusion- khakhras can be eaten as a snack at any time of the day. hemp seed powder incorporated in it enhances its nutritive value and makes it more nutritious. It is suitable for consumption of all the age group.

Keywords: cannabis sativa, hemp, protein, seed

Procedia PDF Downloads 91
2160 Tandem Concentrated Photovoltaic-Thermoelectric Hybrid System: Feasibility Analysis and Performance Enhancement Through Material Assessment Methodology

Authors: Shuwen Hu, Yuancheng Lou, Dongxu Ji

Abstract:

Photovoltaic (PV) power generation, as one of the most commercialized methods to utilize solar power, can only convert a limited range of solar spectrum into electricity, whereas the majority of the solar energy is dissipated as heat. To address this problem, thermoelectric (TE) module is often integrated with the concentrated PV module for waste heat recovery and regeneration. In this research, a feasibility analysis is conducted for the tandem concentrated photovoltaic-thermoelectric (CPV-TE) hybrid system considering various operational parameters as well as TE material properties. Furthermore, the power output density of the CPV-TE hybrid system is maximized by selecting the optimal TE material with application of a systematic assessment methodology. In the feasibility analysis, CPV-TE is found to be more advantageous than sole CPV system except under high optical concentration ratio with low cold side convective coefficient. It is also shown that the effects of the TE material properties, including Seebeck coefficient, thermal conductivity, and electrical resistivity, on the feasibility of CPV-TE are interacted with each other and might have opposite effect on the system performance under different operational conditions. In addition, the optimal TE material selected by the proposed assessment methodology can improve the system power output density by 227 W/m2 under highly concentrated solar irradiance hence broaden the feasible range of CPV-TE considering optical concentration ratio.

Keywords: feasibility analysis, material assessment methodology, photovoltaic waste heat recovery, tandem photovoltaic-thermoelectric

Procedia PDF Downloads 72
2159 Social Problems and Gender Wage Gap Faced by Working Women in Readymade Garment Sector of Pakistan

Authors: Narjis Kahtoon

Abstract:

The issue of the wage discrimination on the basis of gender and social problem has been a significant research problem for several decades. Whereas lots of have explored reasons for the persistence of an inequality in the wages of male and female, none has successfully explained away the entire differentiation. The wage discrimination on the basis of gender and social problem of working women is a global issue. Although inequality in political and economic and social make-up of countries all over the world, the gender wage discrimination, and social constraint is present. The aim of the research is to examine the gender wage discrimination and social constraint from an international perspective and to determine whether any pattern exists among cultural dimensions of a country and the man and women remuneration gap in Readymade Garment Sector of Pakistan. Population growth rate is significant indicator used to explain the change in population and play a crucial point in the economic development of a country. In Pakistan, readymade garment sector consists of small, medium and large sized firms. With an estimated 30 percent of the workforce in textile- Garment is females’. Readymade garment industry is a labor intensive industry and relies on the skills of individual workers and provides highest value addition in the textile sector. In the Garment sector, female workers are concentrated in poorly paid, labor-intensive down-stream production (readymade garments, linen, towels, etc.), while male workers dominate capital- intensive (ginning, spinning and weaving) processes. Gender wage discrimination and social constraint are reality in Pakistan Labor Market. This research allows us not only to properly detect the size of gender wage discrimination and social constraint but to also fully understand its consequences in readymade garment sector of Pakistan. Furthermore, research will evaluated this measure for the three main clusters like Lahore, Karachi, and Faisalabad. These data contain complete details of male and female workers and supervisors in the readymade garment sector of Pakistan. These sources of information provide a unique opportunity to reanalyze the previous finding in the literature. The regression analysis focused on the standard 'Mincerian' earning equation and estimates it separately by gender, the research will also imply the cultural dimensions developed by Hofstede (2001) to profile a country’s cultural status and compare those cultural dimensions to the wage inequalities. Readymade garment of Pakistan is one of the important sectors since its products have huge demand at home and abroad. These researches will a major influence on the measures undertaken to design a public policy regarding wage discrimination and social constraint in readymade garment sector of Pakistan.

