Search results for: indoor spaces
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1580

Search results for: indoor spaces

1580 Impact of Schools' Open and Semi-Open Spaces on Student's Studying Behavior

Authors: Chaithanya Pothuganti

Abstract:

Open and semi-open spaces in educational buildings like corridors, mid landings, seating spaces, lobby, courtyards are traditionally have been the places of social communion and interaction which helps in promoting the knowledge, performance, activeness, and motivation in students. Factors like availability of land, commercialization, of educational facilities, especially in e-techno and smart schools, led to closed classrooms to accommodate students thereby lack quality open and semi-open spaces. This insufficient attention towards open space design which is a means of informal learning misses an opportunity to encourage the student’s skill development, behavior and learning skills. The core objective of this paper is to find the level of impact on student learning behavior and to identify the suitable proportions and configuration of spaces that shape the schools. In order to achieve this, different types of open spaces in schools and their impact on student’s performance in various existing models are analysed using case studies to draw some design principles. The study is limited to indoor open spaces like corridors, break out spaces and courtyards. The expected outcome of the paper is to suggest better design considerations for the development of semi-open and open spaces which functions as an element for informal learnings. Its focus is to provide further thinking on designing and development of open spaces in educational buildings.

Keywords: configuration of spaces and proportions, informal learning, open spaces, schools, student’s behavior

Procedia PDF Downloads 274
1579 An Empirical Assessment of Indoor Environmental Quality in Developing Sub-Saharan Countries: Evaluation of Existing Gaps and Potential Risk

Authors: Jean-Paul Kapuya Bulaba Nyembwe, John Omomoluwa Ogundiran, Manuel Carlos Gameiro da Silva

Abstract:

Indoor environmental quality (IEQ) remains a global concern because it impacts people's comfort, health, performance, and general well-being. People spend a significant amount of time in buildings or while commuting, hence ensuring the minimal risk in indoor spaces by ensuring suitable IEQ. IEQ studies are limited regarding developing sub-Saharan countries, whereas there is also a huge risk and concern for the current population and geometric growth as many cities in the region will become mega-cities by 2040 (World Bank report). The absence of suitable IEQ regulations and energy poverty are reasons to assess the IEQ gaps for increased awareness of sustainable interventions to minimize the associated risk. This study evaluates the gaps and potential hazards that exist in the IEQ of sub-Saharan countries using empirical studies of hospital occupants and BRT bus passengers and drivers. The Surveys were conducted in 3 cities of the Democratic Republic of Congo and Lagos metropolis of Nigeria. The results suggest that gaps exist in IEQ for these regions. The gaps indicate existential risk to people’s health, comfort, and well-being. The inferential conclusions are that there is a need for further scientific studies, improvement in IEQ conditions, and ensuring suitable regulations for developing sub-Saharan countries.

Keywords: health hazards, hospitals indoor environmental quality, indoor spaces, occupants, sub-Saharan countries, vehicles

Procedia PDF Downloads 34
1578 Natural Ventilation around and through Building: A Numerical Study

Authors: A. Kaddour, S. M. A. Bekkouche

Abstract:

Limiting heat losses during ventilation of indoor building spaces has become a basic aim for architects. Much experience has been gained in terms of ventilation of indoor spaces. Nevertheless, due to the complex applications, attempts to create a theoretical base for solving the problems related to the issue are limited, especially determining the minimum ventilation period required within a designated space. In this paper we have approached this matter, both theoretically and computationally. The conclusion we reached was that controlled ventilation of spaces through vent holes that successively open and close at regular time intervals can limit the excessive circulation of air masses, which in turn limits heat losses. Air change rates through open and tilted windows in rooms of residential buildings driven by atmospheric motions are investigated to evaluate natural ventilation concepts. Model of thermal building simulations is used. A separated sample storey and a sample single room in larger scales were used to measure air transport through window openings under the influence of the external pressure distribution.

Keywords: natural ventilation, temperature factor, air change rates, air circulation

Procedia PDF Downloads 414
1577 Indoor and Outdoor Concentration of PM₁₀, PM₂.₅ and PM₁ in Residential Building and Evaluation of Negative Air Ions (NAIs) in Indoor PM Removal

Authors: Hossein Arfaeinia, Azam Nadali, Zahra Asadgol, Mohammad Fahiminia

Abstract:

Indoor and outdoor particulate matters (PM) were monitored in 20 residential buildings in a two-part study. In part I, the levels of indoor and outdoor PM₁₀, PM₂.₅ and PM₁ was measured using real time GRIMM dust monitors. In part II, the effect of negative air ions (NAIs) method was investigated on the reduction of indoor concentration of PM in these residential buildings. Hourly average concentration and standard deviation (SD) of PM₁₀ in indoor and outdoor at residential buildings were 90.1 ± 33.5 and 63.5 ± 27.4 µg/ m3, respectively. Indoor and outdoor concentrations of PM₂.₅ in residential buildings were 49.5 ± 18.2 and 39.4± 18.1 µg/ m3 and for PM₁ the concentrations were 6.5 ± 10.1and 4.3 ± 7.7 µg/ m3, respectively. Indoor/outdoor (I/O) ratios and concentrations of all size fractions of PM were strongly correlated with wind speed and temperature whereas a good relationship was not observed between humidity and I/O ratios of PM. We estimated that nearly 71.47 % of PM₁₀, 79.86 % of PM₂.₅ and of 61.25 % of PM₁ in indoor of residential buildings can be removed by negative air ions.

