Search results for: naturally regenerated acacia forest
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1634

Search results for: naturally regenerated acacia forest

674 Pyrolysis of the Reed (Phragmites australis) and Evaluation of Pyrolysis Products

Authors: Ahmet Helvaci, Selcuk Dogan

Abstract:

Reed in especially almost all the lakes in Western Anatolia grows naturally. Due to the abundance of reed, pyrolysis of reed is very economical and practical application. In this study, it is aimed to determine the optimum conditions for the pyrolysis of the reed which is a cheap and abundant raw material and to evaluate pyrolysis products. For this purpose, reed was used obtained from Eber Lake located in the borders of Bolvadin county of Afyonkarahisar. Optimum pyrolysis conditions have been determined by examining the effects of changes in pyrolysis temperature and pyrolysis time. The evaluation of the obtained liquid and solid pyrolysis products has been investigated. Especially evaluability of solid carbon black production of tires has been investigated. Tire samples were prepared with carbon black samples obtained as a result of the pyrolysis process at different temperatures. Then, performance tests were made and compared with reference carbon blacks, used in the market and standards. At the same time, surface area measurement analysis of carbon black samples was made and compared again with reference carbon blacks. In addition, the fuel values of liquid products were also determined by calorimeter. It has been determined that the best surface area (about 370 m²/g) for carbon black samples, for tire production is 40 minutes at 500ᵒC. It was also found that the best result for evaluation studies in tire production was carbon black samples obtained at 450ᵒC pyrolysis temperature. In addition, it was seen that the calorimetry results of the liquid product obtained during 60 minutes of pyrolysis were quite good (around 5500 kcal/kg).

Keywords: evaluation of products, optimization, pyrolysis, reed

Procedia PDF Downloads 193
673 Removal of Problematic Organic Compounds from Water and Wastewater Using the Arvia™ Process

Authors: Akmez Nabeerasool, Michaelis Massaros, Nigel Brown, David Sanderson, David Parocki, Charlotte Thompson, Mike Lodge, Mikael Khan

Abstract:

The provision of clean and safe drinking water is of paramount importance and is a basic human need. Water scarcity coupled with tightening of regulations and the inability of current treatment technologies to deal with emerging contaminants and Pharmaceuticals and personal care products means that alternative treatment technologies that are viable and cost effective are required in order to meet demand and regulations for clean water supplies. Logistically, the application of water treatment in rural areas presents unique challenges due to the decentralisation of abstraction points arising from low population density and the resultant lack of infrastructure as well as the need to treat water at the site of use. This makes it costly to centralise treatment facilities and hence provide potable water direct to the consumer. Furthermore, across the UK there are segments of the population that rely on a private water supply which means that the owner or user(s) of these supplies, which can serve one household to hundreds, are responsible for the maintenance. The treatment of these private water supply falls on the private owners, and it is imperative that a chemical free technological solution that can operate unattended and does not produce any waste is employed. Arvia’s patented advanced oxidation technology combines the advantages of adsorption and electrochemical regeneration within a single unit; the Organics Destruction Cell (ODC). The ODC uniquely uses a combination of adsorption and electrochemical regeneration to destroy organics. Key to this innovative process is an alternative approach to adsorption. The conventional approach is to use high capacity adsorbents (e.g. activated carbons with high porosities and surface areas) that are excellent adsorbents, but require complex and costly regeneration. Arvia’s technology uses a patent protected adsorbent, Nyex™, which is a non-porous, highly conductive, graphite based adsorbent material that enables it to act as both the adsorbent and as a 3D electrode. Adsorbed organics are oxidised and the surface of the Nyex™ is regenerated in-situ for further adsorption without interruption or replacement. Treated water flows from the bottom of the cell where it can either be re-used or safely discharged. Arvia™ Technology Ltd. has trialled the application of its tertiary water treatment technology in treating reservoir water abstracted near Glasgow, Scotland, with promising results. Several other pilot plants have also been successfully deployed at various locations in the UK showing the suitability and effectiveness of the technology in removing recalcitrant organics (including pharmaceuticals, steroids and hormones), COD and colour.