Keywords: gender wage differentials, decomposition, garment, cultural

Procedia PDF Downloads 209
2158 Development a Home-Hotel-Hospital-School Community-Based Palliative Care Model for Patients with Cancer in Suratthani, Thailand

Authors: Patcharaporn Sakulpong, Wiriya Phokhwang

Abstract:

Background: Banpunrug (Love Sharing House) established in 2013 provides a community-based palliative care for patients with cancer from 7 provinces in southern Thailand. These patients come to receive outpatient chemotherapy and radiotherapy at Suratthani Cancer Hospital. They are poor and uneducated; they need an accommodation during their 30-45 day course of therapy. Methods: A community-participatory action research (PAR) was employed to establish a model of palliative care for patients with cancer. The participants included health care providers, community, and patients and families. The PAR process includes problem identification and need assessment, community and team establishment, field survey, organization founding, model of care planning, action and inquiry (PDCA), outcome evaluation, and model distribution. Results: The model of care at Banpunrug involves the concepts of HHHS model, in that Banpunrug is a Home for patients; patients live in a house comfortable like in a Hotel resource; the patients are given care and living facilities similarly to those in a Hospital; the house is a School for patients to learn how to take care themselves, how to live well with cancer, and most importantly how to prepare themselves for a good death. The house is also a humanized care school for health care providers. Banpunrug’s philosophy of care is based on friendship therapy, social and spiritual support, community partnership, patient-family centeredness, Live & Love sharing house, and holistic and humanized care. With this philosophy, the house is managed as a home of the patients and everyone involved; everything is costless for all eligible patients and their family members; all facilities and living expense are donated from benevolent people, friends, and community. Everyone, including patients and family, has a sense of belonging to the house and there is no authority between health care providers and the patients in the house. The house is situated in a temple and a community and supported by many local nonprofit organizations and healthcare facilities such as a health promotion hospital at sub-disctrict level and Suratthani Cancer Hospital. Village health volunteers and multi-professional health care volunteers have contributed not only appropriate care, but also knowledge and experience to develop a distinguishing HHHS community-based palliative care model for patients with cancer. Since its opening the house has been a home for more than 400 patients and 300 family members. It is also a model for many national and international healthcare organizations and providers, who come to visit and learn about palliative care in and by community. Conclusions: The success of this palliative care model comes from community involvement, multi-professional volunteers and distributions, and concepts of HHHS model. Banpunrug promotes a consistent care across the cancer trajectory independent of prognosis in order to strengthen a full integration of palliative

Keywords: community-based palliative care, model, participatory action research, patients with cancer

Procedia PDF Downloads 268
2157 The Taiwan Environmental Impact Assessment Act Contributes to the Water Resources Saving

Authors: Feng-Ming Fan, Xiu-Hui Wen

Abstract:

Shortage of water resources is a crucial problem to be solved in Taiwan. However, lack of effective and mandatory regulation on water recovery and recycling leads to no effective water resource controls currently. Although existing legislation sets standards regarding water recovery, implementation and enforcement of legislation are facing challenges. In order to break through the dilemma, this study aims to find enforcement tools, improve inspection skills, develop an inspection system, to achieve sustainable development of precious water resources. The Taiwan Environmental Impact Assessment Act (EIA Act) was announced on 1994. The aim of EIA Act is to protect the environment by preventing and mitigating the adverse impact of development activity on the environment. During the EIA process, we can set standards that require enterprises to reach a certain percentage of water recycling based on different case characteristics, to promote sewage source reduction and water saving benefits. Next, we have to inspect how the enterprises handle their waste water and perform water recovery based on environmental assessment commitments, for the purpose of reviewing and measuring the implementation efficiency of water recycling and reuse, an eco-friendly measure. We invited leading experts in related fields to provide lecture on water recycling, strengthen law enforcement officials’ inspection knowledge, and write inspection reference manual to be used as basis of enforcement. Then we finalized the manual by reaching mutual agreement between the experts and relevant agencies. We then inspected 65 high-tech companies whose daily water consumption is over 1,000 tons individually, located at 3 science parks, set up by Ministry of Science and Technology. Great achievement on water recycling was achieved at an amount of 400 million tons per year, equivalent to 2.5 months water usage for general public in Taiwan. The amount is equal to 710 billion bottles of 600 ml cola, 170 thousand international standard swimming pools of 2,500 tons, irrigation water applied to 40 thousand hectares of rice fields, or 1.7 Taipei Feitsui Reservoir of reservoir storage. This study demonstrated promoting effects of environmental impact assessment commitments on water recycling, and therefore water resource sustainable development. It also confirms the value of EIA Act for environmental protection. Economic development should go hand in hand with environmental protection, and it’s a mainstream. It clearly shows the EIA regulation can minimize harmful effects caused by development activity to the environment, as well as pursuit water resources sustainable development.