Keywords: particle matter (PM), indoor air, negative air ions (NAIs), residential building

Procedia PDF Downloads 220
1576 Indoor Temperature, Relative Humidity and CO₂ Level Assessment in a Publically Managed Hospital Building

Authors: Ayesha Asif, Muhammad Zeeshan

Abstract:

The sensitivity of hospital-microenvironments for all types of pollutants, due to the presence of patients with immune deficiencies, makes them complex indoor spaces. Keeping in view, this study investigated indoor air quality (IAQ) of two most sensitive places, i.e., operation theater (OT) and intensive care unit (ICU), of a publically managed hospital. Taking CO₂ concentration as air quality indicator and temperature (T) and relative humidity (RH) as thermal comfort parameters, continuous monitoring of the three variables was carried out. Measurements were recorded at an interval of 1 min for weekdays and weekends, including occupational and non-occupational hours. Outdoor T and RH measurements were also used in the analysis. Results show significant variation (p < 0.05) in CO₂, T and RH values over the day during weekdays while no significant variation (p > 0.05) have been observed during weekends of both the monitored sites. Maximum observed values of CO₂ in OT and ICU were found to be 2430 and 624 ppm, T as 24.7ºC and 28.9ºC and RH as 29.6% and 32.2% respectively.

Keywords: indoor air quality, CO₂ concentration, hospital building, comfort assessment

Procedia PDF Downloads 104
1575 Natural Ventilation for the Sustainable Tall Office Buildings of the Future

Authors: Ayşin Sev, Görkem Aslan

Abstract:

Sustainable tall buildings that provide comfortable, healthy and efficient indoor environments are clearly desirable as the densification of living and working space for the world’s increasing population proceeds. For environmental concerns, these buildings must also be energy efficient. One component of these tasks is the provision of indoor air quality and thermal comfort, which can be enhanced with natural ventilation by the supply of fresh air. Working spaces can only be naturally ventilated with connections to the outdoors utilizing operable windows, double facades, ventilation stacks, balconies, patios, terraces and skygardens. Large amounts of fresh air can be provided to the indoor spaces without mechanical air-conditioning systems, which are widely employed in contemporary tall buildings. This paper tends to present the concept of natural ventilation for sustainable tall office buildings in order to achieve healthy and comfortable working spaces, as well as energy efficient environments. Initially the historical evolution of ventilation strategies for tall buildings is presented, beginning with natural ventilation and continuing with the introduction of mechanical air-conditioning systems. Then the emergence of natural ventilation due to the health and environmental concerns in tall buildings is handled, and the strategies for implementing this strategy are revealed. In the next section, a number of case studies that utilize this strategy are investigated. Finally, how tall office buildings can benefit from this strategy is discussed.

Keywords: tall office building, energy efficiency, double-skin façade, stack ventilation, air conditioning

Procedia PDF Downloads 479
1574 Absorption Control of Organic Solar Cells under LED Light for High Efficiency Indoor Power System

Authors: Premkumar Vincent, Hyeok Kim, Jin-Hyuk Bae

Abstract:

Organic solar cells have high potential which enables these to absorb much weaker light than 1-sun in indoor environment. They also have several practical advantages, such as flexibility, cost-advantage, and semi-transparency that can have superiority in indoor solar energy harvesting. We investigate organic solar cells based on poly(3-hexylthiophene) (P3HT) and indene-C60 bisadduct (ICBA) for indoor application while Finite Difference Time Domain (FDTD) simulations were run to find the optimized structure. This may provide the highest short-circuit current density to acquire high efficiency under indoor illumination.

Keywords: indoor solar cells, indoor light harvesting, organic solar cells, P3HT:ICBA, renewable energy

Procedia PDF Downloads 269
1573 A Route Guidance System for Car Finding in Indoor Parking Garages

Authors: Pei-Chun Lee, Sheng-Shih Wang

Abstract:

This paper presents a route guidance system for car owners to find their cars in parking garages. The presents system comprises a positioning-assisting subsystem and a car-finding mobile app. The positioning-assisting subsystem mainly uses the iBeacon technology for indoor positioning. The car-finding mobile app guides car owners to their cars based on a non-map navigation strategy. This study also designs a virtual coordinate system to support identifying the locations of parking spaces and iBeacon devices. We use Arduino and Android as the platforms to implement the proposed positioning-assisting subsystem and car-finding mobile app, respectively. We have also deployed the system in a parking garage in our campus for testing. Experimental results verify that our system can efficiently and correctly guide car owners to the parking spaces of their cars.