Keywords: Arvia™ process, adsorption, water treatment, electrochemical oxidation

Procedia PDF Downloads 263
672 Characteristics of Bio-hybrid Hydrogel Materials with Prolonged Release of the Model Active Substance as Potential Wound Dressings

Authors: Katarzyna Bialik-Wąs, Klaudia Pluta, Dagmara Malina, Małgorzata Miastkowska

Abstract:

In recent years, biocompatible hydrogels have been used more and more in medical applications, especially as modern dressings and drug delivery systems. The main goal of this research was the characteristics of bio-hybrid hydrogel materials incorporated with the nanocarrier-drug system, which enable the release in a gradual and prolonged manner, up to 7 days. Therefore, the use of such a combination will provide protection against mechanical damage and adequate hydration. The proposed bio-hybrid hydrogels are characterized by: transparency, biocompatibility, good mechanical strength, and the dual release system, which allows for gradual delivery of the active substance, even up to 7 days. Bio-hybrid hydrogels based on sodium alginate (SA), poly(vinyl alcohol) (PVA), glycerine, and Aloe vera solution (AV) were obtained through the chemical crosslinking method using poly(ethylene glycol) diacrylate as a crosslinking agent. Additionally, a nanocarrier-drug system was incorporated into SA/PVA/AV hydrogel matrix. Here, studies were focused on the release profiles of active substances from bio-hybrid hydrogels using the USP4 method (DZF II Flow-Through System, Erweka GmbH, Langen, Germany). The equipment incorporated seven in-line flow-through diffusion cells. The membrane was placed over support with an orifice of 1,5 cm in diameter (diffusional area, 1.766 cm²). All the cells were placed in a cell warmer connected with the Erweka heater DH 2000i and the Erweka piston pump HKP 720. The piston pump transports the receptor fluid via seven channels to the flow-through cells and automatically adapts the setting of the flow rate. All volumes were measured by gravimetric methods by filling the chambers with Milli-Q water and assuming a density of 1 g/ml. All the determinations were made in triplicate for each cell. The release study of the model active substance was carried out using a regenerated cellulose membrane Spectra/Por®Dialysis Membrane MWCO 6-8,000 Carl Roth® Company. These tests were conducted in buffer solutions – PBS at pH 7.4. A flow rate of receptor fluid of about 4 ml /1 min was selected. The experiments were carried out for 7 days at a temperature of 37°C. The released concentration of the model drug in the receptor solution was analyzed using UV-Vis spectroscopy (Perkin Elmer Company). Additionally, the following properties of the modified materials were studied: physicochemical, structural (FT-IR analysis), morphological (SEM analysis). Finally, the cytotoxicity tests using in vitro method were conducted. The obtained results exhibited that the dual release system allows for the gradual and prolonged delivery of the active substances, even up to 7 days.

Keywords: wound dressings, SA/PVA hydrogels, nanocarrier-drug system, USP4 method

Procedia PDF Downloads 147
671 Thermal Comfort Study of School Buildings in South Minahasa Regency Case Study: SMA Negeri 1 Amurang, Indonesia

Authors: Virgino Stephano Moniaga

Abstract:

Thermal comfort inside a building can affect students in their learning process. The learning process of students can be improved if the condition of the classrooms is comfortable. This study will be conducted in SMA Negeri 1 Amurang which is a senior high school building located in South Minahasa Regency. Based on preliminary survey, generally, students were not satisfied with the existing level of comfort, which subsequently affected the teaching and learning process in the classroom. The purpose of this study is to analyze the comfort level of classrooms occupants and recommend building design solutions that can improve the thermal comfort of classrooms. In this study, three classrooms will be selected for thermal comfort measurements. The thermal comfort measurements will be taken in naturally ventilated classrooms. The measured data comprise of personal data (clothing and students activity), air humidity, air temperature, mean radiant temperature and air flow velocity. Simultaneously, the students will be asked to fill out a questionnaire that asked about the level of comfort that was felt at the time. The results of field measurements and questionnaires will be analyzed based on the PMV and PPD indices. The results of the analysis will decide whether the classrooms are comfortable or not. This study can be continued to obtain a more optimal design solution to improve the thermal comfort of the classrooms. The expected results from this study can improve the quality of teaching and learning process between teachers and students which can further assist the government efforts to improve the quality of national education.

Keywords: classrooms, PMV, PPD, thermal comfort

Procedia PDF Downloads 316
670 Application of Proper Foundation in Building Construction

Authors: Chukwuma Anya, Mekwa Eme

Abstract:

Foundation is popularly defined as the lowest load-bearing part of a building, typically below the ground level. It serves as an underlying base which acts as the principle on which every building stands. There are various types of foundations in practice, which includes the strip, pile, pad, and raft foundations, and each of these have their various applications in building construction. However due to lack of professional knowledge, cost, or scheduled time frame to complete a certain project, some of these foundation types are some times neglected or used interchangeably, resulting to misuse or abuse of the building materials man, power, and some times altering the stability, balance and aesthetics of most buildings. This research work is aimed at educating the academic community on the proper application of the various foundation types to suit different environments such as the rain forest, desert, swampy area, rocky area etc. A proper application of the foundation will ensure the safety of the building from acid grounds, damping and weakening of foundation, even building settlement and stability. In addition to those, it will improve aesthetics, maintain cost effectiveness both construction cost and maintenance cost. Finally it will ensure the safety of the building and its inhabitants. At the end of this research work we will be able to differentiate the various foundation types and there proper application in the design and construction of buildings.

