Search results for: penalized logistic regression
2470 Moderating Effect of Owner's Influence on the Relationship between the Probability of Client Failure and Going Concern Opinion Issuance
Authors: Mohammad Noor Hisham Osman, Ahmed Razman Abdul Latiff, Zaidi Mat Daud, Zulkarnain Muhamad Sori
Abstract:
The problem that Malaysian auditors do not issue going concern opinion (GC opinion) to seriously financially distressed companies is still a pressing issue. Policy makers, particularly the Financial Statement Review Committee (FSRC) of Malaysian Institute of Accountant, have raised this issue as early as in 2009. Similar problem happened in the US, UK, and many developing countries. It is important for auditors to issue GC opinion properly because such opinion is one signal about the viability of a company much needed by stakeholders. There are at least two unanswered questions or research gaps in the literature on determinants of GC opinion. Firstly, is client’s probability of failure associated with GC opinion issuance? Secondly, to what extent influential owners (management, family, and institution) moderate the association between client probability of failure and GC opinion issuance. The objective of this study is, therefore, twofold; (1) To examine the extent of the relationship between the probability of client failure and the issuance of GC opinion and (2) To examine the level of management, family, and institutional ownerships moderate the association between client probability of failure and the issuance of GC opinion. This study is quantitative in nature, and the sources of data are secondary (mainly company’s annual reports). A total of four hypotheses have been developed and tested on data accumulated from annual reports of seriously financially distressed Malaysian public listed companies. Data from 2006 to 2012 on a sample of 644 observations have been analyzed using panel logistic regression. It is found that certainty (rather than probability) of client failure affects the issuance of GC opinion. In addition, it is found that only the level of family ownership does positively moderate the relationship between client probability of failure and GC opinion issuance. This study is a contribution to auditing literature as its findings can enhance our understanding about audit quality; particularly on the variables that are associated with the issuance of GC opinion. The findings of this study shed light on the roles family owners in GC opinion issuance process, and this would open ways for the researcher to suggest measures that can be used to tackle the problem of auditors do not want to issue GC opinion to financially distressed clients. The measures to be suggested can be useful to policy makers in formulating future promulgations.Keywords: audit quality, auditing, auditor characteristics, going concern opinion, Malaysia
Procedia PDF Downloads 2612469 Tuberculosis and Associated Transient Hyperglycaemia in Peri-Urban South Africa: Implications for Diabetes Screening in High Tuberculosis/HIV Burden Settings
Authors: Mmamapudi Kubjane, Natacha Berkowitz, Rene Goliath, Naomi S. Levitt, Robert J. Wilkinson, Tolu Oni
Abstract:
Background: South Africa remains a high tuberculosis (TB) burden country globally and the burden of diabetes – a TB risk factor is growing rapidly. As an infectious disease, TB also induces transient hyperglycaemia. Therefore, screening for diabetes in newly diagnosed tuberculosis patients may result in misclassification of transient hyperglycaemia as diabetes. Objective: The objective of this study was to determine and compare the prevalence of hyperglycaemia (diabetes and impaired glucose regulation (IGR)) in TB patients and to assess the cross-sectional association between TB and hyperglycaemia at enrolment and after three months of follow-up. Methods: Consecutive adult TB and non-TB participants presenting at a TB clinic in Cape Town were enrolled in this cross-sectional study and follow-up between July 2013 and August 2015. Diabetes was defined as self-reported diabetes, fasting plasma glucose (FPG) ≥ 7.0 mmol·L⁻¹ or glycated haemoglobin (HbA1c) ≥ 6.5%. IGR was defined as FPG 5.5– < 7.0 mmol·L⁻¹ or HbA1c 5.7– < 6.5%. TB patients initiated treatment. After three months, all participants were followed up and screened for diabetes again. The association between TB and hyperglycaemia was assessed using logistic regression adjusting for potential confounders including sex, age, income, hypertension, waist circumference, previous prisoner, marital status, work status, HIV status. Results: Diabetes screening was performed in 852 participants (414 TB and 438 non-TB) at enrolment and in 639 (304 TB and 335 non-TB) at three-month follow-up. The prevalence of HIV-1 infection was 69.6% (95% confidence interval (CI), 64.9–73.8 %) among TB patients, and 58.2% (95% CI, 53.5–62.8 %) among the non-TB participants. Glycaemic levels were much higher in TB patients than in the non-TB participants but decreased over time. Among TB patients, the prevalence of IGR was 65.2% (95% CI 60.1 - 69.9) at enrollment and 21.5% (95% CI 17.2-26.5) at follow-up; and was 50% (45.1 - 54.94) and 32% (95% CI 27.9 - 38.0) respectively, among non-TB participants. The prevalence of diabetes in TB patients was 12.5% (95% CI 9.69 – 16.12%) at enrolment and 9.2% (95% CI, 6.43–13.03%) at follow-up; and was 10.04% (95% CI, 7.55–13.24%) and 8.06% (95% CI, 5.58–11.51) respectively, among non-TB participants. The association between TB and IGT was significant at enrolment (adjusted odds ratio (OR) 2.26 (95% CI, 1.55-3.31) but disappeared at follow-up 0.84 (0.53 - 1.36). However, the TB-diabetes association remained positive and significant both at enrolment (2.41 (95% CI, 1.3-4.34)) and follow-up (OR 3.31 (95% CI, 1.5 - 7.25)). Conclusion: Transient hyperglycaemia exists during tuberculosis. This has implications on diabetes screening in TB patients and suggests a need for diabetes confirmation tests during or after TB treatment. Nonetheless, the association between TB and diabetes noted at enrolment persists at 3 months highlighting the importance of diabetes control and prevention for TB control. Further research is required to investigate the impact of hyperglycaemia (transient or otherwise) on TB outcomes to ascertain the clinical significance of hyperglycemia at enrolment.Keywords: diabetes, impaired glucose regulation, transient hyperglycaemia, tuberculosis
Procedia PDF Downloads 1652468 Factors Related with Self-Care Behaviors among Iranian Type 2 Diabetic Patients: An Application of Health Belief Model
Authors: Ali Soroush, Mehdi Mirzaei Alavijeh, Touraj Ahmadi Jouybari, Fazel Zinat-Motlagh, Abbas Aghaei, Mari Ataee
Abstract:
Diabetes is a disease with long cardiovascular, renal, ophthalmic and neural complications. It is prevalent all around the world including Iran, and its prevalence is increasing. The aim of this study was to determine the factors related to self-care behavior based on health belief model among sample of Iranian diabetic patients. This cross-sectional study was conducted among 301 type 2 diabetic patients in Gachsaran, Iran. Data collection was based on an interview and the data were analyzed by SPSS version 20 using ANOVA, t-tests, Pearson correlation, and linear regression statistical tests at 95% significant level. Linear regression analyses showed the health belief model variables accounted for 29% of the variation in self-care behavior; and perceived severity and perceived self-efficacy are more influential predictors on self-care behavior among diabetic patients.Keywords: diabetes, patients, self-care behaviors, health belief model