Keywords: guidance, iBeacon, mobile app, navigation

Procedia PDF Downloads 622
1572 A Comparative Analysis of the Indoor Thermal Environment of a Room with and without Transitional Space or Threshold in Traditional Row Houses Adjacent to a Narrow Alley 'Rupchan Lane' in Old Dhaka, Bangladesh

Authors: Fatema Tasmia, Brishti Majumder, Atiqur Rahman

Abstract:

Attaining appropriate thermal comfort conditions in a place where the climate is hot and humid can be perplexing. Especially, when it resides at a congested place like old Dhaka Bangladesh, the provision of giving cross ventilation and building with proper orientation is quite difficult. This paper aims to investigate the indoor thermal environment of a room with and without transitional space or threshold in traditional row houses adjacent to a narrow alley of old Dhaka through field measurements. Transitional spaces are the part of buildings which are used for semi-outdoor household activities, social gathering and it is also proved to provide an indoor thermal effect. The field study was conducted by collecting thermal data (temperature, humidity and airflow) respectively, among the outdoor narrow alley, transitional space and adjacent indoor. This east-west elongated alley has an average width of 2.13 meter (varies from 1.5 to 2.6 meter) holding row houses on both sides. Among different aspects of thermal environment, the study of this paper is based on the analysis of temperature of corresponding cases. Other aspects and their variables were considered as constant (especially material) for accuracy and avoidance of confusion. This study focuses on the outcome that can ultimately contribute to the configuration of row houses with transitional spaces and in its relation to the adjacent outdoor space while achieving thermal comfort.

Keywords: alley, Old-Dhaka, row houses, temperature, thermal comfort, threshold, transitional space

Procedia PDF Downloads 150
1571 Development of Application Architecture for RFID Based Indoor Tracking Using Passive RFID Tag

Authors: Sumaya Ismail, Aijaz Ahmad Rehi

Abstract:

Abstract The location tracking and positioning systems have technologically grown exponentially in recent decade. In particular, Global Position system (GPS) has become a universal norm to be a part of almost every software application directly or indirectly for the location based modules. However major drawback of GPS based system is their inability of working in indoor environments. Researchers are thus focused on the alternative technologies which can be used in indoor environments for a vast range of application domains which require indoor location tracking. One of the most popular technology used for indoor tracking is radio frequency identification (RFID). Due to its numerous advantages, including its cost effectiveness, it is considered as a technology of choice in indoor location tracking systems. To contribute to the emerging trend of the research, this paper proposes an application architecture of passive RFID tag based indoor location tracking system. For the proof of concept, a test bed will be developed to in this study. In addition, various indoor location tracking algorithms will be used to assess their appropriateness in the proposed application architecture.

Keywords: RFID, GPS, indoor location tracking, application architecture, passive RFID tag

Procedia PDF Downloads 77
1570 Respiratory Health and Air Movement Within Equine Indoor Arenas

Authors: Staci McGill, Morgan Hayes, Robert Coleman, Kimberly Tumlin

Abstract:

The interaction and relationships between horses and humans have been shown to be positive for physical, mental, and emotional wellbeing, however equine spaces where these interactions occur do include some environmental risks. There are 1.7 million jobs associated with the equine industry in the United States in addition to recreational riders, owners, and volunteers who interact with horses for substantial amounts of time daily inside built structures. One specialized facility, an “indoor arena” is a semi-indoor structure used for exercising horses and exhibiting skills during competitive events. Typically, indoor arenas have a sand or sand mixture as the footing or surface over which the horse travels, and increasingly, silica sand is being recommended due to its durable nature. It was previously identified in a semi-qualitative survey that the majority of individuals using indoor arenas have environmental concerns with dust. 27% (90/333) of respondents reported respiratory issues or allergy-like symptoms while riding with 21.6% (71/329) of respondents reporting these issues while standing on the ground observing or teaching. Frequent headaches and/or lightheadedness was reported in 9.9% (33/333) of respondents while riding and in 4.3% 14/329 while on the ground. Horse respiratory health is also negatively impacted with 58% (194/333) of respondents indicating horses cough during or after time in the indoor arena. Instructors who spent time in indoor arenas self-reported more respiratory issues than those individuals who identified as smokers, highlighting the health relevance of understanding these unique structures. To further elucidate environmental concerns and self-reported health issues, 35 facility assessments were conducted in a cross-sectional sampling design in the states of Kentucky and Ohio (USA). Data, including air speeds, were collected in a grid fashion at 15 points within the indoor arenas and then mapped spatially using krigging in ARCGIS. From the spatial maps, standard variances were obtained and differences were analyzed using multivariant analysis of variances (MANOVA) and analysis of variances (ANOVA). There were no differences for the variance of the air speeds in the spaces for facility orientation, presence and type of roof ventilation, climate control systems, amount of openings, or use of fans. Variability of the air speeds in the indoor arenas was 0.25 or less. Further analysis yielded that average air speeds within the indoor arenas were lower than 100 ft/min (0.51 m/s) which is considered still air in other animal facilities. The lack of air movement means that dust clearance is reliant on particle size and weight rather than ventilation. While further work on respirable dust is necessary, this characterization of the semi-indoor environment where animals and humans interact indicates insufficient air flow to eliminate or reduce respiratory hazards. Finally, engineering solutions to address air movement deficiencies within indoor arenas or mitigate particulate matter are critical to ensuring exposures do not lead to adverse health outcomes for equine professionals, volunteers, participants, and horses within these spaces.