Keywords: foundation, application, stability, aesthetics

Procedia PDF Downloads 73
669 Improving Lutein Bioavailability by Nanotechnology Applications

Authors: Hulya Ilyasoglu Buyukkestelli, Sedef Nehir El

Abstract:

Lutein is a member of xanthophyll group of carotenoids found in fruits and vegetables. Lutein accumulates in the macula region of the retina and known as macular pigment which absorbs damaging light in the blue wavelengths. The presence of lutein in retina has been related to decreased risk of two common eye diseases, age-related macular degeneration, and cataract. Being a strong antioxidant, it may also have effects on prevention some types of cancer, cardiovascular disease, cognitive dysfunction. Humans are not capable of synthesizing lutein de novo; therefore it must be provided naturally by the diet, fortified foods, and beverages or nutritional supplement. However, poor bioavailability and physicochemical stability limit its usage in the food industry. Poor solubility in digestive fluids and sensitivity to heat, light, and oxygen are both affect the stability and bioavailability of lutein. In this context, new technologies, delivery systems and formulations have been applied to improve stability and solubility of lutein. Nanotechnology, including nanoemulsion, nanocrystal, nanoencapsulation technology and microencapsulation by complex coacervation, spray drying are promising ways of increasing solubilization of lutein and stability of it in different conditions. Bioavailability of lutein is also dependent on formulations used, starch formulations and milk proteins, especially sodium caseinate are found effective in improving the bioavailability of lutein. Designing foods with highly bioavailable and stabile lutein needs knowledge about current technologies, formulations, and further needs. This review provides an overview of the new technologies and formulations used to improve bioavailability of lutein and also gives a future outlook to food researches.

Keywords: bioavailability, formulation, lutein, nanotechnology

Procedia PDF Downloads 380
668 A Mathematical Agent-Based Model to Examine Two Patterns of Language Change

Authors: Gareth Baxter

Abstract:

We use a mathematical model of language change to examine two recently observed patterns of language change: one in which most speakers change gradually, following the mean of the community change, and one in which most individuals use predominantly one variant or another, and change rapidly if they change at all. The model is based on Croft’s Utterance Selection account of language change, which views language change as an evolutionary process, in which different variants (different ‘ways of saying the same thing’) compete for usage in a population of speakers. Language change occurs when a new variant replaces an older one as the convention within a given population. The present model extends a previous simpler model to include effects related to speaker aging and interspeaker variation in behaviour. The two patterns of individual change (one more centralized and the other more polarized) were recently observed in historical language changes, and it was further observed that slower changes were more associated with the centralized pattern, while quicker changes were more polarized. Our model suggests that the two patterns of change can be explained by different balances between the preference of speakers to use one variant over another and the degree of accommodation to (propensity to adapt towards) other speakers. The correlation with the rate of change appears naturally in our model, and results from the fact that both differential weighting of variants and the degree of accommodation affect the time for change to occur, while also determining the patterns of change. This work represents part of an ongoing effort to examine phenomena in language change through the use of mathematical models. This offers another way to evaluate qualitative explanations that cannot be practically tested (or cannot be tested at all) in a real-world, large-scale speech community.

Keywords: agent based modeling, cultural evolution, language change, social behavior modeling, social influence

Procedia PDF Downloads 235
667 Application of Data Mining Techniques for Tourism Knowledge Discovery

Authors: Teklu Urgessa, Wookjae Maeng, Joong Seek Lee

Abstract:

Application of five implementations of three data mining classification techniques was experimented for extracting important insights from tourism data. The aim was to find out the best performing algorithm among the compared ones for tourism knowledge discovery. Knowledge discovery process from data was used as a process model. 10-fold cross validation method is used for testing purpose. Various data preprocessing activities were performed to get the final dataset for model building. Classification models of the selected algorithms were built with different scenarios on the preprocessed dataset. The outperformed algorithm tourism dataset was Random Forest (76%) before applying information gain based attribute selection and J48 (C4.5) (75%) after selection of top relevant attributes to the class (target) attribute. In terms of time for model building, attribute selection improves the efficiency of all algorithms. Artificial Neural Network (multilayer perceptron) showed the highest improvement (90%). The rules extracted from the decision tree model are presented, which showed intricate, non-trivial knowledge/insight that would otherwise not be discovered by simple statistical analysis with mediocre accuracy of the machine using classification algorithms.