Procedia PDF Downloads 4682467 Burnout among Healthcare Workers in Poland during the COVID-19 Pandemic
Authors: Zbigniew Izdebski, Alicja Kozakiewicz, Maciej Białorudzki, Joanna Mazur
Abstract:
Work is an extremely important part of everyone's life and affects functioning in daily life. Healthcare workers (HCW) are suffering from negative actions in and out of the workplace, such as harassment, abuse, long working hours, mental suffering, exhaustion, and professional burnout. Staff burnout is detrimental not only in terms of individual employees but also to working with patients and to the healthcare institution as a whole. The purpose of this study was to explore the level of professional burnout among HCW working in medical institutions during the COVID-19 pandemic in Poland. The extent to which selected sociodemographic factors and perceived stress increase the risk of professional burnout was assessed. In addition, the frequency of use of professional psychological help and less formal support groups by HCW in relation to the level of professional burnout was presented. The survey was conducted as part of a larger project on the humanization of medicine and clinical communication from February-April 2022. This study used a self-administered online survey (CAWI) technique and PAPI (pen and paper interview) technique. The BAT-12 scale was used to measure burnout, the PSS-4 scale was used to measure stress, and questions formulated by the research team were also used. For the purpose of analysis, the sample was limited to 2196 HCWs who worked on a daily basis with patients during the COVID-19 pandemic. Frequency distributions were analyzed, and multivariate logistic regression was performed. The mean scores (scores) of job burnout as measured by the BAT-12 scale ranged among the professional groups from 2.15(0.69) to 2.30 (0.69) and remained highest for the nurses' group. The groups differed significantly in levels of burnout (chi-sq=17.719; d.f.=8; p<0.023). In the final model, raised stress most likely increased the risk of burnout (OR=3.88; 95%CI <3.13-3.81>; p<0,001). Other significant predictors of burnout included: traumatic work-related experience (OR=1.91, p<0.001), mobbing (OR=1.83, p<0.001), and a higher workload than before the pandemic (OR=1.41, p=0.002). Only 7% of respondents decided to use various forms of psychological support during the pandemic. HCW experiences challenges in dealing with an unpredictable pandemic. Limited preparedness can lead to physical and psychological problems such as high-stress levels, anxiety, fear, helplessness, hopelessness, anger and stigma. The workload can lead to professional burnout, as well as threaten patient safety.Keywords: burnout, work, healthcare, healthcare worker, stress
Procedia PDF Downloads 802466 Empirical Investigations on Speed Differentiations of Traffic Flow: A Case Study on a Basic Freeway Segment of O-2 in Istanbul
Authors: Hamed Rashid Sarand, Kemal Selçuk Öğüt
Abstract:
Speed is one of the fundamental variables of road traffic flow that stands as an important evaluation criterion for traffic analyses in several aspects. In particular, varieties of speed variable, such as average speed, free flow speed, optimum speed (capacity speed), acceleration/deceleration speed and so on, have been explicitly considered in the analysis of not only road safety but also road capacity. In the purpose of realizing 'road speed – maximum speed difference across lanes' and 'road flow rate – maximum speed difference across lanes' relations on freeway traffic, this study presents a case study conducted on a basic freeway segment of O-2 in Istanbul. The traffic data employed in this study have been obtained from 5 remote traffic microwave sensors operated by Istanbul Metropolitan Municipality. The study stretch is located between two successive freeway interchanges: Ümraniye and Kavacık. Daily traffic data of 4 years (2011-2014) summer months, July and August are used. The speed data are analyzed into two main flow areas such as uncongested and congested flows. In this study, the regression analyses were carried out in order to examine the relationship between maximum speed difference across lanes and road speed. These investigations were implemented at uncongested and congested flows, separately. Moreover, the relationship between maximum speed difference across lanes and road flow rate were evaluated by applying regression analyses for both uncongested and congested flows separately. It is concluded that there is the moderate relationship between maximum speed difference across lanes and road speed in 50% cases. Additionally, it is indicated that there is the moderate relationship between maximum speed difference across lanes and road flow rate in 30% cases. The maximum speed difference across lanes decreases as the road flow rate increases.Keywords: maximum speed difference, regression analysis, remote traffic microwave sensor, speed differentiation, traffic flow
Procedia PDF Downloads 3672465 EarlyWarning for Financial Stress Events:A Credit-Regime Switching Approach
Abstract:
We propose a new early warning model for predicting financial stress events for a given future time. In this model, we examine whether credit conditions play an important role as a nonlinear propagator of shocks when predicting the likelihood of occurrence of financial stress events for a given future time. This propagation takes the form of a threshold regression in which a regime change occurs if credit conditions cross a critical threshold. Given the new early warning model for financial stress events, we evaluate the performance of this model and currently available alternatives, such as the model from signal extraction approach, and linear regression model. In-sample forecasting results indicate that the three types of models are useful tools for predicting financial stress events while none of them outperforms others across all criteria considered. The out-of-sample forecasting results suggest that the credit-regime switching model performs better than the two others across all criteria and all forecasting horizons considered.Keywords: cut-off probability, early warning model, financial crisis, financial stress, regime-switching model, forecasting horizons
Procedia PDF Downloads 4362464 Effects of the Affordable Care Act On Preventive Care Disparities
Authors: Cagdas Agirdas
Abstract:
Background: The Affordable Care Act (ACA) requires non-grandfathered private insurance plans, starting with plan years on or after September 23rd, 2010, to provide certain preventive care services without any cost sharing in the form of deductibles, copayments or co-insurance. This requirement may affect racial and ethnic disparities in preventive care as it provides the largest copay reduction in preventive care. Objectives: We ask whether the ACA’s free preventive care benefits are associated with a reduction in racial and ethnic disparities in the utilization of four preventive services: cholesterol screenings, colonoscopies, mammograms, and pap smears. Methods: We use a data set of over 6,000 individuals from the 2009, 2010, and 2013 Medical Expenditure Panel Surveys (MEPS). We restrict our data set only to individuals who are old enough to be eligible for each preventive service. Our difference-in-differences logistic regression model classifies privately-insured Hispanics, African Americans, and Asians as the treatment groups and 2013 as the after-policy year. Our control group consists of non-Hispanic whites on Medicaid as this program already covered preventive care services for free or at a low cost before the ACA. Results: After controlling for income, education, marital status, preferred interview language, self-reported health status, employment, having a usual source of care, age and gender, we find that the ACA is associated with increases in the probability of the median, privately-insured Hispanic person to get a colonoscopy by 3.6% and a mammogram by 3.1%, compared to a non-Hispanic white person on Medicaid. Similarly, we find that the median, privately-insured African American person’s probability of receiving these two preventive services improved by 2.3% and 2.4% compared to a non-Hispanic white person on Medicaid. We do not find any significant improvements for any racial or ethnic group for cholesterol screenings or pap smears. Furthermore, our results do not indicate any significant changes for Asians compared to non-Hispanic whites in utilizing the four preventive services. These reductions in racial/ethnic disparities are robust to reconfigurations of time periods, previous diagnosis, and residential status. Conclusions: Early effects of the ACA’s provision of free preventive care are significant for Hispanics and African Americans. Further research is needed for the later years as more individuals became aware of these benefits.Keywords: preventive care, Affordable Care Act, cost sharing, racial disparities
Procedia PDF Downloads 1532463 Antigen Stasis can Predispose Primary Ciliary Dyskinesia (PCD) Patients to Asthma
Authors: Nadzeya Marozkina, Joe Zein, Benjamin Gaston
Abstract:
Introduction: We have observed that many patients with Primary Ciliary Dyskinesia (PCD) benefit from asthma medications. In healthy airways, the ciliary function is normal. Antigens and irritants are rapidly cleared, and NO enters the gas phase normally to be exhaled. In the PCD airways, however, antigens, such as Dermatophagoides, are not as well cleared. This defect leads to oxidative stress, marked by increased DUOX1 expression and decreased superoxide dismutase [SOD] activity (manuscript under revision). H₂O₂, in high concentrations in the PCD airway, injures the airway. NO is oxidized rather than being exhaled, forming cytotoxic peroxynitrous acid. Thus, antigen stasis on PCD airway epithelium leads to airway injury and may predispose PCD patients to asthma. Indeed, recent population genetics suggest that PCD genes may be associated with asthma. We therefore hypothesized that PCD patients would be predisposed to having asthma. Methods. We analyzed our database of 18 million individual electronic medical records (EMRs) in the Indiana Network for Patient Care research database (INPCR). There is not an ICD10 code for PCD itself; code Q34.8 is most commonly used clinically. To validate analysis of this code, we queried patients who had an ICD10 code for both bronchiectasis and situs inversus totalis in INPCR. We also studied a validation cohort using the IBM Explorys® database (over 80 million individuals). Analyses were adjusted for age, sex and race using a 1 PCD: 3 controls matching method in INPCR and multivariable logistic regression in the IBM Explorys® database. Results. The prevalence of asthma ICD10 codes in subjects with a code Q34.8 was 67% vs 19% in controls (P < 0.0001) (Regenstrief Institute). Similarly, in IBM*Explorys, the OR [95% CI] for having asthma if a patient also had ICD10 code 34.8, relative to controls, was =4.04 [3.99; 4.09]. For situs inversus alone the OR [95% CI] was 4.42 [4.14; 4.71]; and bronchiectasis alone the OR [95% CI] =10.68 (10.56; 10.79). For both bronchiectasis and situs inversus together, the OR [95% CI] =28.80 (23.17; 35.81). Conclusions: PCD causes antigen stasis in the human airway (under review), likely predisposing to asthma in addition to oxidative and nitrosative stress and to airway injury. Here, we show that, by several different population-based metrics, and using two large databases, patients with PCD appear to have between a three- and 28-fold increased risk of having asthma. These data suggest that additional studies should be undertaken to understand the role of ciliary dysfunction in the pathogenesis and genetics of asthma. Decreased antigen clearance caused by ciliary dysfunction may be a risk factor for asthma development.Keywords: antigen, PCD, asthma, nitric oxide
Procedia PDF Downloads 1072462 Locus of Control and Self-Esteem as Predictors of Maternal and Child Healthcare Services Utilization in Nigeria
Authors: Josephine Aikpitanyi, Friday Okonofua, Lorrettantoimo, Sandy Tubeuf
Abstract:
Every day, 800 women die from conditions related to pregnancy and childbirth, resulting in an estimated 300,000 maternal deaths worldwide per year. Over 99 percent of all maternal deaths occur in developing countries, with more than half of them occurring in sub-Saharan Africa. Nigeria being the most populous nation in sub-Saharan Africa bears a significant burden of worsening maternal and child health outcomes with a maternal mortality rate of 917 per 100,000 live births and child mortality rate of 117 per 1,000 live births. While several studies have documented that financial barriers disproportionately discourage poor women from seeking needed maternal and child healthcare, other studies have indicated otherwise. Evidence shows that there are instances where health facilities with skilled healthcare providers exist, and yet maternal, and child health outcomes remain abysmally low, indicating the presence of non-cognitive and behavioural factors that may affect the utilization of healthcare services. This study investigated the influence of locus of control and self-esteem on utilization of maternal and child healthcare services in Nigeria. Specifically, it explored the differences in utilization of antenatal care, skilled birth care, postnatal care, and child vaccination by women having an internal and external locus of control and women having high and low self-esteem. We collected information on non-cognitive traits of 1411 randomly selected women, along with information on utilization of the various indicators of maternal and child healthcare. Estimating logistic regression models for various components of healthcare services utilization, we found that women’s internal locus of control was a significant predictor of utilization of antenatal care, skilled birth care, and completion of child vaccination. We also found that having high self-esteem was a significant predictor of utilization of antenatal care, postnatal care, and completion of child vaccination after adjusting for other control variables. By improving our understanding of non-cognitive traits as possible barriers to maternal and child healthcare utilization, our findings offer important insights for enhancing participant engagement in intervention programs that are initiated to improve maternal and child health outcomes in low-and-middle-income countries.Keywords: behavioural economics, health-seeking behaviour, locus of control and self-esteem, maternal and child healthcare, non-cognitive traits, and healthcare utilization