Keywords: equine, indoor arena, ventilation, particulate matter, respiratory health

Procedia PDF Downloads 79
1569 Human-Centred Data Analysis Method for Future Design of Residential Spaces: Coliving Case Study

Authors: Alicia Regodon Puyalto, Alfonso Garcia-Santos

Abstract:

This article presents a method to analyze the use of indoor spaces based on data analytics obtained from inbuilt digital devices. The study uses the data generated by the in-place devices, such as smart locks, Wi-Fi routers, and electrical sensors, to gain additional insights on space occupancy, user behaviour, and comfort. Those devices, originally installed to facilitate remote operations, report data through the internet that the research uses to analyze information on human real-time use of spaces. Using an in-place Internet of Things (IoT) network enables a faster, more affordable, seamless, and scalable solution to analyze building interior spaces without incorporating external data collection systems such as sensors. The methodology is applied to a real case study of coliving, a residential building of 3000m², 7 floors, and 80 users in the centre of Madrid. The case study applies the method to classify IoT devices, assess, clean, and analyze collected data based on the analysis framework. The information is collected remotely, through the different platforms devices' platforms; the first step is to curate the data, understand what insights can be provided from each device according to the objectives of the study, this generates an analysis framework to be escalated for future building assessment even beyond the residential sector. The method will adjust the parameters to be analyzed tailored to the dataset available in the IoT of each building. The research demonstrates how human-centered data analytics can improve the future spatial design of indoor spaces.

Keywords: in-place devices, IoT, human-centred data-analytics, spatial design

Procedia PDF Downloads 170
1568 Development of an Indoor Drone Designed for the Needs of the Creative Industries

Authors: V. Santamarina Campos, M. de Miguel Molina, S. Kröner, B. de Miguel Molina

Abstract:

With this contribution, we want to show how the AiRT system could change the future way of working of a part of the creative industry and what new economic opportunities could arise for them. Remotely Piloted Aircraft Systems (RPAS), also more commonly known as drones, are now essential tools used by many different companies for their creative outdoor work. However, using this very flexible applicable tool indoor is almost impossible, since safe navigation cannot be guaranteed by the operator due to the lack of a reliable and affordable indoor positioning system which ensures a stable flight, among other issues. Here we present our first results of a European project, which consists of developing an indoor drone for professional footage especially designed for the creative industries. One of the main achievements of this project is the successful implication of the end-users in the overall design process from the very beginning. To ensure safe flight in confined spaces, our drone incorporates a positioning system based on ultra-wide band technology, an RGB-D (depth) camera for 3D environment reconstruction and the possibility to fully pre-program automatic flights. Since we also want to offer this tool for inexperienced pilots, we have always focused on user-friendly handling of the whole system throughout the entire process.

Keywords: virtual reality, 3D reconstruction, indoor positioning system, RPAS, remotely piloted aircraft systems, aerial film, intelligent navigation, advanced safety measures, creative industries

Procedia PDF Downloads 160
1567 Correlation between Indoor and Outdoor Air

Authors: Jamal A. Radaideh, Ziad N. Shatnawi

Abstract:

Both indoor and outdoor air quality is investigated throughout residential areas of Al Hofuf city/ Eastern province of Saudi Arabia through a multi‐week multiple sites measurement and sampling survey. Concentration levels of five criteria air pollutants, including carbon dioxide (CO2), carbon monoxide (CO), nitrous dioxide (NO2), sulfur dioxide (SO2) and total volatile organic compounds (TVOC) were measured and analyzed during the study period from January to May 2014. For this survey paper, three different sites, roadside RS, urban UR, and rural RU were selected. Within each site type, six locations were assigned to carryout air quality measurements and to study varying indoor/outdoor air quality for each pollutant. Results indicate that a strong correlation between indoor and outdoor air exists. The I/O ratios for the considered criteria pollutants show that the strongest relationship between indoor and outdoor air is found by analyzing of carbon dioxide, CO2 (0.88), while the lowest is found by both NO2 and SO2 (0.7).

Keywords: criteria air pollutants, indoor/outdoor air pollution, indoor/outdoor ratio, Saudi Arabia

Procedia PDF Downloads 391
1566 An Application-Based Indoor Environmental Quality (IEQ) Calculator for Residential Buildings

Authors: Kwok W. Mui, Ling T. Wong, Chin T. Cheung, Ho C. Yu

Abstract:

Based on an indoor environmental quality (IEQ) index established by previous work that indicates the overall IEQ acceptance from the prospect of an occupant in residential buildings in terms of four IEQ factors - thermal comfort, indoor air quality, visual and aural comforts, this study develops a user-friendly IEQ calculator for iOS and Android users to calculate the occupant acceptance and compare the relative performance of IEQ in apartments. The calculator allows the prediction of the best IEQ scenario on a quantitative scale. Any indoor environments under the specific IEQ conditions can be benchmarked against the predicted IEQ acceptance range. This calculator can also suggest how to achieve the best IEQ acceptance among a group of residents.