Keywords: classification algorithms, data mining, knowledge discovery, tourism

Procedia PDF Downloads 295
666 Species Distribution Model for Zanthoxylum Rhetsa Genus in Thailand

Authors: Yosiya Chanta, Jantrararuk Tovaranont

Abstract:

Species distribution model (SDMs) is one of the powerful tools used to create a suitability map used to predict and address ecology and conservation approaches. MaxEnt is a tool used among SDMs that is highly popular because it only uses presence data. Zanthoxylum rhetsa has more than 200 species distributed in the tropics. Most commonly found in cooler forest environments, there are 8-9 species found in Thailand. In northern Thailand, 3 varieties are commonly grown: Zanthoxylum myriacanthum, Zanthoxylum rhetsa and Zanthoxylum armatum. In the northern regions, these varieties are mainly used as a spice and as a cooking ingredient. MaxEnt has been used in this study to predict potential habitats for these Zanthoxylums in current and future times (2041and 2060). Suitable habitats are predicted using data from the EC-Earth3-Veg general circulation model with 19 climatic variables. The results indicate that the suitability of future habitats of Zanthoxylum rhetsa may expand into the lower northern part of Thailand. The habitat suitability map obtained from the MaxEnt tool shows that the Precipitation of Wettest Quarter (Bio16) is the most important climatic variable influencing the current and future spread of Zanthoxylum rhetsa.

Keywords: MaxEnt, Zanthoxylum rhets, species distribution modelling, climate change

Procedia PDF Downloads 98
665 Evaluation of the Spatial Performance of Ancient Cities in the Context of Landscape Architecture

Authors: Elvan Ender Altay, Zeynep Pirselimoglu Batman, Murat Zencirkiran

Abstract:

Ancient cities are, according to United Nations Educational, Scientific and Cultural Organization (UNESCO), landscape areas designed and created by people, at the same time naturally developing and constantly changing sustainable cultural landscapes. Ancient cities are the urban settlements where we can see the reflection of public lifestyle existed thousands of years ago. The conceptual and spatial traces in ancient cities, are crucial for examining the city history and its preservation. This study is intended to demonstrate the impacts of human life and physical environment on the cultural landscape. This research aims to protect and maintain cultural continuity of the ancient cities in Bursa which contain archeological and historical elements and could not majorly reach to the day because of not being protected and to show importance of landscape architecture to ensure this protection. In this context, ancient cities in Bursa were researched and a total of 7 ancient cities were identified. These ancient cities are; Apollonia, Lopadion, Nicaea, Myrleia, Cius, Daskyleion and Basilinopolis. In the next stage, the spatial performances of ancient cities were assessed by weighted criteria method. The highest score is the Nicaea Ancient City. Considering current situation of the ancient cities in Bursa, it is seen that most of them could not survive until our day due to lack of interest in these areas. As a result, according to the findings, it is a priority to create a protective band with green areas around the archaeological sites, thus adapting to nearby areas and emphasizing culture. In addition, proposals have been made to provide a transportation network that does not harm the ancient cities and the cultural landscape.

Keywords: ancient cities, Bursa, landscape, spatial performance

Procedia PDF Downloads 202
664 The Role of Community Forestry to Combat Climate Change Impacts in Nepal

Authors: Ravi Kumar Pandit

Abstract:

Climate change is regarded as one of the most fundamental threats to sustainable livelihood and global development. There is growing a global concern in linking community-managed forests as potential climate change mitigation projects. This study was conducted to explore the local people’s perception on climate change and the role of community forestry (CF) to combat climate change impacts. Two active community forest user groups (CFUGs) from Kaski and Syangja Districts in Nepal were selected as study sites, and various participatory tools were applied to collect primary data. Although most of the respondents were unaware about the words “Climate Change” in study sites, they were quite familiar with the irregularities in rainfall season and other weather extremities. 60% of the respondents had the idea that, due to increase in precipitation, there is a frequent occurrence of erosion, floods and landslide. Around 85% of the people agreed that community forests help in stabilizing soil, reducing the natural hazards like erosion, landslide. Biogas as an alternative source of cooking energy, and changes in crops and their varieties are the common adaptation measures that local people start practicing in both CFUGs in Nepal.