Keywords: the environmental impact assessment act, water recycling environmental assessment commitment, water resource sustainable development, water recycling, water reuse

Procedia PDF Downloads 247
2156 Experimental and Computational Investigations on the Mitigation of Air Pollutants Using Pulsed Radio Waves

Authors: Gangadhara Siva Naga Venkata Krishna Satya Narayana Swamy Undi

Abstract:

Particulate matter (PM) pollution in ambient air is a major environmental health risk factor contributing to disease and mortality worldwide. Current air pollution control methods have limitations in reducing real-world ambient PM levels. This study demonstrates the efficacy of using pulsed radio wave technology as a distinct approach to lower outdoor particulate pollution. Experimental data were compared with computational models to evaluate the efficiency of pulsed waves in coagulating and settling PM. Results showed 50%+ reductions in PM2.5 and PM10 concentrations at the city scale, with particle removal rates exceeding gravity settling by over 3X. Historical air quality data further validated the significant PM reductions achieved in test cases. Computational analyses revealed the underlying coagulation mechanisms induced by the pulsed waves, supporting the feasibility of this strategy for ambient particulate control. The pulsed electromagnetic technology displayed robustness in sustainably managing PM levels across diverse urban and industrial environments. Findings highlight the promise of this advanced approach as a next-generation solution to mitigate particulate air pollution and associated health burdens globally. The technology's scalability and energy efficiency can help address a key gap in current efforts to improve ambient air quality.

Keywords: particulate matter, mitigation technologies, clean air, ambient air pollution

Procedia PDF Downloads 51
2155 The Effectiveness of Psychosocial Interventions for Survivors of Natural Disasters: A Systematic Review

Authors: Santhani M. Selveindran

Abstract:

Background: Natural disasters are traumatic global events that are becoming increasing more common, with significant psychosocial impact on survivors. This impact results not only in psychosocial distress but, for many, can lead to psychosocial disorders and chronic psychopathology. While there are currently available interventions that seek to prevent and treat these psychosocial sequelae, their effectiveness is uncertain. The evidence-base is emerging with more primary studies evaluating the effectiveness of various psychosocial interventions for survivors of natural disasters, which remains to be synthesized. Aim of Review: To identify, critically appraise and synthesize the current evidence-base on the effectiveness of psychosocial interventions in preventing or treating Post-Traumatic Stress Disorder (PTSD), Major Depressive Disorder (MDD) and/or Generalized Anxiety Disorder (GAD) in adults and children who are survivors of natural disasters. Methods: A protocol was developed as a guide to carry out this review. A systematic search was conducted in eight international electronic databases, three grey literature databases, one dissertation and thesis repository, websites of six humanitarian and non-governmental organizations renowned for their work on natural disasters, as well as bibliographic and citation searching for eligible articles. Papers meeting the specific inclusion criteria underwent quality assessment using the Downs and Black checklist. Data were extracted from the included papers and analysed by way of narrative synthesis. Results: Database and website searching returned 3777 papers where 31 met the criteria for inclusion. Additional 2 papers were obtained through bibliographic and citation searching. Methodological quality of most papers was fair. Twenty-five studies evaluated psychological interventions, five, social interventions whereas three studies evaluated ‘mixed’ psychological and social interventions. All studies, irrespective of methodological quality, reported post-intervention reductions in symptom scores for PTSD, depression and/or anxiety and where assessed, reduced diagnosis of PTSD and MDD, and produced improvements in self-efficacy and quality of life. Statistically significant results were seen in 27 studies. However, three studies demonstrated that the evaluated interventions may not have been very beneficial. Conclusions: The overall positive results suggest that any psychosocial interventions are favourable and should be delivered to all natural disaster survivors, irrespective of age, country, and phase of disaster. Yet, heterogeneity and methodological shortcomings of the current evidence-base makes it difficult to draw definite conclusions needed to formulate categorical guidance or frameworks. Further, rigorously conducted research is needed in this area, although the feasibility of such, given the context and nature of the problem, is also recognized.

Keywords: psychosocial interventions, natural disasters, survivors, effectiveness

Procedia PDF Downloads 154
2154 A Comparative Human Rights Analysis of the Securitization of Migration in the Fight against Terrorism in Europe: An Evaluation of Belgium

Authors: Louise Reyntjens

Abstract:

The last quarter of the twentieth century was characterized by the emergence of a new kind of terrorism: religiously-inspired terrorism. Islam finds itself at the heart of this new wave, considering the number of international attacks committed by Islamic-inspired perpetrators. With religiously inspired terrorism as an operating framework, governments increasingly rely on immigration law to counter such terrorism. Immigration law seems particularly useful because its core task consists of keeping ‘unwanted’ people out. Islamic terrorists more often than not have an immigrant background and will be subject to immigration law. As a result, immigration law becomes more and more ‘securitized’. The European migration crisis has reinforced this trend. The research explores the human rights consequences of immigration law’s securitization in Europe. For this, the author selected four European countries for a comparative study: Belgium, France, the United Kingdom and Sweden. All these countries face similar social and security issues but respond very differently to them. The United Kingdom positions itself on the repressive side of the spectrum. Sweden on the other hand also introduced restrictions to its immigration policy but remains on the tolerant side of the spectrum. Belgium and France are situated in between. This contribution evaluates the situation in Belgium. Through a series of legislative changes, the Belgian parliament (i) greatly expanded the possibilities of expelling foreign nationals for (vaguely defined) reasons of ‘national security’; (ii) abolished almost all procedural protection associated with this decision (iii) broadened, as an extra security measure, the possibility of depriving individuals condemned of terrorism of their Belgian nationality. Measures such as these are obviously problematic from a human rights perspective; they jeopardize the principle of legality, the presumption of innocence, the right to protection of private and family life and the prohibition on torture. Moreover, this contribution also raises questions about the efficacy of immigration law’s suitability as a counterterrorism instrument. Is it a legitimate step, considering the type of terrorism we face today? Or, is it merely a strategic move, considering the broader maneuvering space immigration law offers and the lack of political resistance governments receive when infringing the rights of foreigners? Even more so, figures demonstrate that today’s terrorist threat does not necessarily stem from outside our borders. Does immigration law then still absorb - if it has ever done so (completely) - the threat? The study’s goal is to critically assess, from a human rights perspective, the counterterrorism strategies European governments have adopted. As most governments adopt a variation of the same core concepts, the study’s findings will hold true even beyond the four countries addressed.

Keywords: Belgium, counterterrorism strategies, human rights, immigration law

Procedia PDF Downloads 106
2153 Estimation of World Steel Production by Process

Authors: Reina Kawase

Abstract:

World GHG emissions should be reduced 50% by 2050 compared with 1990 level. CO2 emission reduction from steel sector, an energy-intensive sector, is essential. To estimate CO2 emission from steel sector in the world, estimation of steel production is required. The world steel production by process is estimated during the period of 2005-2050. The world is divided into aggregated 35 regions. For a steel making process, two kinds of processes are considered; basic oxygen furnace (BOF) and electric arc furnace (EAF). Steel production by process in each region is decided based on a current production capacity, supply-demand balance of steel and scrap, technology innovation of steel making, steel consumption projection, and goods trade. World steel production under moderate countermeasure scenario in 2050 increases by 1.3 times compared with that in 2012. When domestic scrap recycling is promoted, steel production in developed regions increases about 1.5 times. The share in developed regions changes from 34 %(2012) to about 40%(2050). This is because developed regions are main suppliers of scrap. 48-57% of world steel production is produced by EAF. Under the scenario which thinks much of supply-demand balance of steel, steel production in developing regions increases is 1.4 times and is larger than that in developed regions. The share in developing regions, however, is not so different from current level. The increase in steel production by EAF is the largest under the scenario in which supply-demand balance of steel is an important factor. The share reaches 65%.

Keywords: global steel production, production distribution scenario, steel making process, supply-demand balance

Procedia PDF Downloads 450
2152 An Eulerian Method for Fluid-Structure Interaction Simulation Applied to Wave Damping by Elastic Structures

Authors: Julien Deborde, Thomas Milcent, Stéphane Glockner, Pierre Lubin

Abstract:

A fully Eulerian method is developed to solve the problem of fluid-elastic structure interactions based on a 1-fluid method. The interface between the fluid and the elastic structure is captured by a level set function, advected by the fluid velocity and solved with a WENO 5 scheme. The elastic deformations are computed in an Eulerian framework thanks to the backward characteristics. We use the Neo Hookean or Mooney Rivlin hyperelastic models and the elastic forces are incorporated as a source term in the incompressible Navier-Stokes equations. The velocity/pressure coupling is solved with a pressure-correction method and the equations are discretized by finite volume schemes on a Cartesian grid. The main difficulty resides in that large deformations in the fluid cause numerical instabilities. In order to avoid these problems, we use a re-initialization process for the level set and linear extrapolation of the backward characteristics. First, we verify and validate our approach on several test cases, including the benchmark of FSI proposed by Turek. Next, we apply this method to study the wave damping phenomenon which is a mean to reduce the waves impact on the coastline. So far, to our knowledge, only simulations with rigid or one dimensional elastic structure has been studied in the literature. We propose to place elastic structures on the seabed and we present results where 50 % of waves energy is absorbed.