Keywords: calculator, indoor environmental quality (IEQ), residential buildings, 5-star benchmarks

Procedia PDF Downloads 442
1565 Visual Search Based Indoor Localization in Low Light via RGB-D Camera

Authors: Yali Zheng, Peipei Luo, Shinan Chen, Jiasheng Hao, Hong Cheng

Abstract:

Most of traditional visual indoor navigation algorithms and methods only consider the localization in ordinary daytime, while we focus on the indoor re-localization in low light in the paper. As RGB images are degraded in low light, less discriminative infrared and depth image pairs are taken, as the input, by RGB-D cameras, the most similar candidates, as the output, are searched from databases which is built in the bag-of-word framework. Epipolar constraints can be used to relocalize the query infrared and depth image sequence. We evaluate our method in two datasets captured by Kinect2. The results demonstrate very promising re-localization results for indoor navigation system in low light environments.

Keywords: indoor navigation, low light, RGB-D camera, vision based

Procedia PDF Downloads 418
1564 Methodology of Personalizing Interior Spaces in Public Libraries

Authors: Baharak Mousapour

Abstract:

Creating public spaces which are tailored for the specific demands of the individuals is one of the challenges for the contemporary interior designers. Improving the general knowledge as well as providing a forum for all walks of life to exploit is one of the objectives of a public library. In this regard, interior design in consistent with the demands of the individuals is of paramount importance. Seemingly, study spaces, in particular, those in close relation to the personalized sector, have proven to be challenging, according to the literature. To address this challenge, attributes of individuals, namely, perception of people from public spaces and their interactions with the so-called spaces, should be analyzed to provide interior designers with something to work on. This paper follows the analytic-descriptive research methodology by outlining case study libraries which have personalized public libraries with the investigation of the type of personalization as its primary objective and (I) recognition of physical schedule and the know-how of the spatial connection in indoor design of a library and (II) analysis of each personalized space in relation to other spaces of the library as its secondary objectives. The significance of the current research lies in the concept of personalization as one of the most recent methods of attracting people to libraries. Previous research exists in this regard, but the lack of data concerning personalization makes this topic worth investigating. Hence, this study aims to put forward approaches through real-case studies for the designers to deal with this concept.

Keywords: interior design, library, library design, personalization

Procedia PDF Downloads 113
1563 Influence of Roofing Material on Indoor Thermal Comfort of Bamboo House

Authors: Thet Su Hlaing, Shoichi Kojima

Abstract:

The growing desire for better indoor thermal performance with moderate energy consumption is becoming an issue for challenging today’s built environment. Studies related to the effective way of enhancing indoor thermal comfort had been done by approaching in numerous ways. Few studies have been focused on the correlation between building material and indoor thermal comfort of vernacular house. This paper analyzes the thermal comfort conditions of Bamboo House, mostly located in a hot and humid region. Depending on the roofing material, how the indoor environment varies will be observed through monitoring indoor and outdoor comfort measurement of Bamboo house as well as occupants’ preferable comfort condition. The result revealed that the indigenous roofing material mostly influences the indoor thermal environment by performing to have less effect from the outdoor temperature. It can keep the room cool with moderate thermal comfort, especially in the early morning and night, in the summertime without mechanical device assistance. After analyzing the performance of roofing material, which effect on indoor thermal comfort for 24 hours, it can be efficiently managed the time for availing mechanical cooling devices and make it supply only the necessary period of a day, which will lead to a partially reduce energy consumption.

Keywords: bamboo house, hot and humid climate, indoor thermal comfort, local indigenous roofing material

Procedia PDF Downloads 136
1562 A Study of the Implications for the Health and Wellbeing of Energy-Efficient House Occupants: A UK-Based Investigation of Indoor Climate and Indoor Air Quality

Authors: Patricia Kermeci

Abstract:

Policies related to the reduction of both carbon dioxide and energy consumption within the residential sector have contributed towards a growing number of energy-efficient houses being built in several countries. Many of these energy-efficient houses rely on the construction of very well insulated and highly airtight structures, ventilated mechanically. Although energy-efficient houses are indeed more energy efficient than conventional houses, concerns have been raised over the quality of their indoor air and, consequently, the possible adverse health and wellbeing effects for their occupants. Using a longitudinal study design over three different weather seasons (winter, spring and summer), this study has investigated the indoor climate and indoor air quality of different rooms (bedroom, living room and kitchen) in five energy-efficient houses and four conventional houses in the UK. Occupants have kept diaries of their activities during the studied periods and interviews have been conducted to investigate possible behavioural explanations for the findings. Data has been compared with reviews of epidemiological, toxicological and other health related published literature to reveals three main findings. First, it shows that the indoor environment quality of energy-efficient houses cannot be treated as a holistic entity as different rooms presented dissimilar indoor climate and indoor air quality. Thus, such differences might contribute to the health and wellbeing of occupants in different ways. Second, the results show that the indoor environment quality of energy-efficient houses can vary following changes in weather season, leaving occupants at a lower or higher risk of adverse health and wellbeing effects during different weather seasons. Third, one cannot assume that even identical energy-efficient houses provide a similar indoor environment quality. Fourth, the findings reveal that the practices and behaviours of the occupants of energy-efficient houses likely determine whether they enjoy a healthier indoor environment when compared with their control houses. In conclusion, it has been considered vital to understand occupants’ practices and behaviours in order to explain the ways they might contribute to the indoor climate and indoor air quality in energy-efficient houses.