Procedia PDF Downloads 1672461 Intelligent Computing with Bayesian Regularization Artificial Neural Networks for a Nonlinear System of COVID-19 Epidemic Model for Future Generation Disease Control
Authors: Tahir Nawaz Cheema, Dumitru Baleanu, Ali Raza
Abstract:
In this research work, we design intelligent computing through Bayesian Regularization artificial neural networks (BRANNs) introduced to solve the mathematical modeling of infectious diseases (Covid-19). The dynamical transmission is due to the interaction of people and its mathematical representation based on the system's nonlinear differential equations. The generation of the dataset of the Covid-19 model is exploited by the power of the explicit Runge Kutta method for different countries of the world like India, Pakistan, Italy, and many more. The generated dataset is approximately used for training, testing, and validation processes for every frequent update in Bayesian Regularization backpropagation for numerical behavior of the dynamics of the Covid-19 model. The performance and effectiveness of designed methodology BRANNs are checked through mean squared error, error histograms, numerical solutions, absolute error, and regression analysis.Keywords: mathematical models, beysian regularization, bayesian-regularization backpropagation networks, regression analysis, numerical computing
Procedia PDF Downloads 1492460 The Effect of Second Victim-Related Distress on Work-Related Outcomes in Tertiary Care, Kelantan, Malaysia
Authors: Ahmad Zulfahmi Mohd Kamaruzaman, Mohd Ismail Ibrahim, Ariffin Marzuki Mokhtar, Maizun Mohd Zain, Saiful Nazri Satiman, Mohd Najib Majdi Yaacob
Abstract:
Background: Aftermath any patient safety incidents, the involved healthcare providers possibly sustained second victim-related distress (second victim distress and reduced their professional efficacy), with subsequent negative work-related outcomes or vice versa cultivating resilience. This study aimed to investigate the factors affecting negative work-related outcomes and resilience, with the triad of support; colleague, supervisor, and institutional support as the hypothetical mediators. Methods: This was a cross sectional study recruiting a total of 733 healthcare providers from three tertiary care in Kelantan, Malaysia. Three steps of hierarchical linear regression were developed for each outcome; negative work-related outcomes and resilience. Then, four multiple mediator models of support triad were analyzed. Results: Second victim distress, professional efficacy, and the support triad contributed significantly for each regression model. In the pathway of professional efficacy on each negative work-related outcomes and resilience, colleague support partially mediated the relationship. As for second victim distress on negative work related outcomes, colleague and supervisor support were the partial mediator, and on resilience; all support triad also produced a similar effect. Conclusion: Second victim distress, professional efficacy, and the support triad influenced the relationship with the negative work-related outcomes and resilience. Support triad as the mediators ameliorated the effect in between and explained the urgency of having good support for recovery post encountering patient safety incidents.Keywords: second victims, patient safety incidents, hierarchical linear regression, mediation, support
Procedia PDF Downloads 1102459 Factors Associated with Pesticides Used and Plasma Cholinesterase Level among Agricultural Workers in Rural Area, Thailand
Authors: Pirakorn Sukonthaman, Paphitchaya Temphattharachok, Warangkana Thammasanya, Kraichart Tantrakarnarpa, Tanongson Tientavorn
Abstract:
Agriculture is the main occupation in Thailand. Excessive amount of pesticides are used to increase the products but are toxic to human body. In 2009, Bureau of Epidemiology received 1,691 cases reported with pesticides toxicity (2.66:100,000) which 10.61 % of them is caused by Organophosphate. The purposes are to find factors associated with pesticides used and plasma cholinesterase level and other emerging issues that previous studies did not explain among agricultural workers in Baan Na Yao, Chachoengsao, Thailand. This research was an exploratory mixed method study. Qualitative interviews and quantitative questionnaires were used together in order to gather information from the agricultural workers (mainly cassava and rice farming) directly exposed to pesticides within 2 months simultaneously. Qualitative participants were selected by purposive sampling and a total survey for quantitative ones. The quantitative data was statistically analyzed by using multiple logistic regression model. Qualitative data was transcribed verbatim and thematically analyzed. For qualitative study, 15 participants were interviewed and 300/323 participants (92.88%) were given questionnaires, of which were 175 male and 125 female and 113 among them were spraymen. The prevalence of abnormal plasma cholinesterase level was 92.28% (Safe 7.72% Risky 49.33% and Unsafe 42.95%). Participants with inappropriate behaviors during spraying had a significant association with plasma cholinesterase level (95%CI=1.399-14.858) but other factors such as age, gender, education, attitude and knowledge had no association. They also had encountered various symptoms from pesticides such as fatigue (61%), vertigo (59.67%) and headache (58.86%), etc. Although they had high knowledge and attitude they still had poor behaviors. Moreover, our qualitative component showed that though they had worn the personal protective equipment (PPE) regularly, their PPE was not standard. Not only substandard PPE, but also there were obstacles of wearing such as the hot climate and inconvenience. They misunderstood their symptoms from using pesticides as allergy. Therefore, they did not seek for proper medical check-ups and treatment. This research revealed almost all of the participants have abnormal levels of plasma cholinesterase related especially those with poor behaviors. They also wore PPE but inadequately and misunderstood the symptoms produced by organophosphate use as allergy. Therefore, they did not seek for medical treatment. Occupation health education, modification of PPE and periodic medical checking are ways to make agricultural workers concern and know if there is any progression in a long term.Keywords: pesticides, plasma cholinesterase level, spraymen, agricultural workers
Procedia PDF Downloads 3542458 Relation between Pavement Roughness and Distress Parameters for Highways
Authors: Suryapeta Harini
Abstract:
Road surface roughness is one of the essential aspects of the road's functional condition, indicating riding comfort in both the transverse and longitudinal directions. The government of India has made maintaining good surface evenness a prerequisite for all highway projects. Pavement distress data was collected with a Network Survey Vehicle (NSV) on a National Highway. It determines the smoothness and frictional qualities of the pavement surface, which are related to driving safety and ease. Based on the data obtained in the field, a regression equation was created with the IRI value and the visual distresses. The suggested system can use wireless acceleration sensors and GPS to gather vehicle status and location data, as well as calculate the international roughness index (IRI). Potholes, raveling, rut depth, cracked area, and repair work are all affected by pavement roughness, according to the current study. The study was carried out in one location. Data collected through using Bump integrator was used for the validation. The bump integrator (BI) obtained using deflection from the network survey vehicle was correlated with the distress parameter to establish an equation.Keywords: roughness index, network survey vehicle, regression, correlation
