Search results for: water management and distribution
20006 Numerical Investigation of the Evaporation and Mixing of UWS in a Diesel Exhaust Pipe
Authors: Tae Hyun Ahn, Gyo Woo Lee, Man Young Kim
Abstract:
Because of high thermal efficiency and low CO2 emission, diesel engines are being used widely in many industrial fields although it makes many PM and NOx which give both human health and environment a negative effect. NOx regulations for diesel engines, however, are being strengthened and it is impossible to meet the emission standard without NOx reduction devices such as SCR (Selective Catalytic Reduction), LNC (Lean NOx Catalyst), and LNT (Lean NOx Trap). Among the NOx reduction devices, urea-SCR system is known as the most stable and efficient method to solve the problem of NOx emission. But this device has some issues associated with the ammonia slip phenomenon which is occurred by shortage of evaporation and thermolysis time, and that makes it difficult to achieve uniform distribution of the injected urea in front of monolith. Therefore, this study has focused on the mixing enhancement between urea and exhaust gases to enhance the efficiency of the SCR catalyst equipped in catalytic muffler by changing inlet gas temperature and spray conditions to improve the spray uniformity of the urea water solution. Finally, it can be found that various parameters such as inlet gas temperature and injector and injection angles significantly affect the evaporation and mixing of the urea water solution with exhaust gases, and therefore, optimization of these parameters are required.Keywords: UWS (Urea-Water-Solution), selective catalytic reduction (SCR), evaporation, thermolysis, injection
Procedia PDF Downloads 39320005 Force Distribution and Muscles Activation for Ankle Instability Patients with Rigid and Kinesiotape while Standing
Authors: Norazlin Mohamad, Saiful Adli Bukry, Zarina Zahari, Haidzir Manaf, Hanafi Sawalludin
Abstract:
Background: Deficit in neuromuscular recruitment and decrease force distribution were the common problems among ankle instability patients due to altered joint kinematics that lead to recurrent ankle injuries. Rigid Tape and KT Tape had widely been used as therapeutic and performance enhancement tools in ankle stability. However the difference effect between this two tapes is still controversial. Objective: To investigate the different effect between Rigid Tape and KT Tape on force distribution and muscle activation among ankle instability patients while standing. Study design: Crossover trial. Participants: 27 patients, age between 18 to 30 years old participated in this study. All the subjects were applied with KT Tape & Rigid Tape on their affected ankle with 3 days of interval for each intervention. The subjects were tested with their barefoot (without tape) first to act as a baseline before proceeding with KT Tape, and then with Rigid Tape. Result: There were no significant difference on force distribution at forefoot and back-foot for both tapes while standing. However the mean data shows that Rigid Tape has the highest force distribution at back-foot rather than forefoot when compared with KT Tape that had more force distribution at forefoot while standing. Regarding muscle activation (Peroneus Longus), results showed significant difference between Rigid Tape and KT Tape (p= 0.048). However, there was no significant difference on Tibialis Anterior muscle activation between both tapes while standing. Conclusion: The results indicated that Peroneus longus muscle was more active when applied Rigid Tape rather than KT Tape in ankle instability patients while standing.Keywords: ankle instability, kinematic, muscle activation, force distribution, Rigid Tape, KT tape
Procedia PDF Downloads 41520004 Conservativeness of Probabilistic Constrained Optimal Control Method for Unknown Probability Distribution
Authors: Tomoaki Hashimoto
Abstract:
In recent decades, probabilistic constrained optimal control problems have attracted much attention in many research field. Although probabilistic constraints are generally intractable in an optimization problem, several tractable methods haven been proposed to handle probabilistic constraints. In most methods, probabilistic constraints are reduced to deterministic constraints that are tractable in an optimization problem. However, there is a gap between the transformed deterministic constraints in case of known and unknown probability distribution. This paper examines the conservativeness of probabilistic constrained optimization method with the unknown probability distribution. The objective of this paper is to provide a quantitative assessment of the conservatism for tractable constraints in probabilistic constrained optimization with the unknown probability distribution.Keywords: optimal control, stochastic systems, discrete time systems, probabilistic constraints
Procedia PDF Downloads 57820003 An Extended Inverse Pareto Distribution, with Applications
Authors: Abdel Hadi Ebraheim
Abstract:
This paper introduces a new extension of the Inverse Pareto distribution in the framework of Marshal-Olkin (1997) family of distributions. This model is capable of modeling various shapes of aging and failure data. The statistical properties of the new model are discussed. Several methods are used to estimate the parameters involved. Explicit expressions are derived for different types of moments of value in reliability analysis are obtained. Besides, the order statistics of samples from the new proposed model have been studied. Finally, the usefulness of the new model for modeling reliability data is illustrated using two real data sets with simulation study.Keywords: pareto distribution, marshal-Olkin, reliability, hazard functions, moments, estimation
Procedia PDF Downloads 8020002 Calculating Approach of Thermal Conductivity of 8 YSZ in Different Relative Humidities Corresponding to Low Water Contents
Authors: Yun Chol Kang, Myong Nam Kong, Nam Chol Yu, Jin Sim Kim, Un Yong Paek, Song Ho Kim
Abstract:
This study focuses on the calculating approach of the thermal conductivity of 8 mol% yttria-stabilized zirconia (8YSZ) in different relative humidity corresponding to low water contents. When water content in 8YSZ is low, water droplets can accumulate in the neck regions. We assume that spherical water droplets are randomly located in the neck regions formed by grains and surrounded by the pores. Based on this, a new hypothetical pore constituted by air and water is proposed using the microstructural modeling. We consider 8YSZ is a two-phase material constituted by the solid region and the hypothetical pore region where the water droplets are penetrated in the pores, randomly. The results showed that the thermal conductivity of the hypothetical pore is calculated using the parallel resistance for low water contents, and the effective thermal conductivity of 8YSZ material constituted by solid and hypothetical pore in different relative humidities using EMPT. When the numbers of water layers on the surface of 8YSZ are less than 1.5, the proposed approach gives a good interpretation of the experimental results. When the theoretical value of the number of water layers on 8YSZ surface is 1, the water content is not enough to cover the internal solid surface completely. The proposed approach gives a better interpretation of the experimental results in different relative humidities that numbers of water layers on the surface of 8YSZ are less than 1.5.Keywords: 8YSZ, microstructure, thermal conductivity, relative humidity
Procedia PDF Downloads 8720001 A Comparative Study of Generalized Autoregressive Conditional Heteroskedasticity (GARCH) and Extreme Value Theory (EVT) Model in Modeling Value-at-Risk (VaR)
Authors: Longqing Li
Abstract:
The paper addresses the inefficiency of the classical model in measuring the Value-at-Risk (VaR) using a normal distribution or a Student’s t distribution. Specifically, the paper focuses on the one day ahead Value-at-Risk (VaR) of major stock market’s daily returns in US, UK, China and Hong Kong in the most recent ten years under 95% confidence level. To improve the predictable power and search for the best performing model, the paper proposes using two leading alternatives, Extreme Value Theory (EVT) and a family of GARCH models, and compares the relative performance. The main contribution could be summarized in two aspects. First, the paper extends the GARCH family model by incorporating EGARCH and TGARCH to shed light on the difference between each in estimating one day ahead Value-at-Risk (VaR). Second, to account for the non-normality in the distribution of financial markets, the paper applies Generalized Error Distribution (GED), instead of the normal distribution, to govern the innovation term. A dynamic back-testing procedure is employed to assess the performance of each model, a family of GARCH and the conditional EVT. The conclusion is that Exponential GARCH yields the best estimate in out-of-sample one day ahead Value-at-Risk (VaR) forecasting. Moreover, the discrepancy of performance between the GARCH and the conditional EVT is indistinguishable.Keywords: Value-at-Risk, Extreme Value Theory, conditional EVT, backtesting
Procedia PDF Downloads 31920000 Plasma Treatment of a Lignite Using Water-Stabilized Plasma Torch at Atmospheric Pressure
Authors: Anton Serov, Alan Maslani, Michal Hlina, Vladimir Kopecky, Milan Hrabovsky
Abstract:
Recycling of organic waste is an increasingly hot topic in recent years. This issue becomes even more interesting if the raw material for the fuel production can be obtained as the result of that recycling. A process of high-temperature decomposition of a lignite (a non-hydrolysable complex organic compound) was studied on the plasma gasification reactor PLASGAS, where water-stabilized plasma torch was used as a source of high enthalpy plasma. The plasma torch power was 120 kW and allowed heating of the reactor to more than 1000 °C. The material feeding rate in the gasification reactor was selected 30 and 60 kg per hour that could be compared with small industrial production. An efficiency estimation of the thermal decomposition process was done. A balance of the torch energy distribution was studied as well as an influence of the lignite particle size and an addition of methane (CH4) in a reaction volume on the syngas composition (H2+CO). It was found that the ratio H2:CO had values in the range of 1,5 to 2,5 depending on the experimental conditions. The recycling process occurred at atmospheric pressure that was one of the important benefits because of the lack of expensive vacuum pump systems. The work was supported by the Grant Agency of the Czech Republic under the project GA15-19444S.Keywords: atmospheric pressure, lignite, plasma treatment, water-stabilized plasma torch
Procedia PDF Downloads 37219999 Water-Controlled Fracturing with Fuzzy-Ball Fluid in Tight Gas Reservoirs of Deep Coal Measures in Sulige
Authors: Xiangchun Wang, Lihui Zheng, Maozong Gan, Peng Zhang, Tong Wu, An Chang
Abstract:
The deep coal measure tight gas reservoir in Sulige is usually reformed by fracturing, because the reservoir thickness is small, the water layers can be easily communicated during fracturing, which will lead to water production of gas wells and lower production of gas wells. Therefore, it is necessary to control water during fracturing in deep coal measure tight gas reservoir. Using fuzzy-ball fluid to control water fracturing can not only increase the output but also reduce the water output. The fuzzy-ball fluid was prepared indoors to carry out evaluation experiments. The fuzzy ball fluid was mixed in equal volume with the pre-fluid and formation water to test its compatibility. The core displacement device was used to test the gas and water breaking through the matrix and fractured cores blocked by fuzzy-ball fluid. The breakthrough pressure of the plunger tests its water blocking performance. The experimental results show that there is no precipitation after the fuzzy-ball fluid is mixed with the pad fluid and the formation water, respectively. The breakthrough pressure gradients of gas and water after the fuzzy-ball fluid plugged the cracks were 0.02MPa/cm and 0.04MPa/cm, respectively, and the breakthrough pressure gradients of gas and water after the matrix was plugged were 0.03MPa/cm and 0.2MPa/cm, respectively, which meet the requirements of field operation. Two wells A and B in the Sulige Gas Field were used on site to implement water control fracturing. After the pre-fluid was injected into the two wells, 50m3 of fuzzy-ball fluid was pumped to plug the water. The construction went smoothly. After water control and fracturing, the average daily output in 161 days was increased by 13.71% and 6.99% compared with that of adjacent wells in the same layer. The adjacent wells were bubbled for 3 times and 63 times respectively, while there was no effusion in A and B construction wells. The results show that fuzzy-ball fluid is a water plugging material suitable for water control fracturing in tight gas wells, and its water control mechanism can also provide a new idea for the development of water control fracturing materials.Keywords: coal seam, deep layer, fracking, fuzzy-ball fluid, reservoir reconstruction
Procedia PDF Downloads 22719998 Microbes in Aquaculture: New Trends and Application in Freshwater Fish Culture
Authors: Muhammad Younis Laghari
Abstract:
Microbial communities play the most important role in aquatic ecosystems. These microbes have a great role in fish growth and aquaculture production. Unfortunately, the farmers are unaware of these useful creatures. Nowadays, the trend of fish farming is developed to re-circulatory aquaculture system (RAS) to increase production and reduce the investment/management cost to increase the profit. However, sometimes, it has been observed that even the growth of fish is decreased in RAS without apparent changes in water quality. There is a great importance of microorganisms in aquaculture, where they occur naturally. However, they can be added artificially by applying different roles. Even these microbes play an important role in the degradation of organic matter and recycling nutrients, along with nutritional support to fish. Even some microorganisms may protect fish and larvae against diseases. But if not managed/utilized properly, they may cause to infect or kill the fish and their larvae. However, manipulating the microbes and monitoring them in aquaculture systems hold great potential to assess and improve the water quality as well as to control the development of microbial infections. While there is an utmost need for research to determine the microbiomes of healthy aquaculture systems, we also need to develop authentic methods for the successful manipulation of microbes as well as engineer these microbiomes. Hence, we should develop a plan to utilize and get full advantage from these microbial interactions for the successful management of aquaculture through advanced research and technology.Keywords: aquaculture, ecology system, degradation, microbes, nutrient recycling, water quality
Procedia PDF Downloads 8019997 The Pro-Active Public Relations of Faculty of Management Science, Suan Sunandha Rajabhat University
Authors: Kanyakorn Sujarittnetikarn, Surangkana Pipatchokchaiyo
Abstract:
The objective of this research was to study the pro-active public relations of according to the characteristic of Faculty of Management Science, Suan Sunandha Rajabhat University. The sample group for this research report was students from 4 year curriculum and continued / extended curriculum, made a random distribution proportion as follows: a group of 400 students who are working while studying and a group of non – working students. The tools used in this research were questionnaires, asking about the acknowledgement of public relations information of Faculty of Management Science in the academic year 2007. The result found that friends were the most influential in choosing the education institute. The differences of method to receive information of non-working student and working student were the entertainment magazine which was interested mostly by working students and they preferred to search the information on the website after 24:00 O’clock. However, the non-working students preferred 21:00-24:00 O’clock the most.Keywords: development guidelines systems, faculty of management science, public relation planning, proactive public relations
Procedia PDF Downloads 28819996 Impact of Activated Carbon and Magnetic Field in Slow Sand Filter on Water Purification for Rural Dwellers
Authors: Baiyeri R. M, Oloriegbe Y. A., Saad A. O., Yusuf, K. O.
Abstract:
Most farmers that produce food crops in Nigeria live in rural areas where potable water is not available. The farmers in some areas have problem of water borne diseases which could affect their health and could lead to death. This study was conducted to determine the impact of incorporating Granular Activated Carbon(GAC) and Magnetic Field(MF) in Slow Sand Filter(SSF) on the purification of water for rural dwellers. The SSF was developed using PVC pipe with diameter 152.4 mm and 1100 mm long, with layers of fine sand with size 0.25 mm and 350 mm depth, followed by GAC 10 mm size and 100 mm depth, fine sand 0.25mm with 500 mm depth and gravel grain size 10-14 mm and 100 mm depth. The SSF was kept moist for 21 days for biofilm layer (schmutzdecke) to fully develop, which is essential for trapping bacteria. Two SSFs fabricated consist of SSF+GAC as Filter 1, SSF+GAC+MF as Filter 2 and Control (Raw water without passing through filter. Water samples were collected from the filter and analyzed. The flow rate of Filter was 25 litres/h Total bacteria counts(TBC) for Filter 1 and Filter 2 and control were 2.4, 4.6 and 8.1 cfu/mg, respectively. Total coliform count for Filter 1 and Filter 2 and control were 1.7, 3.0 and 6.4 cfu/100mL, respectively. The filters reduced water hardness, turbidity, lead, copper, electrical conductivity and TBC by 53.13-73.44% but increased pH from 5.8 to 7.1-7.3. SSF is recommended for water purification in the rural areas.Keywords: magnetised water, sow sand filter, portable water, activated carbon
Procedia PDF Downloads 12919995 A Plan of Smart Management for Groundwater Resources
Authors: Jennifer Chen, Pei Y. Hsu, Yu W. Chen
Abstract:
Groundwater resources play a vital role in regional water supply because over 1/3 of total demand is satisfied by groundwater resources. Because over-pumpage might cause environmental impact such as land subsidence, a sustainable management of groundwater resource is required. In this study, a blueprint of smart management for groundwater resource is proposed and planned. The framework of the smart management can be divided into two major parts, hardware and software parts. First, an internet of groundwater (IoG) which is inspired by the internet of thing (IoT) is proposed to observe the migration of groundwater usage and the associated response, groundwater levels. Second, algorithms based on data mining and signal analysis are proposed to achieve the goal of providing highly efficient management of groundwater. The entire blueprint is a 4-year plan and this year is the first year. We have finished the installation of 50 flow meters and 17 observation wells. An underground hydrological model is proposed to determine the associated drawdown caused by the measured pumpages. Besides, an alternative to the flow meter is also proposed to decrease the installation cost of IoG. An accelerometer and 3G remote transmission are proposed to detect the on and off of groundwater pumpage.Keywords: groundwater management, internet of groundwater, underground hydrological model, alternative of flow meter
Procedia PDF Downloads 37519994 Modelling Water Usage for Farming
Authors: Ozgu Turgut
Abstract:
Water scarcity is a problem for many regions which requires immediate action, and solutions cannot be postponed for a long time. It is known that farming consumes a significant portion of usable water. Although in recent years, the efforts to make the transition to dripping or spring watering systems instead of using surface watering started to pay off. It is also known that this transition is not necessarily translated into an increase in the capacity dedicated to other water consumption channels such as city water or power usage. In order to control and allocate the water resource more purposefully, new watering systems have to be used with monitoring abilities that can limit the usage capacity for each farm. In this study, a decision support model which relies on a bi-objective stochastic linear optimization is proposed, which takes crop yield and price volatility into account. The model generates annual planting plans as well as water usage limits for each farmer in the region while taking the total value (i.e., profit) of the overall harvest. The mathematical model is solved using the L-shaped method optimally. The decision support model can be especially useful for regional administrations to plan next year's planting and water incomes and expenses. That is why not only a single optimum but also a set of representative solutions from the Pareto set is generated with the proposed approach.Keywords: decision support, farming, water, tactical planning, optimization, stochastic, pareto
Procedia PDF Downloads 7019993 Marine Litter Dispersion in the Southern Shores of the Caspian Sea (Case Study: Mazandaran Province)
Authors: Siamak Jamshidi
Abstract:
One of the major environmental problems in the southern coasts of the Caspian Sea is that the marine and coastal debris is being deposited and accumulated due to industrial, urban and tourism activities. Study, sampling and analysis on the type, size, amount and origin of human-made (anthropogenic) waste in the coastal areas of this sea can be very effective in implementing management, cultural and informative programs to reduce marine environmental pollutants. Investigation on marine litter distribution under impact of seawater dynamics was performed for the first time in this research. The rate of entry and distribution of marine and coastal pollutants and wastes, which are mainly of urban, tourist and hospital origin, has multiplied on the southern shore of the Caspian Sea in the last decade. According to the results, the two most important sources of hospital waste in the coastal areas are Tonekabon and Mahmoudabad. In this case, the effect of dynamic parameters of seawater such as flow (with speeds of up to about 1 m/s) and waves, as well as the flow of rivers leading to the shoreline are also influential factors in the distribution of marine litter in the region. Marine litters in the southern coastal region were transported from west to east by the shallow waters of the southern Caspian Sea. In other words, the marine debris density has been observed more in the eastern part.Keywords: southern shelf, coastal oceanography, seawater flow, vertical structure, marine environment
Procedia PDF Downloads 6919992 Mesozooplankton in the Straits of Florida: Patterns in Biomass and Distribution
Authors: Sharein El-Tourky, Sharon Smith, Gary Hitchcock
Abstract:
Effective fisheries management is necessarily dependent on the accuracy of fisheries models, which can be limited if they omit critical elements. One critical element in the formulation of these models is the trophic interactions at the larval stage of fish development. At this stage, fish mortality rates are at their peak and survival is often determined by resource limitation. Thus it is crucial to identify and quantify essential prey resources and determine how they vary in abundance and availability. The main resources larval fish consume are mesozooplankton. In the Straits of Florida, little is known about temporal and spatial variability of the mesozooplankton community despite its importance as a spawning ground for fish such as the Blue Marlin. To investigate mesozooplankton distribution patterns in the Straits of Florida, a transect of 16 stations from Miami to the Bahamas was sampled once a month in 2003 and 2004 at four depths. We found marked temporal and spatial variability in mesozooplankton biomass, diversity, and depth distribution. Mesozooplankton biomass peaked on the western boundary of the SOF and decreased gradually across the straits to a minimum at eastern stations. Midcurrent stations appeared to be a region of enhanced year-round variability, but limited seasonality. Examination of dominant zooplankton groups revealed groups could be parsed into 6 clusters based on abundance. Of these zooplankton groups, copepods were the most abundant zooplankton group, with the 20 most abundant species making up 86% of the copepod community. Copepod diversity was lowest at midcurrent stations and highest in the Eastern SOF. Interestingly, one copepods species, previously identified to compose up to 90% of larval blue marlin and sailfish diets in the SOF, had a mean abundance of less than 7%. However, the unique spatial and vertical distribution patterns of this copepod coincide with peak larval fish spawning periods and larval distribution, suggesting an important relationship requiring further investigation.Keywords: mesozooplankton biodiversity, larval fish diet, food web, Straits of Florida, vertical distribution, spatiotemporal variability, cross-current comparisons, Gulf Stream
Procedia PDF Downloads 55219991 Bayesian Estimation under Different Loss Functions Using Gamma Prior for the Case of Exponential Distribution
Authors: Md. Rashidul Hasan, Atikur Rahman Baizid
Abstract:
The Bayesian estimation approach is a non-classical estimation technique in statistical inference and is very useful in real world situation. The aim of this paper is to study the Bayes estimators of the parameter of exponential distribution under different loss functions and then compared among them as well as with the classical estimator named maximum likelihood estimator (MLE). In our real life, we always try to minimize the loss and we also want to gather some prior information (distribution) about the problem to solve it accurately. Here the gamma prior is used as the prior distribution of exponential distribution for finding the Bayes estimator. In our study, we also used different symmetric and asymmetric loss functions such as squared error loss function, quadratic loss function, modified linear exponential (MLINEX) loss function and non-linear exponential (NLINEX) loss function. Finally, mean square error (MSE) of the estimators are obtained and then presented graphically.Keywords: Bayes estimator, maximum likelihood estimator (MLE), modified linear exponential (MLINEX) loss function, Squared Error (SE) loss function, non-linear exponential (NLINEX) loss function
Procedia PDF Downloads 38119990 Ground Water Pollution Investigation around Çorum Stream Basin in Turkey
Authors: Halil Bas, Unal Demiray, Sukru Dursun
Abstract:
Water and ground water pollution at the most of the countries is important problem. Investigation of water pollution source must be carried out to save fresh water. Because fresh water sources are very limited and recent sources are not enough for increasing population of world. In this study, investigation was carried out on pollution factors effecting the quality of the groundwater in Çorum Stream Basin in Turkey. Effect of geological structure of the region and the interaction between the stream and groundwater was researched. For the investigation, stream and groundwater sampling were performed at rainy and dry seasons to see if there is a change on quality parameters. The results were evaluated by the computer programs and then graphics, distribution maps were prepared. Thus, degree of the quality and pollution were tried to understand. According to analysis results, because the results of streams and the ground waters are not so close to each other we can say that there is no interaction between the stream and the groundwater. As the irrigation water, the stream waters are generally in the range between C3S1 region and the ground waters are generally in the range between C3S1 and C4S2 regions according to US Salinity Laboratory Diagram. According to Wilcox diagram stream waters are generally good-permissible and ground waters are generally good permissible, doubtful to unsuitable and unsuitable type. Especially ground waters are doubtful to unsuitable and unsuitable types in dry season. It may be assumed that as the result of relative increase in concentration of salt minerals. Especially samples from groundwater wells bored close to gypsium bearing units have high hardness, electrical conductivity and salinity values. Thus for drinking and irrigation these waters are determined as unsuitable. As a result of these studies, it is understood that the groundwater especially was effected by the lithological contamination rather than the anthropogenic or the other types of pollution. Because the alluvium is covered by the silt and clay lithology it is not affected by the anthropogenic and the other foreign factors. The results of solid waste disposal site leachate indicate that this site would have a risk potential for pollution in the future. Although the parameters did not exceed the maximum dangerous values it does not mean that they will not be dangerous in the future, and this case must be taken into account.Keywords: Çorum, environment, groundwater, hydrogeology, geology, pollution, quality, stream
Procedia PDF Downloads 49919989 Regional Hydrological Extremes Frequency Analysis Based on Statistical and Hydrological Models
Authors: Hadush Kidane Meresa
Abstract:
The hydrological extremes frequency analysis is the foundation for the hydraulic engineering design, flood protection, drought management and water resources management and planning to utilize the available water resource to meet the desired objectives of different organizations and sectors in a country. This spatial variation of the statistical characteristics of the extreme flood and drought events are key practice for regional flood and drought analysis and mitigation management. For different hydro-climate of the regions, where the data set is short, scarcity, poor quality and insufficient, the regionalization methods are applied to transfer at-site data to a region. This study aims in regional high and low flow frequency analysis for Poland River Basins. Due to high frequent occurring of hydrological extremes in the region and rapid water resources development in this basin have caused serious concerns over the flood and drought magnitude and frequencies of the river in Poland. The magnitude and frequency result of high and low flows in the basin is needed for flood and drought planning, management and protection at present and future. Hydrological homogeneous high and low flow regions are formed by the cluster analysis of site characteristics, using the hierarchical and C- mean clustering and PCA method. Statistical tests for regional homogeneity are utilized, by Discordancy and Heterogeneity measure tests. In compliance with results of the tests, the region river basin has been divided into ten homogeneous regions. In this study, frequency analysis of high and low flows using AM for high flow and 7-day minimum low flow series is conducted using six statistical distributions. The use of L-moment and LL-moment method showed a homogeneous region over entire province with Generalized logistic (GLOG), Generalized extreme value (GEV), Pearson type III (P-III), Generalized Pareto (GPAR), Weibull (WEI) and Power (PR) distributions as the regional drought and flood frequency distributions. The 95% percentile and Flow duration curves of 1, 7, 10, 30 days have been plotted for 10 stations. However, the cluster analysis performed two regions in west and east of the province where L-moment and LL-moment method demonstrated the homogeneity of the regions and GLOG and Pearson Type III (PIII) distributions as regional frequency distributions for each region, respectively. The spatial variation and regional frequency distribution of flood and drought characteristics for 10 best catchment from the whole region was selected and beside the main variable (streamflow: high and low) we used variables which are more related to physiographic and drainage characteristics for identify and delineate homogeneous pools and to derive best regression models for ungauged sites. Those are mean annual rainfall, seasonal flow, average slope, NDVI, aspect, flow length, flow direction, maximum soil moisture, elevation, and drainage order. The regional high-flow or low-flow relationship among one streamflow characteristics with (AM or 7-day mean annual low flows) some basin characteristics is developed using Generalized Linear Mixed Model (GLMM) and Generalized Least Square (GLS) regression model, providing a simple and effective method for estimation of flood and drought of desired return periods for ungauged catchments.Keywords: flood , drought, frequency, magnitude, regionalization, stochastic, ungauged, Poland
Procedia PDF Downloads 60019988 Geochemical Baseline and Origin of Trace Elements in Soils and Sediments around Selibe-Phikwe Cu-Ni Mining Town, Botswana
Authors: Fiona S. Motswaiso, Kengo Nakamura, Takeshi Komai
Abstract:
Heavy metals may occur naturally in rocks and soils, but elevated quantities of them are being gradually released into the environment by anthropogenic activities such as mining. In order to address issues of heavy metal water and soil pollution, a distinction needs to be made between natural and anthropogenic anomalies. The current study aims at characterizing the spatial distribution of trace elements and evaluate site-specific geochemical background concentrations of trace elements in the mine soils examined, and also to discriminate between lithogenic and anthropogenic sources of enrichment around a copper-nickel mining town in Selibe-Phikwe, Botswana. A total of 20 Soil samples, 11 river sediment, and 9 river water samples were collected from an area of 625m² within the precincts of the mine and the smelter. The concentrations of metals (Cu, Ni, Pb, Zn, Cr, Ni, Mn, As, Pb, and Co) were determined by using an ICP-MS after digestion with aqua regia. Major elements were also determined using ED-XRF. Water pH and EC were measured on site and recorded while soil pH and EC were also determined in the laboratory after performing water elution tests. The highest Cu and Ni concentrations in soil are 593mg/kg and 453mg/kg respectively, which is 3 times higher than the crustal composition values and 2 times higher than the South African minimum allowable levels of heavy metals in soils. The level of copper contamination was higher than that of nickel and other contaminants. Water pH levels ranged from basic (9) to very acidic (3) in areas closer to the mine/smelter. There is high variation in heavy metal concentration, eg. Cu suggesting that some sites depict regional natural background concentrations while other depict anthropogenic sources.Keywords: contamination, geochemical baseline, heavy metals, soils
Procedia PDF Downloads 15819987 Freshwater Recovering and Water Pollution Controlling Technology
Authors: Habtamu Abdisa
Abstract:
In nature, water may not be free from contaminants due to its polar nature. But, more than this, the environmental water is highly polluted by manmade activities from industrial, agricultural, recreation, shipping, and domestic sites, thereby increasing the shortage of freshwater for designated purposes. Therefore, in the face of water scarcity, human beings are enforced to look at all the existing opportunities to get an adequate amount of freshwater resources. The most probable water resource is wastewater, from which the water can be recovered to serve designated purposes (for industrial, agricultural, drinking, and other domestic uses). Present-day, the most preferable method for recovering water from different wastewater streams for re-use is membrane technology. This paper looks at the progressive development of membrane technology in wastewater treatment. The applications of pressure-driven membrane separation technology (microfiltration, ultrafiltration, nano-filtration, reverse osmosis, and tissue purification) and no pressure membrane separation technology (semipermeable membrane, liquefiedfilm, and electro-dialysis) and also ion-exchange were reviewed. More than all, the technology for converting environmental water pollutants into energy is of considerable attention. Finally, recommendations for future research relating to the application of membrane technology in wastewater treatment were made. Also, further research recommendation about membrane fouling and cleaning was made.Keywords: environmental pollution, membrane technology, water quality, wastewater
Procedia PDF Downloads 9519986 Application of Agile Project Management to Construction Projects: Case Study
Authors: Ran Etgar, Sarit Freund
Abstract:
Agile project management (APM) has been developed originally for software development project. Construction projects seemed to be more apt to traditional water-fall approach than to APM. However, Construction project suffers from similar problems that necessitated the invention of APM, mainly the need to break down the project structure to small increments, thus minimizing the needed managerial planning and design. Since the classical structure of APM is not applicable the way it is to construction project, a modified version of APM was devised. This method, nicknamed 'The anchor method', exploits the fundamentals of APM (i.e., iterations, or sprints of short time frames or timeboxes, cross-functional teams, risk reduction and adaptation to changes) and adjust them to the construction world. The projects had to be structured appropriately to proactively and quickly adapt to change. The method aims to encompass human behavior and lean towards adaptivity rather than predictability. To enable smooth application of the method, a special project management software was developed, so as to provide solid administrational help and accurate data. The method is tested on a bunch of construction projects and some key performance indicators (KPIs) are collected. According to preliminary results the method is indeed very advantageous and with proper assimilation can radically change the construction project management paradigm.Keywords: agile project management, construction, information systems, project management
Procedia PDF Downloads 12819985 Water Absorption Studies on Natural Fiber Reinforced Polymer Composites
Authors: G. L. Devnani, Shishir Sinha
Abstract:
In the recent years, researchers have drawn their focus on natural fibers reinforced composite materials because of their excellent properties like low cost, lower weight, better tensile and flexural strengths, biodegradability etc. There is little concern however that when these materials are put in moist conditions for long duration, their mechanical properties degrade. Therefore, in order to take maximum advantage of these novel materials, one should have a complete understanding of their moisture or water absorption phenomena. Various fiber surface treatment methods like alkaline treatment, acetylation etc. have also been suggested for reduction in water absorption of these composites. In the present study, a detailed review is done for water absorption behavior of natural fiber reinforced polymer composites, and experiments also have been performed on these composites with varying the parameters like fiber loading etc. for understanding the water absorption kinetics. Various surface treatment methods also performed to reduce the water absorption behavior of these materials and effort is made to develop a proper understanding of water absorption mechanism mathematically and experimentally for full potential utilization of natural fiber reinforced polymer composite materials.Keywords: alkaline treatment, composites, natural fiber, water absorption
Procedia PDF Downloads 28519984 Study of Some Physiochemical Properties of Ain Kaam Water Lagoon and Assessing Their Suitability for Human Use and Irrigation
Authors: Keri Alhadi Ighwela
Abstract:
In this research some physiochemical properties represented by temperature, pH, total hardness (TH), electrical conductivity (EC), total dissolved solids (TDS), chloride and hardness of calcium (Ca-H) and magnesium (Mg-H) were measured in the water of Ain Kaam Zliten in Libya (South side of the lagoon). A comparison of water quality with the values adopted internationally was accomplished to demonstrate the suitability for human and irrigation use. The experimental results showed that the values of pH and EC of the studied for water samples did not exceed the allowed range for drinking water. While TDS, TH, (Mg-H) and chloride values have exceeded the acceptable limit for drinking water internationally, calcium (Ca-H) results have shown a decrease in values of all samples except the first sample which record a marginal increase.Keywords: physiochemical properties, Ain Kaam lagoon, Zliten, Libya
Procedia PDF Downloads 34719983 Rejuvenating the Water Edge: An Urban Design Initiative for Waterways. Case: Kottayam – Chenganassery, Kerala
Authors: Aswathy Rajagopal
Abstract:
Many research agendas addressed interesting questions concerning the extent and character of water transport and many others looked at various phenomenon of urban waterfront development. The paper explore to highlight the importance of Inland Water Transportation(IWT) and the need for further development of IWT regulatory framework and for synergy between the inland navigation institutions both at policy and expert levels by taking the Backwater system of Kerala, India as the demonstration site. The author seeks to highlight the hurdles faced in integrating water transportation, the interchange between water and land and the waterfront development. The aim of the research is to look at the tools and methods that can be applied for waterfront regeneration and end with suggestions for policies and design considerations to guide the physical development along the proposed Kottayam –Chenganassery arterial waterway.Keywords: waterways, inland water transportation (IWT), urban policy, waterfront development, Kerala backwaters
Procedia PDF Downloads 4619982 Application of Chemical Tests for the Inhibition of Scaling From Hamma Hard Waters
Authors: Samira Ghizellaoui, Manel Boumagoura
Abstract:
Calcium carbonate precipitation is a widespread problem, especially in hard water systems. The main water supply that supplies the city of Constantine with drinking water is underground water called Hamma water. This water has a very high hardness of around 590 mg/L CaCO₃. This leads to the formation of scale, consisting mainly of calcium carbonate, which can be responsible for the clogging of valves and the deterioration of equipment (water heaters, washing machines and encrustations in the pipes). Plant extracts used as scale inhibitors have attracted the attention of several researchers. In recent years, green inhibitors have attracted great interest because they are biodegradable, non-toxic and do not affect the environment. The aim of our work is to evaluate the effectiveness of a chemical antiscale treatment in the presence of three green inhibitors: gallicacid; quercetin; alginate, and three mixtures: (gallic acid-quercetin); (quercetin-alginate); (gallic acid-alginate). The results show that the inhibitory effect is manifested from an addition of 1mg/L of gallic acid, 10 mg/L of quercetin, 0.2 mg/L of alginate, 0.4mg/L of (gallic acid-quercetin), 2mg/L of (quercetin-alginate) and 0.4 mg/L of (gallic acid-alginate). On the other hand, 100 mg/L (Drinking water standard) of Ca2+is reached for partial softening at 4 mg/L of gallic acid, 40 mg/L of quercetin, 0.6mg/L of alginate, 4mg/L of (gallic acid-quercetin), 10mg/L of (quercetin-alginate) and 1.6 mg/L of (gallic acid-alginate).Keywords: water, scaling, calcium carbonate, green inhibitor
Procedia PDF Downloads 6619981 A Heuristic for the Integrated Production and Distribution Scheduling Problem
Authors: Christian Meinecke, Bernd Scholz-Reiter
Abstract:
The integrated problem of production and distribution scheduling is relevant in many industrial applications. Thus, many heuristics to solve this integrated problem have been developed in the last decade. Most of these heuristics use a sequential working principal or a single decomposition and integration approach to separate and solve sub-problems. A heuristic using a multi-step decomposition and integration approach is presented in this paper and evaluated in a case study. The result show significant improved results compared with sequential scheduling heuristics.Keywords: production and outbound distribution, integrated planning, heuristic, decomposition, integration
Procedia PDF Downloads 42819980 Effects of Air Pollution on Dew Water: A Case Study of Ado-Ekiti, Nigeria
Authors: M. Sanmi Awopetu, Olugbenga Aribisala, Olabisi O. Ologuntoye, S. Olumuyi Akindele
Abstract:
Human existence vis-à-vis its environment is more and more getting a threatened sequel to air pollution occasioned majorly by human coupled with natural activities. Earth is getting warmer; ozone layer is getting depleted, acid rain is being experienced, all as a result of air pollution. This study seeks to investigate the effect of air pollution on dew water. Thirty-one (31) samples of dew water were collected in four locations in Ado- Ekiti, Ekiti State Nigeria. Analytical studies of the dew water samples were carried out to determine the pH, Total Dissolved Solids (TDS) and Electrical Conductivity (EC) in order to determine whether the dew water is polluted or not. There is no documented world standard for dew water quality. However, the standard for normal rain water which is pH between 5.0-5.6 and acid rain pH between 4.0-4.4 was adopted for this study. The pH of dew water samples collected and analyzed ranged between 5.5 and 7.9 in Olokun Ado-Ekiti while other samples fell in between this range. In Government Reserved Area (GRA), Ajilosun and EKSU school area, the pH ranged between 6.4 and 7.9 while EC fell in between 0.0 and 0.9 mS/cm which shows that the observed zones are polluted. Everyone has a role to play in order to reduce the pollutants being released into the atmosphere. There is a need to develop an international standard for dew water quality.Keywords: dew, air pollution, total dissolved solids, electrical conductivity, Ado-Ekiti
Procedia PDF Downloads 19219979 Assessment of Groundwater Aquifer Impact from Artificial Lagoons and the Reuse of Wastewater in Qatar
Authors: H. Aljabiry, L. Bailey, S. Young
Abstract:
Qatar is a desert with an average temperature 37⁰C, reaching over 40⁰C during summer. Precipitation is uncommon and mostly in winter. Qatar depends on desalination for drinking water and on groundwater and recycled water for irrigation. Water consumption and network leakage per capita in Qatar are amongst the highest in the world; re-use of treated wastewater is extremely limited with only 14% of treated wastewater being used for irrigation. This has led to the country disposing of unwanted water from various sources in lagoons situated around the country, causing concern over the possibility of environmental pollution. Accordingly, our hypothesis underpinning this research is that the quality and quantity of water in lagoons is having an impact on the groundwater reservoirs in Qatar. Lagoons (n = 14) and wells (n = 55) were sampled for both summer and winter in 2018 (summer and winter). Water, adjoining soil and plant samples were analysed for multiple elements by Inductively Coupled Plasma Mass Spectrometry. Organic and inorganic carbon were measured (CN analyser) and the major anions were determined by ion chromatography. Salinization in both the lagoon and the wells was seen with good correlations between Cl⁻, Na⁺, Li, SO₄, S, Sr, Ca, Ti (p-value < 0.05). Association of heavy metals was observed of Ni, Cu, Ag, and V, Cr, Mo, Cd which is due to contamination from anthropological activities such as wastewater disposal or spread of contaminated dust. However, looking at each elements none of them exceeds the Qatari regulation. Moreover, gypsum saturation in the system was observed in both the lagoon and wells water samples. Lagoons and the water of the well are found to be of a saline type as well as Ca²⁺, Cl⁻, SO₄²⁻ type evidencing both gypsum dissolution and salinization in the system. Moreover, Maps produced by Inverse distance weighting showed an increasing level of Nitrate in the groundwater in winter, and decrease chloride and sulphate level, indicating recharge effect after winter rain events. While E. coli and faecal bacteria were found in most of the lagoons, biological analysis for wells needs to be conducted to understand the biological contamination from lagoon water infiltration. As a conclusion, while both the lagoon and the well showed the same results, more sampling is needed to understand the impact of the lagoons on the groundwater.Keywords: groundwater quality, lagoon, treated wastewater, water management, wastewater treatment, wetlands
Procedia PDF Downloads 13419978 An Innovative Use of Flow Columns in Electrocoagulation Reactor to Control Water Temperature
Authors: Khalid S. Hashim, Andy Shaw, Rafid Alkhaddar, David Phipps, Ortoneda Pedrola
Abstract:
Temperature is an essential parameter in the electrocoagulation process (EC) as it governs the solubility of electrodes and the precipitates and the collision rate of particles in water being treated. Although it has been about 100 years since the EC technology was invented and applied in water and wastewater treatment, the effects of temperature on the its performance were insufficiently investigated. Thus, the present project aims to fill this gap by an innovative use of perforated flow columns in the designing of a new EC reactor (ECR1). The new reactor (ECR1) consisted of a Perspex made cylinder container supplied with a flow column consisted of perorated discoid electrodes that made from aluminium. The flow column has been installed vertically, half submerged in the water being treated, inside a plastic cylinder. The unsubmerged part of the flow column works as a radiator for the water being treated. In order to investigate the performance of ECR1; water samples with different initial temperatures (15, 20, 25, 30, and 35 °C) to the ECR1 for 20 min. Temperature of effluent water samples were measured using Hanna meter (Model: HI 98130). The obtained results demonstrated that the ECR1 reduced water temperature from 35, 30, and 25 °C to 24.6, 23.8, and 21.8 °C respectively. While low water temperature, 15 °C, increased slowly to reach 19.1 °C after 15 minutes and kept the same level till the end of the treatment period. At the same time, water sample with initial temperature of 20 °C showed almost a steady level of temperature along the treatment process, where the temperature increased negligibly from 20 to 20.1 °C after 20 minutes of treatment. In conclusion, ECR1 is able to control the temperature of water being treated around the room temperature even when the initial temperature was high (35 °C) or low (15 °C).Keywords: electrocoagulation, flow column, treatment, water temperature
Procedia PDF Downloads 42919977 Electrical Tortuosity across Electrokinetically Remediated Soils
Authors: Waddah S. Abdullah, Khaled F. Al-Omari
Abstract:
Electrokinetic remediation is one of the most influential and effective methods to decontaminate contaminated soils. Electroosmosis and electromigration are the processes of electrochemical extraction of contaminants from soils. The driving force that causes removing contaminants from soils (electroosmosis process or electromigration process) is voltage gradient. Therefore, the electric field distribution throughout the soil domain is extremely important to investigate and to determine the factors that help to establish a uniform electric field distribution in order to make the clean-up process work properly and efficiently. In this study, small-sized passive electrodes (made of graphite) were placed at predetermined locations within the soil specimen, and the voltage drop between these passive electrodes was measured in order to observe the electrical distribution throughout the tested soil specimens. The electrokinetic test was conducted on two types of soils; a sandy soil and a clayey soil. The electrical distribution throughout the soil domain was conducted with different tests properties; and the electrical field distribution was observed in three-dimensional pattern in order to establish the electrical distribution within the soil domain. The effects of density, applied voltages, and degree of saturation on the electrical distribution within the remediated soil were investigated. The distribution of the moisture content, concentration of the sodium ions, and the concentration of the calcium ions were determined and established in three-dimensional scheme. The study has shown that the electrical conductivity within soil domain depends on the moisture content and concentration of electrolytes present in the pore fluid. The distribution of the electrical field in the saturated soil was found not be affected by its density. The study has also shown that high voltage gradient leads to non-uniform electric field distribution within the electroremediated soil. Very importantly, it was found that even when the electric field distribution is uniform globally (i.e. between the passive electrodes), local non-uniformity could be established within the remediated soil mass. Cracks or air gaps formed due to temperature rise (because of electric flow in low conductivity regions) promotes electrical tortuosity. Thus, fracturing or cracking formed in the remediated soil mass causes disconnection of electric current and hence, no removal of contaminant occur within these areas.Keywords: contaminant removal, electrical tortuousity, electromigration, electroosmosis, voltage distribution
Procedia PDF Downloads 417