Keywords: energy-efficient house, health and wellbeing, indoor environment, indoor air quality

Procedia PDF Downloads 194
1561 Exploring People’s Perceptions of Indoor Plants through the Lens of Para-Social Relationships Theory

Authors: Ivashkina Elizaveta

Abstract:

Despite significant research on the positive effects of houseplants on human life, we know almost nothing about how people perceive plants and their attitudes toward them. The following study seeks to fill this void by applying para-social relationships (PSRs) theory to analyze individuals’ perceptions of houseplants. We reveal how people form and maintain PSRs with indoor plants using 15 semi-structured in-depth interviews with Russian-speaking university students who had a close bond with their indoor plants when the study was conducted. The findings indicate that the process of forming PSRs is influenced by factors such as exposure and homophily. Students develop a sense of companionship with their indoor plants, which contributes to establishing a PSR. Participants reported engaging in various activities, such as regular care, communication, and interaction with their plants. The insights gained from this research have implications for horticultural therapy, environmental psychology, and indoor gardening practices.

Keywords: para-social relationships, plants, people-plant interaction, indoor plants, qualitative research

Procedia PDF Downloads 34
1560 Long-Term Indoor Air Monitoring for Students with Emphasis on Particulate Matter (PM2.5) Exposure

Authors: Seyedtaghi Mirmohammadi, Jamshid Yazdani, Syavash Etemadi Nejad

Abstract:

One of the main indoor air parameters in classrooms is dust pollution and it depends on the particle size and exposure duration. However, there is a lake of data about the exposure level to PM2.5 concentrations in rural area classrooms. The objective of the current study was exposure assessment for PM2.5 for students in the classrooms. One year monitoring was carried out for fifteen schools by time-series sampling to evaluate the indoor air PM2.5 in the rural district of Sari city, Iran. A hygrometer and thermometer were used to measure some psychrometric parameters (temperature, relative humidity, and wind speed) and Real-Time Dust Monitor, (MicroDust Pro, Casella, UK) was used to monitor particulate matters (PM2.5) concentration. The results show the mean indoor PM2.5 concentration in the studied classrooms was 135µg/m3. The regression model indicated that a positive correlation between indoor PM2.5 concentration and relative humidity, also with distance from city center and classroom size. Meanwhile, the regression model revealed that the indoor PM2.5 concentration, the relative humidity, and dry bulb temperature was significant at 0.05, 0.035, and 0.05 levels, respectively. A statistical predictive model was obtained from multiple regressions modeling for indoor PM2.5 concentration and indoor psychrometric parameters conditions.

Keywords: classrooms, concentration, humidity, particulate matters, regression

Procedia PDF Downloads 306
1559 Childhood Respiratory Diseases Related to Indoor and Outdoor Air Temperature in Shanghai, China

Authors: Chanjuan Sun, Shijie Hong, Jialing Zhang, Yuchao Guo, Zhijun Zou, Chen Huang

Abstract:

Background: Studies on associations between air temperature and childhood respiratory diseases are lack in China. Objectives: We aim to analyze the relationship between air temperature and childhood respiratory diseases. Methods: We conducted the on-site inspection into 454 residences and questionnaires survey. Indoor air temperature were from field inspection and outdoor air temperature were from website. Multiple logistic regression analyses were used to investigate the associations. Results: Indoor extreme hot air temperature was positively correlated with duration of a common cold (>=2 weeks), and outdoor extreme hot air temperature was also positively related with pneumonia among children. Indoor and outdoor extreme cold air temperature was a risk factor for rhinitis among children. The biggest indoor air temperature difference (indoor maximum air temperature minus indoor minimum air temperature) (Imax minus Imin) (the 4th quartile, >4 oC) and outdoor air temperature difference (outdoor maximum air temperature minus outdoor minimum air temperature) (Omax minus Omin) (the 4th quartile, >8oC) were positively related to pneumonia among children. Meanwhile, indoor air temperature difference (Imax minus Imin) (the 4th quartile, >4 oC) was positively correlated with diagnosed asthma among children. Air temperature difference between indoor and outdoor was negatively related with the most childhood respiratory diseases. This may be partly related to the avoidance behavior. Conclusions: Improper air temperature may affect the respiratory diseases among children.