Procedia PDF Downloads 1772457 Unlocking Health Insights: Studying Data for Better Care
Authors: Valentina Marutyan
Abstract:
Healthcare data mining is a rapidly developing field at the intersection of technology and medicine that has the potential to change our understanding and approach to providing healthcare. Healthcare and data mining is the process of examining huge amounts of data to extract useful information that can be applied in order to improve patient care, treatment effectiveness, and overall healthcare delivery. This field looks for patterns, trends, and correlations in a variety of healthcare datasets, such as electronic health records (EHRs), medical imaging, patient demographics, and treatment histories. To accomplish this, it uses advanced analytical approaches. Predictive analysis using historical patient data is a major area of interest in healthcare data mining. This enables doctors to get involved early to prevent problems or improve results for patients. It also assists in early disease detection and customized treatment planning for every person. Doctors can customize a patient's care by looking at their medical history, genetic profile, current and previous therapies. In this way, treatments can be more effective and have fewer negative consequences. Moreover, helping patients, it improves the efficiency of hospitals. It helps them determine the number of beds or doctors they require in regard to the number of patients they expect. In this project are used models like logistic regression, random forests, and neural networks for predicting diseases and analyzing medical images. Patients were helped by algorithms such as k-means, and connections between treatments and patient responses were identified by association rule mining. Time series techniques helped in resource management by predicting patient admissions. These methods improved healthcare decision-making and personalized treatment. Also, healthcare data mining must deal with difficulties such as bad data quality, privacy challenges, managing large and complicated datasets, ensuring the reliability of models, managing biases, limited data sharing, and regulatory compliance. Finally, secret code of data mining in healthcare helps medical professionals and hospitals make better decisions, treat patients more efficiently, and work more efficiently. It ultimately comes down to using data to improve treatment, make better choices, and simplify hospital operations for all patients.Keywords: data mining, healthcare, big data, large amounts of data
Procedia PDF Downloads 782456 Impact of Diabetes Mellitus Type 2 on Clinical In-Stent Restenosis in First Elective Percutaneous Coronary Intervention Patients
Authors: Leonard Simoni, Ilir Alimehmeti, Ervina Shirka, Endri Hasimi, Ndricim Kallashi, Verona Beka, Suerta Kabili, Artan Goda
Abstract:
Background: Diabetes Mellitus type 2, small vessel calibre, stented length of vessel, complex lesion morphology, and prior bypass surgery have resulted risk factors for In-Stent Restenosis (ISR). However, there are some contradictory results about body mass index (BMI) as a risk factor for ISR. Purpose: We want to identify clinical, lesional and procedural factors that can predict clinical ISR in our patients. Methods: Were enrolled 759 patients who underwent first-time elective PCI with Bare Metal Stents (BMS) from September 2011 to December 2013 in our Department of Cardiology and followed them for at least 1.5 years with a median of 862 days (2 years and 4 months). Only the patients re-admitted with ischemic heart disease underwent control coronary angiography but no routine angiographic control was performed. Patients were categorized in ISR and non-ISR groups and compared between them. Multivariate analysis - Binary Logistic Regression: Forward Conditional Method was used to identify independent predictive risk factors. P was considered statistically significant when <0.05. Results: ISR compared to non-ISR individuals had a significantly lower BMI (25.7±3.3 vs. 26.9±3.7, p=0.004), higher risk anatomy (LM + 3-vessel CAD) (23% vs. 14%, p=0.03), higher number of stents/person used (2.1±1.1 vs. 1.75±0.96, p=0.004), greater length of stents/person used (39.3±21.6 vs. 33.3±18.5, p=0.01), and a lower use of clopidogrel and ASA (together) (95% vs. 99%, p=0.012). They also had a higher, although not statistically significant, prevalence of Diabetes Mellitus (42% vs. 32%, p=0.072) and a greater number of treated vessels (1.36±0.5 vs. 1.26±0.5, p=0.08). In the multivariate analysis, Diabetes Mellitus type 2 and multiple stents used were independent predictors risk factors for In-Stent Restenosis, OR 1.66 [1.03-2.68], p=0.039, and OR 1.44 [1.16-1.78,] p=0.001, respectively. On the other side higher BMI and use of clopidogrel and ASA together resulted protective factors OR 0.88 [0.81-0.95], p=0.001 and OR 0.2 [0.06-0.72] p=0.013, respectively. Conclusion: Diabetes Mellitus and multiple stents are strong predictive risk factors, whereas the use of clopidogrel and ASA together are protective factors for clinical In-Stent Restenosis. Paradoxically High BMI is a protective factor for In-stent Restenosis, probably related to a larger diameter of vessels and consequently a larger diameter of stents implanted in these patients. Further studies are needed to clarify this finding.Keywords: body mass index, diabetes mellitus, in-stent restenosis, percutaneous coronary intervention
Procedia PDF Downloads 2102455 Comparison of Statistical Methods for Estimating Missing Precipitation Data in the River Subbasin Lenguazaque, Colombia
Authors: Miguel Cañon, Darwin Mena, Ivan Cabeza
Abstract:
In this work was compared and evaluated the applicability of statistical methods for the estimation of missing precipitations data in the basin of the river Lenguazaque located in the departments of Cundinamarca and Boyacá, Colombia. The methods used were the method of simple linear regression, distance rate, local averages, mean rates, correlation with nearly stations and multiple regression method. The analysis used to determine the effectiveness of the methods is performed by using three statistical tools, the correlation coefficient (r2), standard error of estimation and the test of agreement of Bland and Altmant. The analysis was performed using real rainfall values removed randomly in each of the seasons and then estimated using the methodologies mentioned to complete the missing data values. So it was determined that the methods with the highest performance and accuracy in the estimation of data according to conditions that were counted are the method of multiple regressions with three nearby stations and a random application scheme supported in the precipitation behavior of related data sets.Keywords: statistical comparison, precipitation data, river subbasin, Bland and Altmant
Procedia PDF Downloads 4682454 The Impact of Simulation-based Learning on the Clinical Self-efficacy and Adherence to Infection Control Practices of Nursing Students