Keywords: damping wave, Eulerian formulation, finite volume, fluid structure interaction, hyperelastic material

Procedia PDF Downloads 323
2151 Nutritive Value of Three-Stage Olive Cake (Olea europaea L.) for Growing Rabbit

Authors: Zahia Dorbane, Si Ammar Kadi, Dalila Boudouma, Thierry Gidenne

Abstract:

In rabbits feeding, minimum fibre intake is essential to avoid digestive disorders. However, this concentration of fibre is not easy to obtain when formulating feeds, without reduction of nutritional value. Three stage olive cake, the residual material after oil extraction by centrifugation, including pulp and stones, can be used as a fibre source in rabbit diet. The incorporation of olive cake can allow a better balance between different fibre fractions and reduce health disorder. However, for practical use of any raw material, it is necessary to know its chemical and nutritive value. The aim of this study was to assess the nutritive value of three-stage olive cake (TSOC) for growing rabbits. Thus, 36 rabbits weaned at 35 days (702.8 ± 28.5) were divided into three groups of 12 receiving one of the following diets: control with 0% of TSOC, TSOC10 (10% of TSOC) and TSOC20 (20% TSOC). The rabbits were individually housed in digestibility cages and received ad libitum one of the three diets, fresh and clean water was provided ad libitum. After an adaptation period of 7d, feces were collected for 4d. Collected feces were frozen and stored for further analysis. The chemical composition of TSOC shows that it is a rich fiber raw material since it contains (%DM): 6% of CP; 7.4% of EE; 78.7% of NDF; 55.4% of ADF and 24.3% of ADL. The inclusion of TSOC at 20% of basal diet reduced the digestibility coefficient of organic matter, crude protein and NDF from 67.8 to 55.3%, 80.4 to 75.3% and from 31.5 to 18.4% (p < 0.001) respectively. The digestible energy and digestible protein content of the three-stage olive cake estimated by regression was 2.94 ± 0.52MJ DE/kg DM and 22.4 ± 6 g DP/kg DM respectively. In conclusion, based on the results of the present experiment, the three-stage olive cake can be used as a fibre source for rabbit.

Keywords: digestibility, nutritive value, olive cake, rabbit

Procedia PDF Downloads 156
2150 Concentration of Waste Waters by Enzyme-Assisted Low-Temperature Evaporation

Authors: Ahokas Mikko, Taskila Sanna, Varrio Kalle, Tanskanen Juha

Abstract:

The present research aimed at the development of an energy efficient process for the concentration of starchy waste waters. The selected principle is mechanical vapor recompression evaporation (MVR) which leads to concentrated solid material and evaporated water phase. Evaporation removes water until a certain viscosity limit is reached. Materials with high viscosity cannot be concentrated using standard evaporators due to limitations of pumps and other constraints, such as wetting. Control of viscosity is thus essential for efficient evaporation. This applies especially to fluids in which due starch or other compounds the viscosity tends to increase via removal of water. In the present research, the effect of enzymes on evaporation of highly viscous starch industry waste waters was investigated. Wastewater samples were received from starch industry at pH of 4.8. Response surface methodology (RSM) was applied for the investigation of factor effects on the behaviour of concentrate during evaporation. The RSM was prepared using quadratic face-centered central composite design (CCF). The evaporation performance was evaluated by monitoring the viscosity of fluid during processing. Based on viscosity curves, the addition of glucoamylase reduced the viscosity during evaporation. This assumption was confirmed by CCF, suggesting that the use of starch decomposing glucoamylase allowed evaporation of the starchy wastewater to a relatively high total solid concentration without a detrimental increase in the viscosity. The results suggest that use of enzymes for reduction of viscosity during the evaporation allows more effective concentration of the wastewater and thereby recovery of potable water.

Keywords: viscous, wastewater, treatment, evaporation, concentration

Procedia PDF Downloads 244
2149 A Novel Cold Asphalt Concrete Mixture for Heavily Trafficked Binder Course

Authors: Anmar Dulaimi, Hassan Al Nageim, Felicite Ruddock, Linda Seton

Abstract:

Cold bituminous asphalt mixture (CBEM) provide a sustainable, cost effective and energy efficiency alternative to traditional hot mixtures. However, these mixtures have a comparatively low initial strength and as it is considered as evolutionary materials, mainly in the early life where the initial cohesion is low and builds up slowly. On the other hand, asphalt concrete is, by far, the most common mixtures in use as binder course and base in road pavement in the UK having a continuous grade offer a good aggregate interlock results in this material having very good load-spreading properties as well as a high resistance to permanent deformation. This study aims at developing a novel fast curing cold asphalt concrete binder course mixtures by using Ordinary Portland Cement (OPC) as a replacement to conventional mineral filler (0%-100%) while new by-product material (LJMU-A2) was used as a supplementary cementitious material. With this purpose, cold asphalt concrete binder course mixtures with cationic emulsions were studied by means of stiffness modulus whereas water sensitivity was approved by assessing the stiffness modulus ratio before and after sample conditioning. The results indicate that a substantial enhancement in the stiffness modulus and a considerable improvement of water sensitivity resistance by adding of LJMU-A2 to the cold asphalt mixtures as a supplementary cementitious material. Moreover, the addition of LJMU-A2 to those mixtures leads to stiffness modulus after 2- day curing comparable to those obtained with Portland cement after 7-day curing.