Keywords: air temperature, extreme air temperature, air temperature difference, respiratory diseases, children

Procedia PDF Downloads 138
1558 Enhance Indoor Environment in Buildings and Its Effect on Improving Occupant's Health

Authors: Imad M. Assali

Abstract:

Recently, the world main problem is a global warming and climate change affecting both outdoor and indoor environments, especially the air quality (AQ) as a result of vast migration of people from rural areas to urban areas. Therefore, cities became more crowded and denser from an irregular population increase, along with increasing urbanization caused many problems for the environment such as increasing the land prices, changes in life style, and the new buildings are not adapted to the climate producing uncomfortable and unhealthy indoor building conditions. As interior environments are the places that create the most intimate relationship with the user. Consequently, the indoor environment quality (IEQ) for buildings became uncomfortable and unhealthy for its occupants. The symptoms commonly associated with poor indoor environment such as itchy, headache, fatigue, and respiratory complaints such as cough and congestion, etc. The symptoms tend to improve over time or even disappear when people are away from the building. Therefore, designing a healthy indoor environment to fulfill human needs is the main concern for architects and interior designer. However, this research explores how occupant expectations and environmental attitudes may influence occupant health and satisfaction within the context of the indoor environment. In doing so, it reviews and contributes to the methods and tools used to evaluate only the indoor environment quality (IEQ) components of building performance. Its main aim is to review the literature on indoor human comfort. This is followed by a review of previous papers published related to human comfort. Finally, this paper will provide possible approaches in design level of healthy buildings.

Keywords: sustainable building, indoor environment quality (IEQ), occupant's health, active system, sick building syndrome (SBS)

Procedia PDF Downloads 318
1557 Indoor Temperature Estimation with FIR Filter Using R-C Network Model

Authors: Sung Hyun You, Jeong Hoon Kim, Dae Ki Kim, Choon Ki Ahn

Abstract:

In this paper, we proposed a new strategy for estimating indoor temperature based on the modified resistance capacitance (R–C) network thermal dynamic model. Using minimum variance finite impulse response (FIR) filter, accurate indoor temperature estimation can be achieved. Our study is clarified by the experimental validation of the proposed indoor temperature estimation method. This experiment scenario environment is composed of a demand response (DR) server and home energy management system (HEMS) in a test bed.

Keywords: energy consumption, resistance-capacitance network model, demand response, finite impulse response filter

Procedia PDF Downloads 420
1556 Design Criteria for Achieving Acceptable Indoor Radon Concentration

Authors: T. Valdbjørn Rasmussen

Abstract:

Design criteria for achieving an acceptable indoor radon concentration are presented in this paper. The paper suggests three design criteria. These criteria have to be considered at the early stage of the building design phase to meet the latest recommendations from the World Health Organization in most countries. The three design criteria are; first, establishing a radon barrier facing the ground; second, lowering the air pressure in the lower zone of the slab on ground facing downwards; third, diluting the indoor air with outdoor air. The first two criteria can prevent radon from infiltrating from the ground, and the third criteria can dilute the indoor air. By combining these three criteria, the indoor radon concentration can be lowered achieving an acceptable level. In addition, a cheap and reliable method for measuring the radon concentration in the indoor air is described. The provision on radon in the Danish Building Regulations complies with the latest recommendations from the World Health Organization. Radon can cause lung cancer and it is not known whether there is a lower limit for when it is not harmful to human beings. Therefore, it is important to reduce the radon concentration as much as possible in buildings. Airtightness is an important factor when dealing with buildings. It is important to avoid air leakages in the building envelope both facing the atmosphere, e.g. in compliance with energy requirements, but also facing the ground, to meet the requirements to ensure and control the indoor environment. Infiltration of air from the ground underneath a building is the main providing source of radon to the indoor air.

Keywords: radon, natural radiation, barrier, pressure lowering, ventilation

Procedia PDF Downloads 323
1555 Determining the Thermal Performance and Comfort Indices of a Naturally Ventilated Room with Reduced Density Reinforced Concrete Wall Construction over Conventional M-25 Grade Concrete

Authors: P. Crosby, Shiva Krishna Pavuluri, S. Rajkumar

Abstract:

Purpose: Occupied built-up space can be broadly classified as air-conditioned and naturally ventilated. Regardless of the building type, the objective of all occupied built-up space is to provide a thermally acceptable environment for human occupancy. Considering this aspect, air-conditioned spaces allow a greater degree of flexibility to control and modulate the comfort parameters during the operation phase. However, in the case of naturally ventilated space, a number of design features favoring indoor thermal comfort should be mandatorily conceptualized starting from the design phase. One such primary design feature that requires to be prioritized is, selection of building envelope material, as it decides the flow of energy from outside environment to occupied spaces. Research Methodology: In India and many countries across globe, the standardized material used for building envelope is re-enforced concrete (i.e. M-25 grade concrete). The comfort inside the RC built environment for warm & humid climate (i.e. mid-day temp of 30-35˚C, diurnal variation of 5-8˚C & RH of 70-90%) is unsatisfying to say the least. This study is mainly focused on reviewing the impact of mix design of conventional M25 grade concrete on inside thermal comfort. In this mix design, air entrainment in the range of 2000 to 2100 kg/m3 is introduced to reduce the density of M-25 grade concrete. Thermal performance parameters & indoor comfort indices are analyzed for the proposed mix and compared in relation to the conventional M-25 grade. There are diverse methodologies which govern indoor comfort calculation. In this study, three varied approaches specifically a) Indian Adaptive Thermal comfort model, b) Tropical Summer Index (TSI) c) Air temperature less than 33˚C & RH less than 70% to calculate comfort is adopted. The data required for the thermal comfort study is acquired by field measurement approach (i.e. for the new mix design) and simulation approach by using design builder (i.e. for the conventional concrete grade). Findings: The analysis points that the Tropical Summer Index has a higher degree of stringency in determining the occupant comfort band whereas also providing a leverage in thermally tolerable band over & above other methodologies in the context of the study. Another important finding is the new mix design ensures a 10% reduction in indoor air temperature (IAT) over the outdoor dry bulb temperature (ODBT) during the day. This translates to a significant temperature difference of 6 ˚C IAT and ODBT.