Authors: Raeed Alanazi
Abstract:
Introduction: Nursing students have a crucial role to play in the inhibition of infectious diseases and, therefore, must be trained in infection control and prevention modules prior to entering clinical settings. Simulations have been found to have a positive impact on infection control skills and the use of standard precautions. Aim: The purpose of this study was to use the four sources of self-efficacy in explaining the level of clinical self-efficacy and adherence to infection control practices in Saudi nursing students during simulation practice. Method: A cross-sectional design with convenience sampling was used. This study was conducted in all Saudi nursing schools, with a total number of 197 students participated in this study. Three scales were used simulation self- efficacy Scale (SSES), the four sources of self-efficacy scale (SSES), and Compliance with Standard Precautions Scale (CSPS). Multiple linear regression was used to test the use of the four sources of self-efficacy (SSES) in explaining level of clinical self-efficacy and adherence to infection control in nursing students. Results: The vicarious experience subscale (p =.044) was statistically significant. The regression model indicated that for every one unit increase in vicarious experience (observation and reflection in simulation), the participants’ adherence to infection control increased by .13 units (β =.22, t = 2.03, p =.044). In addition, the regression model indicated that for every one unit increase in education level, the participants’ adherence to infection control increased by 1.82 units (beta=.34= 3.64, p <.001). Also, the mastery experience subscale (p <.001) and vicarious experience subscale (p = .020) were shared significant associations with clinical self-efficacy. Conclusion: The findings of this research support the idea that simulation-based learning can be a valuable teaching-learning method to help nursing students develop clinical competence, which is essential in providing quality and safe nursing care.Keywords: simulation-based learning, clinical self-efficacy, infection control, nursing students
Procedia PDF Downloads 722453 Optimum Design of Alkali Activated Slag Concretes for Low Chloride Ion Permeability and Water Absorption Capacity
Authors: Müzeyyen Balçikanli, Erdoğan Özbay, Hakan Tacettin Türker, Okan Karahan, Cengiz Duran Atiş
Abstract:
In this research, effect of curing time (TC), curing temperature (CT), sodium concentration (SC) and silicate modules (SM) on the compressive strength, chloride ion permeability, and water absorption capacity of alkali activated slag (AAS) concretes were investigated. For maximization of compressive strength while for minimization of chloride ion permeability and water absorption capacity of AAS concretes, best possible combination of CT, CTime, SC and SM were determined. An experimental program was conducted by using the central composite design method. Alkali solution-slag ratio was kept constant at 0.53 in all mixture. The effects of the independent parameters were characterized and analyzed by using statistically significant quadratic regression models on the measured properties (dependent parameters). The proposed regression models are valid for AAS concretes with the SC from 0.1% to 7.5%, SM from 0.4 to 3.2, CT from 20 °C to 94 °C and TC from 1.2 hours to 25 hours. The results of test and analysis indicate that the most effective parameter for the compressive strength, chloride ion permeability and water absorption capacity is the sodium concentration.Keywords: alkali activation, slag, rapid chloride permeability, water absorption capacity
Procedia PDF Downloads 3122452 A Very Efficient Pseudo-Random Number Generator Based On Chaotic Maps and S-Box Tables
Authors: M. Hamdi, R. Rhouma, S. Belghith
Abstract:
Generating random numbers are mainly used to create secret keys or random sequences. It can be carried out by various techniques. In this paper we present a very simple and efficient pseudo-random number generator (PRNG) based on chaotic maps and S-Box tables. This technique adopted two main operations one to generate chaotic values using two logistic maps and the second to transform them into binary words using random S-Box tables. The simulation analysis indicates that our PRNG possessing excellent statistical and cryptographic properties.Keywords: Random Numbers, Chaotic map, S-box, cryptography, statistical tests
Procedia PDF Downloads 3662451 Shades of Violence – Risks of Male Violence Exposure for Mental and Somatic-Disorders and Risk-Taking Behavior: A Prevalence Study
Authors: Dana Cassandra Winkler, Delia Leiding, Rene Bergs, Franziska Kaiser, Ramona Kirchhart, Ute Habel
Abstract:
Background: Violence is a multidimensional phenomenon, affecting people of every age, socio-economic status and gender. Nevertheless, most studies primarily focus on men perpetrating women. Aim of the present study is to identify the likelihood of mental and somatic disorders and risk-taking behavior in male violence affected. In addition, the relationship between age of violence experience and the risk for health-related problems was analyzed. Method: On the basis of current evidence, a questionnaire was developed focusing on demographic background, health status, risk-taking behavior, and active and passive violence exposure. In total, 5221 males (Mean: 56,1 years, SD: 17,6) were consulted. To account for the time of violence experience in an efficient way, age clusters ‘0-12 years’, ‘13-20 years’, ‘21-35 years’, ‘36-65 years’ and ‘over 65 years’ were defined. A binary logistic regression was calculated to reveal differences in violence-affected and non-violence affected males regarding health and risk-taking factors. Males who experienced violence on a daily/ almost daily basis vs. males who reported violence occurrence once/ several times a month/ year were compared with respect to health factors and risk-taking behavior. Data of males, who indicated active and passive violence exposure, were analyzed by a chi²-analysis, to investigate a possible relation between the age of victimization and violence perpetration. Findings: Results imply that general violence experience, independent of active and passive violence exposure increases the likelihood in favor of somatic-, psychosomatic- and mental disorders as well as risk-taking behavior in males. Experiencing violence on a daily or almost daily basis in childhood and adolescence may serve as a predictor for increased health problems and risk-taking behavior. Furthermore, the violence experience and perpetration occur significantly within the same age cluster. This underlines the importance of a near-term intervention to minimize the risk, that victims become perpetrators later. Conclusion: The present study reveals predictors concerning health risk factors as well as risk-taking behavior in males with violence exposure. The results of this study may underscore the benefit of intervention and regular health care approaches in violence-affected males and underline the importance of acknowledging the overlap of violence experience and perpetration for further research.Keywords: health disease, male, mental health, prevalence, risk-taking behavior, violence
Procedia PDF Downloads 2152450 An Algebraic Geometric Imaging Approach for Automatic Dairy Cow Body Condition Scoring System