Keywords: cold mix asphalt, binder course, cement, stiffness modulus, water sensitivity

Procedia PDF Downloads 311
2148 Three Dimensional Dynamic Analysis of Water Storage Tanks Considering FSI Using FEM

Authors: S. Mahdi S. Kolbadi, Ramezan Ali Alvand, Afrasiab Mirzaei

Abstract:

In this study, to investigate and analyze the seismic behavior of concrete in open rectangular water storage tanks in two-dimensional and three-dimensional spaces, the Finite Element Method has been used. Through this method, dynamic responses can be investigated together in fluid storages system. Soil behavior has been simulated using tanks boundary conditions in linear form. In this research, in addition to flexibility of wall, the effects of fluid-structure interaction on seismic response of tanks have been investigated to account for the effects of flexible foundation in linear boundary conditions form, and a dynamic response of rectangular tanks in two-dimensional and three-dimensional spaces using finite element method has been provided. The boundary conditions of both rigid and flexible walls in two-dimensional finite element method have been considered to investigate the effect of wall flexibility on seismic response of fluid and storage system. Furthermore, three-dimensional model of fluid-structure interaction issue together with wall flexibility has been analyzed under the three components of earthquake. The obtained results show that two-dimensional model is also accurately near to the results of three-dimension as well as flexibility of foundation leads to absorb received energy and relative reduction of responses.

Keywords: dynamic behavior, flexible wall, fluid-structure interaction, water storage tank

Procedia PDF Downloads 185
2147 DIF-JACKET: a Thermal Protective Jacket for Firefighters

Authors: Gilda Santos, Rita Marques, Francisca Marques, João Ribeiro, André Fonseca, João M. Miranda, João B. L. M. Campos, Soraia F. Neves

Abstract:

Every year, an unacceptable number of firefighters are seriously burned during firefighting operations, with some of them eventually losing their life. Although thermal protective clothing research and development has been searching solutions to minimize firefighters heat load and skin burns, currently commercially available solutions focus in solving isolated problems, for example, radiant heat or water-vapor resistance. Therefore, episodes of severe burns and heat strokes are still frequent. Taking this into account, a consortium composed by Portuguese entities has joined synergies to develop an innovative protective clothing system by following a procedure based on the application of numerical models to optimize the design and using a combinationof protective clothing components disposed in different layers. Recently, it has been shown that Phase Change Materials (PCMs) can contribute to the reduction of potential heat hazards in fire extinguish operations, and consequently, their incorporation into firefighting protective clothing has advantages. The greatest challenge is to integrate these materials without compromising garments ergonomics and, at the same time, accomplishing the International Standard of protective clothing for firefighters – laboratory test methods and performance requirements for wildland firefighting clothing. The incorporation of PCMs into the firefighter's protective jacket will result in the absorption of heat from the fire and consequently increase the time that the firefighter can be exposed to it. According to the project studies and developments, to favor a higher use of the PCM storage capacityand to take advantage of its high thermal inertia more efficiently, the PCM layer should be closer to the external heat source. Therefore, in this stage, to integrate PCMs in firefighting clothing, a mock-up of a vest specially designed to protect the torso (back, chest and abdomen) and to be worn over a fire-resistant jacketwas envisaged. Different configurations of PCMs, as well as multilayer approaches, were studied using suitable joining technologies such as bonding, ultrasound, and radiofrequency. Concerning firefighter’s protective clothing, it is important to balance heat protection and flame resistance with comfort parameters, namely, thermaland water-vapor resistances. The impact of the most promising solutions regarding thermal comfort was evaluated to refine the performance of the global solutions. Results obtained with experimental bench scale model and numerical simulation regarding the integration of PCMs in a vest designed as protective clothing for firefighters will be presented.

Keywords: firefighters, multilayer system, phase change material, thermal protective clothing

Procedia PDF Downloads 163
2146 Investigation of Mechanical Properties of Aluminum Tailor Welded Blanks

Authors: Dario Basile, Manuela De Maddis, Raffaella Sesana, Pasquale Russo Spena, Roberto Maiorano

Abstract:

Nowadays, the reduction of CO₂ emissions and the decrease in energy consumption are the main aims of several industries, especially in the automotive sector. To comply with the increasingly restrictive regulations, the automotive industry is constantly looking for innovative techniques to produce lighter, more efficient, and less polluting vehicles. One of the latest technologies, and still developing, is based on the fabrication of the body-in-white and car parts through the stamping of Aluminum Tailor Welded Blanks. Tailor Welded Blanks (TWBs) are generally the combination of two/three metal sheets with different thicknesses and/or mechanical strengths, which are commonly butt-welded together by laser sources. The use of aluminum TWBs has several advantages such as low density and corrosion resistance adequate. However, their use is still limited by the lower formability with respect to the parent materials and the more intrinsic difficulty of laser welding of aluminum sheets (i.e., internal porosity) that, although its use in automated industries is constantly growing, remains a process to be further developed and improved. This study has investigated the effect of the main laser welding process parameters (laser power, welding speed, and focal distance) on the mechanical properties of aluminum TWBs made of 6xxx series. The research results show that a narrow weldability window can be found to ensure welded joints with high strength and limited or no porosity.