Keywords: Indian adaptive thermal comfort, indoor air temperature, thermal comfort, tropical summer index

Procedia PDF Downloads 291
1554 Assessment of Personal Level Exposures to Particulate Matter among Children in Rural Preliminary Schools as an Indoor Air Pollution Monitoring

Authors: Seyedtaghi Mirmohammadi, J. Yazdani, S. M. Asadi, M. Rokni, A. Toosi

Abstract:

There are many indoor air quality studies with an emphasis on indoor particulate matters (PM2.5) monitoring. Whereas, there is a lake of data about indoor PM2.5 concentrations in rural area schools (especially in classrooms), since preliminary children are assumed to be more defenseless to health hazards and spend a large part of their time in classrooms. The objective of this study was indoor PM2.5 concentration quality assessment. Fifteen preliminary schools by time-series sampling were selected to evaluate the indoor air quality in the rural district of Sari city, Iran. Data on indoor air climate parameters (temperature, relative humidity and wind speed) were measured by a hygrometer and thermometer. Particulate matters (PM2.5) were collected and assessed by Real Time Dust Monitor, (MicroDust Pro, Casella, UK). The mean indoor PM2.5 concentration in the studied classrooms was 135µg/m3 in average. The multiple linear regression revealed that a correlation between PM2.5 concentration and relative humidity, distance from city center and classroom size. Classroom size yields reasonable negative relationship, the PM2.5 concentration was ranged from 65 to 540μg/m3 and statistically significant at 0.05 level and the relative humidity was ranged from 70 to 85% and dry bulb temperature ranged from 28 to 29°C were statistically significant at 0.035 and 0.05 level, respectively. A statistical predictive model was obtained from multiple regressions modeling for PM2.5 and indoor psychrometric parameters.

Keywords: particulate matters, classrooms, regression, concentration, humidity

Procedia PDF Downloads 287
1553 Inclusivity in Public Spaces through Architecture: A Case of Transgender Community in India

Authors: Sakshi Dhruve, Ar. Sarang Barbarwar

Abstract:

Public spaces are the locus of activity and interaction in any urban area. Such spaces provide identity to cities, towns or neighborhoods and define the people and culture over there. Inclusiveness is one of the core aspects of public or community spaces. With its humongous population and rapidly expanding urban areas, India needs more inclusivity in public spaces to attain true equitable development. The aim of the paper is to discuss the sensitivity of public spaces in India to the transgender community. The study shows how this community was legally included as ‘Third Gender’ in country’s legislation yet lacks social acceptance and security. It shows the challenges and issues faced by them at public spaces. The community was studied on ethnographic basis to understand their culture, lifestyle, requirements, etc. The findings have indicated towards a social stigma from people and insensitivity in designing of civic spaces. The larger objective of the study is also to provide recommendations on the design aspects and interventions in public places to increase their inclusiveness towards the transgender society.

Keywords: community spaces, ethnographic, stigma, Third Gender community

Procedia PDF Downloads 239
1552 Algebraic Characterization of Sheaves over Boolean Spaces

Authors: U. M. Swamy

Abstract:

A compact Hausdorff and totally disconnected topological space are known as Boolean space in view of the stone duality between Boolean algebras and such topological spaces. A sheaf over X is a triple (S, p, X) where S and X are topological spaces and p is a local homeomorphism of S onto X (that is, for each element s in S, there exist open sets U and G containing s and p(s) in S and X respectively such that the restriction of p to U is a homeomorphism of U onto G). Here we mainly concern on sheaves over Boolean spaces. From a given sheaf over a Boolean space, we obtain an algebraic structure in such a way that there is a one-to-one correspondence between these algebraic structures and sheaves over Boolean spaces.

Keywords: Boolean algebra, Boolean space, sheaf, stone duality

Procedia PDF Downloads 319
1551 Three-Dimensional Positioning Method of Indoor Personnel Based on Millimeter Wave Radar Sensor

Authors: Chao Wang, Zuxue Xia, Wenhai Xia, Rui Wang, Jiayuan Hu, Rui Cheng

Abstract:

Aiming at the application of indoor personnel positioning under smog conditions, this paper proposes a 3D positioning method based on the IWR1443 millimeter wave radar sensor. The problem that millimeter-wave radar cannot effectively form contours in 3D point cloud imaging is solved. The results show that the method can effectively achieve indoor positioning and scene construction, and the maximum positioning error of the system is 0.130m.

Keywords: indoor positioning, millimeter wave radar, IWR1443 sensor, point cloud imaging

Procedia PDF Downloads 64