Keywords: climate change, community forestry, global warming, adaptation in Nepal

Procedia PDF Downloads 254
663 Development of a Biomaterial from Naturally Occurring Chloroapatite Mineral for Biomedical Applications

Authors: H. K. G. K. D. K. Hapuhinna, R. D. Gunaratne, H. M. J. C. Pitawala

Abstract:

Hydroxyapatite is a bioceramic which can be used for applications in orthopedics and dentistry due to its structural similarity with the mineral phase of mammalian bones and teeth. In this study, it was synthesized, chemically changing natural Eppawala chloroapatite mineral as a value-added product. Sol-gel approach and solid state sintering were used to synthesize products using diluted nitric acid, ethanol and calcium hydroxide under different conditions. Synthesized Eppawala hydroxyapatite powder was characterized using X-ray Fluorescence (XRF), X-ray Powder Diffraction (XRD), Fourier-transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) in order to find out its composition, crystallinity, presence of functional groups, bonding type, surface morphology, microstructural features, and thermal dependence and stability, respectively. The XRD results reflected the formation of a hexagonal crystal structure of hydroxyapatite. Elementary composition and microstructural features of products were discussed based on the XRF and SEM results of the synthesized hydroxyapatite powder. TGA and DSC results of synthesized products showed high thermal stability and good material stability in nature. Also, FTIR spectroscopy results confirmed the formation of hydroxyapatite from apatite via the presence of hydroxyl groups. Those results coincided with the FTIR results of mammalian bones including human bones. The study concludes that there is a possibility of producing hydroxyapatite using commercially available Eppawala chloroapatite in Sri Lanka.

Keywords: dentistry, Eppawala chlorapatite, hydroxyapatite, orthopedics

Procedia PDF Downloads 235
662 Alleviation of Endoplasmic Reticulum Stress in Mosquito Cells to Survive Dengue 2 Virus Infection

Authors: Jiun-Nan Hou, Tien-Huang Chen, Wei-June Chen

Abstract:

Dengue viruses (DENVs) are naturally transmitted between humans by mosquito vectors. Mosquito cells usually survive DENV infection, allowing infected mosquitoes to retain an active status for virus transmission. In this study, we found that DENV2 virus infection in mosquito cells causes the unfolded protein response (UPR) that activates the protein kinase RNA-like endoplasmic reticulum kinase (PERK) signal pathway, leading to shutdown of global protein translation in infected cells which was apparently regulated by the PERK signal pathway. According to observation in this study, the PERK signal pathway in DENV2-infected C6/36 cells alleviates ER stress, and reduces initiator and effector caspases, as well as the apoptosis rate via shutdown of cellular proteins. In fact, phosphorylation of eukaryotic initiation factor 2ɑ (eIF2ɑ) by the PERK signal pathway may impair recruitment of ribosomes that bind to the mRNA 5’-cap structure, resulting in an inhibitory effect on canonical cap-dependent cellular protein translation. The resultant pro-survival “byproduct” of infected mosquito cells is undoubtedly advantageous for viral replication. This finding provides insights into elucidating the PERK-mediated modulating web that is actively involved in dynamic protein synthesis, cell survival, and viral replication in mosquito cells.

Keywords: cap-dependent protein translation, dengue virus, endoplasmic reticulum stress, mosquito cells, PERK signal pathway

Procedia PDF Downloads 267
661 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques

Authors: Chandu Rathnayake, Isuri Anuradha

Abstract:

Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.

Keywords: CNN, random forest, decision tree, machine learning, deep learning

Procedia PDF Downloads 73
660 Mothers, the Missing Link: A Critical Discourse Analysis of the Women-Centric Counterterrorism Measures

Authors: Bukola Solomon

Abstract:

In counterterrorism, policymakers typically design a confined role for women as family members and nurturers. In recent years, they have embraced the idea of mothers as the missing link to preventing and countering violent extremism. This ‘programmed’ role of women is derived from the convictions that women’s central roles in the family and community afford them the ‘unique set of skills’ to detect early signs of radicalization and extremism. This paper attempts to focus on the ‘mother’ narrative that frames women’s agency as mothers of ‘terrorists’ and ‘potential’ terrorists. The general underlying assumption of the ‘mother’ narrative is that naturally, every ‘terrorist’ has or once had a mother, and their radicalization is a maternal ‘oversight.’ By deconstructing the notion of motherhood as a social construct instead of an inherent female desire and ability, this paper argues that the assumption of ‘mothers know best’ is invalid. Also, this paper suggests that the ‘mother’ narrative is a deliberate effort to restrict women’s participation in counterterrorism as ‘preventers.’ Finally, this paper notes a global trend in which mothers are contesting the dominant view of women empowerment that restricts their agency by seeking alternative versions in terrorist organizations. And as such, they create parallel terror cells. Thus, the overemphasis on the role women plays as mothers in counterterrorism limits the scope and potential of counterterrorism programs by marginalizing gender issues and reinforcing gender disparities to the extent that the programs become counterproductive.