Keywords: aluminum sheets, automotive industry, laser welding, mechanical properties, tailor welded blanks

Procedia PDF Downloads 109
2145 Physicochemical Characterization of MFI–Ceramic Hollow Fibres Membranes for CO2 Separation with Alkali Metal Cation

Authors: A. Alshebani, Y. Swesi, S. Mrayed, F. Altaher

Abstract:

This paper present some preliminary work on the preparation and physicochemical caracterization of nanocomposite MFI-alumina structures based on alumina hollow fibres. The fibers are manufactured by a wet spinning process. α-alumina particles were dispersed in a solution of polysulfone in NMP. The resulting slurry is pressed through the annular gap of a spinneret into a precipitation bath. The resulting green fibres are sintered. The mechanical strength of the alumina hollow fibres is determined by a three-point-bending test while the pore size is characterized by bubble-point testing. The bending strength is in the range of 110 MPa while the average pore size is 450 nm for an internal diameter of 1 mm and external diameter of 1.7 mm. To characterize the MFI membranes various techniques were used for physicochemical characterization of MFI–ceramic hollow fibres membranes: The nitrogen adsorption, X-ray diffractometry, scanning electron microscopy combined with X emission microanalysis. Scanning Electron Microscopy (SEM) and Energy Dispersive Microanalysis by the X-ray were used to observe the morphology of the hollow fibre membranes (thickness, infiltration into the carrier, defects, homogeneity). No surface film, has been obtained, as observed by SEM and EDX analysis and confirmed by high temperature variation of N2 and CO2 gas permeances before cation exchange. Local analysis and characterise (SEM and EDX) and overall (by ICP elemental analysis) were conducted on two samples exchanged to determine the quantity and distribution of the cation of cesium on the cross section fibre of the zeolite between the cavities.

Keywords: physicochemical characterization of MFI, ceramic hollow fibre, CO2, ion-exchange

Procedia PDF Downloads 351
2144 Improving Carbon Dioxide Mass Transfer in Open Pond Raceway Systems for Improved Algal Productivity

Authors: William Middleton, Nodumo Zulu, Sue Harrison

Abstract:

Open raceway ponds are currently the most used system for the commercial cultivation of algal biomass, as it is a cost-effective means of production. However, raceway ponds suffer from lower algal productivity when compared to closed photobioreactors. This is due to poor gas exchange between the fluid and the atmosphere. Carbon dioxide (CO₂) mass transfer is a large concern in the production of algae in raceway pond systems. The utilization of atmospheric CO₂ does not support maximal growth; however, CO₂ supplementation in the form of flue gas or concentrated CO₂ is not cost-effective. The introduction of slopes into the raceway system presents a possible improvement to the mass transfer from the air, as seen in previous work conducted at CeBER. Slopes improve turbulence (decreasing the concentration gradient of dissolved CO₂) and can cause air entrainment (allowing for greater surface area and contact time between the air and water). This project tests the findings of previous studies conducted in an indoor lab-scale raceway on a larger scale under outdoor conditions. The addition of slopes resulted in slightly increased CO₂ mass transfer as well as algal growth rate and productivity. However, there were reductions in energy consumption and average fluid velocity in the system. These results indicate a potential to improve the economic feasibility of algal biomass production, but further economic assessment would need to be carried out.

Keywords: algae, raceway ponds, mass transfer, algal culture, biotechnology, reactor design

Procedia PDF Downloads 99
2143 Determination of Brominated Flame Retardants In Recycled Plastic Toys Using Thermal Desorption GC/MS

Authors: Athena Nguyen, Rojin Belganeh

Abstract:

In recycling plastics industries, waste plastics are converted into monomers and other useful molecules by chemical reactions. Thermal energy generated by incineration is recovered when waste plastics melt. During the process, Flame retardants containing products get in, and brominated flame retardants (BFRs) are often used to reduce the flammability of products. Some of the originally formulated brominated flame retardants additives are restricted by the RoHS Directive, such as PBDE and PBB. The determination of BFRs other than those restricted by the RoHS directive is required. Frontier Lab developed a pyrolyzer based on the vertical micro-furnace design. The multi-mode pyrolyzer with different modes of operations, including evolve gas analysis (EGA), flash pyrolysis, thermal desorption, heart cutting, allows users to choose among the techniques for their analysis purposes. The method requires very little sample preparation. The first step is to perform an EGA using temperature programs. This technique provides information about the thermal temperature behaviors of the sample. The EGA thermogram is then used to determine the next steps in the analysis process. In this presentation, with an Optimal thermal temperature zone identified based on EGA thermogram, thermal desorption GC/MS is a chosen technique for the determination of brominated flame retardants in recycled plastic toys. Five types of general-purpose brominated flame retardants other than those restricted by the RoHS Directive are determined by the standard addition method.

Keywords: gas chromatography/mass spectrometry, pyrolysis, pyrolyzer, thermal desorption-GC/MS

Procedia PDF Downloads 193
2142 Local Differential Privacy-Based Data-Sharing Scheme for Smart Utilities

Authors: Veniamin Boiarkin, Bruno Bogaz Zarpelão, Muttukrishnan Rajarajan

Abstract:

The manufacturing sector is a vital component of most economies, which leads to a large number of cyberattacks on organisations, whereas disruption in operation may lead to significant economic consequences. Adversaries aim to disrupt the production processes of manufacturing companies, gain financial advantages, and steal intellectual property by getting unauthorised access to sensitive data. Access to sensitive data helps organisations to enhance the production and management processes. However, the majority of the existing data-sharing mechanisms are either susceptible to different cyber attacks or heavy in terms of computation overhead. In this paper, a privacy-preserving data-sharing scheme for smart utilities is proposed. First, a customer’s privacy adjustment mechanism is proposed to make sure that end-users have control over their privacy, which is required by the latest government regulations, such as the General Data Protection Regulation. Secondly, a local differential privacy-based mechanism is proposed to ensure the privacy of the end-users by hiding real data based on the end-user preferences. The proposed scheme may be applied to different industrial control systems, whereas in this study, it is validated for energy utility use cases consisting of smart, intelligent devices. The results show that the proposed scheme may guarantee the required level of privacy with an expected relative error in utility.

Keywords: data-sharing, local differential privacy, manufacturing, privacy-preserving mechanism, smart utility

Procedia PDF Downloads 76
2141 Bad Juju: The Translation of the African Zombi to Nigerian and Western Screens

Authors: Randall Gray Underwood

Abstract:

Within the past few decades, zombie cinema has evolved from a niche outgrowth of the horror genre into one of the most widely-discussed and thoroughly-analyzed subgenres of film. Rising to international popularity during the 1970s and 1980s following the release of George Romero’s landmark classic, Night of the Living Dead (1968), and its much-imitated sequel, Dawn of the Dead (1978), the zombie genre returned to global screens in full force at the turn of the century following earth-shattering events such as the 9/11 terrorist attacks, America’s subsequent war in the Middle East, environmental pandemics, and the emergence of a divided and disconnected global populace in the age of social media. Indeed, the presence of the zombie in all manner of art and entertainment—movies, literature, television, video games, comic books, and more—has become nothing short of pervasive, engendering a plethora of scholarly writings, books, opinion pieces, and video essays from all manner of academics, cultural commentators, critics, and casual fans, with each espousing their own theories regarding the zombie’s allegorical and symbolic value within global fiction. Consequently, the walking dead of recent years have been variously positioned as fictive manifestations of human fears of societal collapse, environmental contagion, sexually-transmitted disease, primal regression, dwindling population rates, global terrorism, and the foreign “Other”. Less commonly analyzed within film scholarship, however, is the connection between the zombie’s folkloric roots and native African/Haitian spiritual practice; specifically, how this connection impacts the zombie’s presentation in African films by native storytellers versus in similar narratives told from a western perspective. This work will examine the unlikely connections and contrasts inherent the portrayal of the traditional African/Haitian zombie (or zombi, in Haitian French) in the Nollywood film Witchdoctor of the Livingdead (1985, Charles Abi Enonchong) versus its depiction in the early Hollywood films White Zombie (1932, Victor Halperin) and I Walked with a Zombie (1943, Jacques Tourneur), through analysis of each cinemas’ use of the zombie as a visual metaphor for subjugation/slavery, as well as differences in their representation of the the spiritual folklore from which the figure of the zombie originates. Select films from the post-Night of the Living Dead zombie cinema landscape will also warrant brief discussion in relation to Witchdoctor of the Livingdead.

Keywords: Nollywood, Zombie cinema, Horror cinema, Classical Hollywood

Procedia PDF Downloads 60