Authors: Thi Thi Zin, Pyke Tin, Ikuo Kobayashi, Yoichiro Horii
Abstract:
Today dairy farm experts and farmers have well recognized the importance of dairy cow Body Condition Score (BCS) since these scores can be used to optimize milk production, managing feeding system and as an indicator for abnormality in health even can be utilized to manage for having healthy calving times and process. In tradition, BCS measures are done by animal experts or trained technicians based on visual observations focusing on pin bones, pin, thurl and hook area, tail heads shapes, hook angles and short and long ribs. Since the traditional technique is very manual and subjective, the results can lead to different scores as well as not cost effective. Thus this paper proposes an algebraic geometric imaging approach for an automatic dairy cow BCS system. The proposed system consists of three functional modules. In the first module, significant landmarks or anatomical points from the cow image region are automatically extracted by using image processing techniques. To be specific, there are 23 anatomical points in the regions of ribs, hook bones, pin bone, thurl and tail head. These points are extracted by using block region based vertical and horizontal histogram methods. According to animal experts, the body condition scores depend mainly on the shape structure these regions. Therefore the second module will investigate some algebraic and geometric properties of the extracted anatomical points. Specifically, the second order polynomial regression is employed to a subset of anatomical points to produce the regression coefficients which are to be utilized as a part of feature vector in scoring process. In addition, the angles at thurl, pin, tail head and hook bone area are computed to extend the feature vector. Finally, in the third module, the extracted feature vectors are trained by using Markov Classification process to assign BCS for individual cows. Then the assigned BCS are revised by using multiple regression method to produce the final BCS score for dairy cows. In order to confirm the validity of proposed method, a monitoring video camera is set up at the milk rotary parlor to take top view images of cows. The proposed method extracts the key anatomical points and the corresponding feature vectors for each individual cows. Then the multiple regression calculator and Markov Chain Classification process are utilized to produce the estimated body condition score for each cow. The experimental results tested on 100 dairy cows from self-collected dataset and public bench mark dataset show very promising with accuracy of 98%.Keywords: algebraic geometric imaging approach, body condition score, Markov classification, polynomial regression
Procedia PDF Downloads 1612449 Using Artificial Intelligence Method to Explore the Important Factors in the Reuse of Telecare by the Elderly
Authors: Jui-Chen Huang
Abstract:
This research used artificial intelligence method to explore elderly’s opinions on the reuse of telecare, its effect on their service quality, satisfaction and the relationship between customer perceived value and intention to reuse. This study conducted a questionnaire survey on the elderly. A total of 124 valid copies of a questionnaire were obtained. It adopted Backpropagation Network (BPN) to propose an effective and feasible analysis method, which is different from the traditional method. Two third of the total samples (82 samples) were taken as the training data, and the one third of the samples (42 samples) were taken as the testing data. The training and testing data RMSE (root mean square error) are 0.022 and 0.009 in the BPN, respectively. As shown, the errors are acceptable. On the other hand, the training and testing data RMSE are 0.100 and 0.099 in the regression model, respectively. In addition, the results showed the service quality has the greatest effects on the intention to reuse, followed by the satisfaction, and perceived value. This result of the Backpropagation Network method is better than the regression analysis. This result can be used as a reference for future research.Keywords: artificial intelligence, backpropagation network (BPN), elderly, reuse, telecare
Procedia PDF Downloads 2132448 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra
Authors: Bitewulign Mekonnen
Abstract:
Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network
Procedia PDF Downloads 952447 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm
Authors: Ameur Abdelkader, Abed Bouarfa Hafida
Abstract:
Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.Keywords: predictive analysis, big data, predictive analysis algorithms, CART algorithm
Procedia PDF Downloads 1422446 Appraisal of Shipping Trade Influence on Economic Growth in Nigeria
Authors: Ikpechukwu Njoku
Abstract:
The study examined appraisal of shipping trade influence on the economic growth in Nigeria from 1981-2016 by the use of secondary data collected from the Central Bank of Nigeria. The main objectives are to examine the trend of shipping trade in Nigeria as well as determine the influence of economic growth on gross domestic product (GDP). The study employed both descriptive and influential tools. The study adopted cointegration regression method for the analysis of each of the variables (shipping trade, external reserves and external debts). The results show that there is a statistically significant relationship between GDP and external reserves with p-value 0.0190. Also the result revealed that there is a statistically significant relationship between GDP and shipping trade with p-value 0.000. However, shipping trade and external reserves contributed positively at 1% and 5% level of significance respectively while external debts impacted negatively to GDP at 5% level of significance with a long run variance of cointegration regression. Therefore, the study suggests that government should do all it can to curtail foreign dominance and repatriation of profit for a more sustainable economy as well as upgrade port facilities, prevent unnecessary delays and encourage exportable goods for maximum deployment of ships.Keywords: external debts, external reserve, GDP, shipping trade
Procedia PDF Downloads 1522445 Student Loan Debt among Students with Disabilities
Authors: Kaycee Bills
Abstract:
This study will determine if students with disabilities have higher student loan debt payments than other student populations. The hypothesis was that students with disabilities would have significantly higher student loan debt payments than other students due to the length of time they spend in school. Using the Bachelorette and Beyond Study Wave 2015/017 dataset, quantitative methods were employed. These data analysis methods included linear regression and a correlation matrix. Due to the exploratory nature of the study, the significance levels for the overall model and each variable were set at .05. The correlation matrix demonstrated that students with certain types of disabilities are more likely to fall under higher student loan payment brackets than students without disabilities. These results also varied among the different types of disabilities. The result of the overall linear regression model was statistically significant (p = .04). Despite the overall model being statistically significant, the majority of the significance values for the different types of disabilities were null. However, several other variables had statistically significant results, such as veterans, people of minority races, and people who attended private schools. Implications for how this impacts the economy, capitalism, and financial wellbeing of various students are discussed.Keywords: disability, student loan debt, higher education, social work