Keywords: countering violent extremism, counterterrorism, gender, gender roles, terrorism, women

Procedia PDF Downloads 116
659 Improving Indoor Air Quality by Increasing Bio-Based Negative Air Ion Release

Authors: Shuye Jiang, Ali Ma, Srinivasan Ramachandran

Abstract:

Indoor air quality could be improved through traditional air purifiers. However, they may not be environmental products. Here, a bio-based method was employed to improve indoor air quality by increasing negative air ion (NAI) release from ornamental plants. A total of 60 plant species has been screened by evaluating their ability to release NAIs, from which four candidates were selected to further study. All of them are from the Dracaena or fabids clade. These four candidates were then subjected to survey their ability to reduce the concentration of particulate matter with diameter of 2.5 or 10 microns (PM2.5 and PM10) in the growth chamber. High concentrations of PM2.5 and PM10 were artificially generated by burning a stick of incense for 2 minutes in the closed growth chamber (80cm length × 80cm width × 80cm height), in which the PM2.5 and PM10 concentration were generally around 500 µg/m3 and 1500 µg/m3, respectively. Both PM2.5 and PM10 were naturally reduced to 410 and 670, respectively after two hours in case that no plants were placed inside the chamber. Interestingly, these two sizes of particulars were reduced to 170 µg/m3 and 210 µg/m3, respectively after two hours when plants were placed to the chamber. It took 4 hours for the plants to reduce particular concentration to acceptable level at less than 55 µg/m3 for both PM2.5 and PM10, respectively. However, the PM2.5 and PM10 concentration were still above 200 µg/m3 and 300 µg/m3, respectively after 4 hours in the growth chamber without any plants. These results suggest the contribution of plants to the particulate deposition. However, all of these data are preliminary and the results may be updated by further studies. In addition, the roles of plants in absorbing indoor formaldehyde have also been explored and their absorbing ability is being improved by optimizing their growth conditions and treating with various exogenous agents. Thus, our preliminary studies provide an alternative strategy to improve indoor air quality.

Keywords: bio-based method, indoor air, negative air ion, particulate matter

Procedia PDF Downloads 166
658 The Compositional Effects on Electrospinning of Gelatin and Polyvinyl-alcohol Mixed Nanofibers

Authors: Yi-Chun Wu, Nai-Yun Chang, Chuan LI

Abstract:

This study investigates a feasible range of composition for the mixture of gelatin and polyvinyl alcohol to form nanofibers by electrospinning. Gelatin, one of the most available naturally derived hydrogels of amino acids, is a popular choice for food additives, cosmetic ingredients, biomedical implants, or dressing of its non-toxic and biodegradable nature. Nevertheless, synthetic hydrogel polyvinyl alcohol has long been used as a thickening agent for adhesion purposes. Many biomedical devices are also containing polyvinyl-alcohol as a major content, such as eye drops and contact lenses. To discover appropriate compositions of gelatin and polyvinyl-alcohol for electrospun nanofibers, polymer solutions of different volumetric ratios between gelatin and polyvinyl alcohol were prepared for electrospinning. The viscosity, surface tension, pH value, and electrical conductance of polymer solutions were measured. On the nanofibers, the vibrational modes of molecular structures in nanofibers were investigated by Fourier-transform infrared spectroscopy. The morphologies and surface chemical elements of fibers were examined by the scanning electron microscope and the energy-dispersive X-ray spectroscopy. The hydrophilicity of nanofiberswas evaluated by the water contact angles on the surface of the fibers. To further test the biotoxicity of nanofibers, an in-vitro 3T3 fibroblasts culture further tested the biotoxicity of the electrospun nanofibers. Throughstatistical analyses of the experimental data, it is found that the polyvinyl-alcohol rich composition (the volumetric ratio of gelatin/polyvinyl-alcohol < 1) would be a preferable choice for the formation of nanofibers by the current setup of electrospinning. These electrospun nanofibers tend to be hydrophilic with no biotoxicity threat to the 3T3 fibroblasts.

Keywords: gelatin, polyvinyl-alcohol, nanofibers, electrospinning, spin coating

Procedia PDF Downloads 85
657 Growth Inhibition of Candida Albicans Strains Co-Cultured with Lactobacillus Strains in a Cereal Medium

Authors: Richard Nyanzi, Maupi E. Letsoalo, Jacobus N. Eloff, Piet J. Jooste

Abstract:

Candida albicans naturally occurs in the gastrointestinal tract (GIT) of more than 50% of humans. Overgrowth of the fungus causes several forms of candidiasis including oral thrush. Overgrowth tends to occur in immunocompromised humans such as diabetic, cancer and HIV patients. Antifungal treatment is available, but not without shortcomings. In this study, inhibitory activity of five probiotic Lactobacillus strains was demonstrated against the growth of seven clinical strains of Candida albicans by co-culturing of the organisms in a maize gruel (MG) medium. Phenotypic tests, molecular techniques and phylogenetic analysis have enabled precise identification of the organisms used in the study. The quantitative pour plate technique was used to enumerate colonies of the yeasts and the lactobacilli and the Kruskal-Wallis test and ANOVA tests were employed to compare the distributions of the colonies of the organisms. The cereal medium, containing added carbon sources, was inoculated with a Candida and a Lactobacillus strain in combination and incubated at 37 °C for 168 h. Aliquots were regularly taken and subjected to pH determination and colony enumeration. Certain Lactobacillus strains proved to be inhibitory and also lethal to some Candida albicans strains. A low pH due to Lactobacillus acid production resulted in significant low Candida colony counts. Higher Lactobacillus colony counts did not necessarily result in lower Candida counts suggesting that inhibitory factors besides low pH and competitive growth by lactobacilli contributed to the reduction in Candida counts. Such anti-Candida efficacy however needs to be confirmed by in vivo studies.

Keywords: candida albicans, oral thrush, candidiasis, lactobacillus, probiotics

Procedia PDF Downloads 399
656 A Study of ZY3 Satellite Digital Elevation Model Verification and Refinement with Shuttle Radar Topography Mission

Authors: Bo Wang

Abstract:

As the first high-resolution civil optical satellite, ZY-3 satellite is able to obtain high-resolution multi-view images with three linear array sensors. The images can be used to generate Digital Elevation Models (DEM) through dense matching of stereo images. However, due to the clouds, forest, water and buildings covered on the images, there are some problems in the dense matching results such as outliers and areas failed to be matched (matching holes). This paper introduced an algorithm to verify the accuracy of DEM that generated by ZY-3 satellite with Shuttle Radar Topography Mission (SRTM). Since the accuracy of SRTM (Internal accuracy: 5 m; External accuracy: 15 m) is relatively uniform in the worldwide, it may be used to improve the accuracy of ZY-3 DEM. Based on the analysis of mass DEM and SRTM data, the processing can be divided into two aspects. The registration of ZY-3 DEM and SRTM can be firstly performed using the conjugate line features and area features matched between these two datasets. Then the ZY-3 DEM can be refined by eliminating the matching outliers and filling the matching holes. The matching outliers can be eliminated based on the statistics on Local Vector Binning (LVB). The matching holes can be filled by the elevation interpolated from SRTM. Some works are also conducted for the accuracy statistics of the ZY-3 DEM.

Keywords: ZY-3 satellite imagery, DEM, SRTM, refinement

Procedia PDF Downloads 343
655 The Sustainability of Farm Forestry Management in Bulukumba Regency, South Sulawesi, Indonesia

Authors: Nuraeni, Suryanti, Saida, Annas Boceng

Abstract:

Farm forestry is a forest where farmers or landowners do cultivation and farming activities on their land. This study aims to determine the dimensions of sustainable development of farm forestry and to analyze the leverage factors to improve the sustainability status of farm forestry management in Bulukumba Regency. This research was conducted in Kajang District, Bulukumba Regency. The analysis of the sustainability of farm forestry management applied Multi-Dimensional Scaling (MDS), a modification of the Rapid Appraisal of The Status of Farming (RAPFARM). The index value of farm forestry sustainability was by 62.01% for ecological dimension, 51.54% for economic dimension, 61.00% for the social and cultural dimension, and 63.24% for legal and institutional dimension with sustainable enough category status. Meanwhile, the index value for the technology and infrastructure was by 47.16% of less sustainable category status. The result of leverage analysis of attributes for the dimensions of ecological, economic, social and cultural, legal and institutional as well as infrastructure and technology afforded twenty-two (22) leverage sensitive factors that influence the sustainability of farm forestry.

Keywords: farm forestry, South Sulawesi, management, sustainability

Procedia PDF Downloads 367
654 Characterization of Bacteriophage for Biocontrol of Pseudomonas syringae, Causative Agent of Canker in Prunus spp.

Authors: Mojgan Rabiey, Shyamali Roy, Billy Quilty, Ryan Creeth, George Sundin, Robert W. Jackson

Abstract:

Bacterial canker is a major disease of Prunus species such as cherry (Prunus avium). It is caused by Pseudomonas syringae species including P. syringae pv. syringae (Pss) and P. syringae pv. morsprunorum race 1 (Psm1) and race 2 (Psm2). Concerns over the environmental impact of, and developing resistance to, copper controls call for alternative approaches to disease management. One method of control could be achieved using naturally occurring bacteriophage (phage) infective to the bacterial pathogens. Phages were isolated from soil, leaf, and bark of cherry trees in five locations in the South East of England. The phages were assessed for their host range against strains of Pss, Psm1, and Psm2. The phages exhibited a differential ability to infect and lyse different Pss and Psm isolates as well as some other P. syringae pathovars. However, the phages were unable to infect beneficial bacteria such as Pseudomonas fluorescens. A subset of 18 of these phages were further characterised genetically (Random Amplification of Polymorphic DNA-PCR fingerprinting and sequencing) and using electron microscopy. The phages are tentatively identified as belonging to the order Caudovirales and the families Myoviridae, Podoviridae, and Siphoviridae, with genetic material being dsDNA. Future research will fully sequence the phage genomes. The efficacy of the phage, both individually and in cocktails, to reduce disease progression in vivo will be investigated to understand the potential for practical use of these phages as biocontrol agents.