Procedia PDF Downloads 1702444 Six Years Antimicrobial Resistance Trends among Bacterial Isolates in Amhara National Regional State, Ethiopia
Authors: Asrat Agalu Abejew
Abstract:
Background: Antimicrobial resistance (AMR) is a silent tsunami and one of the top global threats to health care and public health. It is one of the common agendas globally and in Ethiopia. Emerging AMR will be a double burden to Ethiopia, which is facing a series of problems from infectious disease morbidity and mortality. In Ethiopia, although there are attempts to document AMR in healthcare institutions, comprehensive and all-inclusive analysis is still lacking. Thus, this study is aimed to determine trends in AMR from 2016-2021. Methods: A retrospective analysis of secondary data recorded in the Amhara Public Health Institute (APHI) from 2016 to 2021 G.C was conducted. Blood, Urine, Stool, Swabs, Discharge, body effusions, and other Microbiological specimens were collected from each study participants, and Bacteria identification and Resistance tests were done using the standard microbiologic procedure. Data was extracted from excel in August 2022, Trends in AMR were analyzed, and the results were described. In addition, the chi-square (X2) test and binary logistic regression were used, and a P. value < 0.05 was used to determine a significant association. Results: During 6 years period, there were 25143 culture and susceptibility tests. Overall, 265 (46.2%) bacteria were resistant to 2-4 antibiotics, 253 (44.2%) to 5-7 antibiotics, and 56 (9.7%) to >=8 antibiotics. The gram-negative bacteria were 166 (43.9%), 155 (41.5%), and 55 (14.6%) resistant to 2-4, 5-7, and ≥8 antibiotics, respectively, whereas 99(50.8%), 96(49.2% and 1 (0.5%) of gram-positive bacteria were resistant to 2-4, 5-7 and ≥8 antibiotics respectively. K. pneumonia 3783 (15.67%) and E. coli 3199 (13.25%) were the most commonly isolated bacteria, and the overall prevalence of AMR was 2605 (59.9%), where K. pneumonia 743 (80.24%), E. cloacae 196 (74.81%), A. baumannii 213 (66.56%) being the most common resistant bacteria for antibiotics tested. Except for a slight decline during 2020 (6469 (25.4%)), the overall trend of AMR is rising from year to year, with a peak in 2019 (8480 (33.7%)) and in 2021 (7508 (29.9%). If left un-intervened, the trend in AMR will increase by 78% of variation from the study period, as explained by the differences in years (R2=0.7799). Ampicillin, Augmentin, ciprofloxacin, cotrimoxazole, tetracycline, and Tobramycin were almost resistant to common bacteria they were tested. Conclusion: AMR is linearly increasing during the last 6 years. If left as it is without appropriate intervention after 15 years (2030 E.C), AMR will increase by 338.7%. A growing number of multi-drug resistant bacteria is an alarm to awake policymakers and those who do have the concern to intervene before it is too late. This calls for a periodic, integrated, and continuous system to determine the prevalence of AMR in commonly used antibiotics.Keywords: AMR, trend, pattern, MDR
Procedia PDF Downloads 782443 Analysis of Active Compounds in Thai Herbs by near Infrared Spectroscopy
Authors: Chaluntorn Vichasilp, Sutee Wangtueai
Abstract:
This study aims to develop a new method to detect active compounds in Thai herbs (1-deoxynojirimycin (DNJ) in mulberry leave, anthocyanin in Mao and curcumin in turmeric) using near infrared spectroscopy (NIRs). NIRs is non-destructive technique that rapid, non-chemical involved and low-cost determination. By NIRs and chemometrics technique, it was found that the DNJ prediction equation conducted with partial least square regression with cross-validation had low accuracy R2 (0.42) and SEP (31.87 mg/100g). On the other hand, the anthocyanin prediction equation showed moderate good results (R2 and SEP of 0.78 and 0.51 mg/g) with Multiplication scattering correction at wavelength of 2000-2200 nm. The high absorption could be observed at wavelength of 2047 nm and this model could be used as screening level. For curcumin prediction, the good result was obtained when applied original spectra with smoothing technique. The wavelength of 1400-2500 nm was created regression model with R2 (0.68) and SEP (0.17 mg/g). This model had high NIRs absorption at a wavelength of 1476, 1665, 1986 and 2395 nm, respectively. NIRs showed prospective technique for detection of some active compounds in Thai herbs.Keywords: anthocyanin, curcumin, 1-deoxynojirimycin (DNJ), near infrared spectroscopy (NIRs)
Procedia PDF Downloads 3822442 Solution of Logistics Center Selection Problem Using the Axiomatic Design Method
Authors: Fulya Zaralı, Harun Resit Yazgan
Abstract:
Logistics centers represent areas that all national and international logistics and activities related to logistics can be implemented by the various businesses. Logistics centers have a key importance in joining the transport stream and the transport system operations. Therefore, it is important where these centers are positioned to be effective and efficient and to show the expected performance of the centers. In this study, the location selection problem to position the logistics center is discussed. Alternative centers are evaluated according certain criteria. The most appropriate center is identified using the axiomatic design method.Keywords: axiomatic design, logistic center, facility location, information systems
Procedia PDF Downloads 3502441 Growth Pattern and Condition Factor of Oreochromis niloticus and Sarotherodon galilaeus in Epe Lagoon, Lagos State, Nigeria
Authors: Ahmed Bolaji Alarape, Oluwatobi Damilola Aba
Abstract:
The growth pattern of Oreochromis niloticus and Sarotherodon galilaeus in Epe Lagoon Lagos State was investigated. One hundred (100) samples of each species were collected from fishermen at the landing site. They were transported to the Fisheries Laboratory of National Institute of Oceanography for identification, sexing morphometric measurement. The results showed that 58.0% and 56.0 % of the O.niloticus and S.galilaeus were female respectively while 42.0% and 44.0% were male respectively. The length-weight relationship of O.niloticus showed a strong regression coefficient (r = 0.944) (p<0.05) for the combined sex, (r =0.901) (p<0.05) for female and (r=0.985) (p<.05) for male with b-value of 2.5, 3.1 and 2.8 respectively. The S.galilaeus also showed a regression coefficient of r=0.970; p<0.05 for the combined sex, r=0.953; p<0.05 for the female and r= 0.979; p<0.05 for the male with b-value of 3.4, 3.1 and 3.6 respectively. O.niloticus showed an isometric growth pattern both in male and female. The condition factor in O.niloticus are 1.93 and 1.95 for male and female respectively while that of S.galilaeus is 1.95 for both sexes. Positive allometric was observed in both species except the male O.niloticus that showed negative allometric growth pattern. From the results of this study, the growth pattern of the two species indicated a good healthy environment.Keywords: Epe Lagoon, length-weight relationship, Oreochromis niloticus, Sarotherodon galilaeus
Procedia PDF Downloads 147