Keywords: bacteriophage, pseudomonas, bacterial cancker, biological control

Procedia PDF Downloads 151
653 Regeneration of Cesium-Exhausted Activated Carbons by Microwave Irradiation

Authors: Pietro P. Falciglia, Erica Gagliano, Vincenza Brancato, Alfio Catalfo, Guglielmo Finocchiaro, Guido De Guidi, Stefano Romano, Paolo Roccaro, Federico G. A. Vagliasindi

Abstract:

Cesium-137 (¹³⁷Cs) is a major radionuclide in spent nuclear fuel processing, and it represents the most important cause of contamination related to nuclear accidents. Cesium-137 has long-term radiological effects representing a major concern for the human health. Several physico-chemical methods have been proposed for ¹³⁷Cs removal from impacted water: ion-exchange, adsorption, chemical precipitation, membrane process, coagulation, and electrochemical. However, these methods can be limited by ionic selectivity and efficiency, or they present very restricted full-scale application due to equipment and chemical high costs. On the other hand, adsorption is considered a more cost-effective solution, and activated carbons (ACs) are known as a low-cost and effective adsorbent for a wide range of pollutants among which radionuclides. However, adsorption of Cs onto ACs has been investigated in very few and not exhaustive studies. In addition, exhausted activated carbons are generally discarded in landfill, that is not an eco-friendly and economic solution. Consequently, the regeneration of exhausted ACs must be considered a preferable choice. Several alternatives, including conventional thermal-, solvent-, biological- and electrochemical-regeneration, are available but are affected by several economic or environmental concerns. Microwave (MW) irradiation has been widely used in industrial and environmental applications and it has attracted many attentions to regenerating activated carbons. The growing interest in MW irradiation is based on the passive ability of the irradiated medium to convert a low power irradiation energy into a rapid and large temperature increase if the media presents good dielectric features. ACs are excellent MW-absorbers, with a high mechanical strength and a good resistance towards heating process. This work investigates the feasibility of MW irradiation for the regeneration of Cs-exhausted ACs. Adsorption batch experiments were carried out using commercially available granular activated carbon (GAC), then Cs-saturated AC samples were treated using a controllable bench-scale 2.45-GHz MW oven and investigating different adsorption-regeneration cycles. The regeneration efficiency (RE), weight loss percentage, and textural properties of the AC samples during the adsorption-regeneration cycles were also assessed. Main results demonstrated a relatively low adsorption capacity for Cs, although the feasibility of ACs was strictly linked to their dielectric nature, which allows a very efficient thermal regeneration by MW irradiation. The weight loss percentage was found less than 2%, and an increase in RE after three cycles was also observed. Furthermore, MW regeneration preserved the pore structure of the regenerated ACs. For a deeper exploration of the full-scale applicability of MW regeneration, further investigations on more adsorption-regeneration cycles or using fixed-bed columns are required.

Keywords: adsorption mechanisms, cesium, granular activated carbons, microwave regeneration

Procedia PDF Downloads 141
652 Predicting Potential Protein Therapeutic Candidates from the Gut Microbiome

Authors: Prasanna Ramachandran, Kareem Graham, Helena Kiefel, Sunit Jain, Todd DeSantis

Abstract:

Microbes that reside inside the mammalian GI tract, commonly referred to as the gut microbiome, have been shown to have therapeutic effects in animal models of disease. We hypothesize that specific proteins produced by these microbes are responsible for this activity and may be used directly as therapeutics. To speed up the discovery of these key proteins from the big-data metagenomics, we have applied machine learning techniques. Using amino acid sequences of known epitopes and their corresponding binding partners, protein interaction descriptors (PID) were calculated, making a positive interaction set. A negative interaction dataset was calculated using sequences of proteins known not to interact with these same binding partners. Using Random Forest and positive and negative PID, a machine learning model was trained and used to predict interacting versus non-interacting proteins. Furthermore, the continuous variable, cosine similarity in the interaction descriptors was used to rank bacterial therapeutic candidates. Laboratory binding assays were conducted to test the candidates for their potential as therapeutics. Results from binding assays reveal the accuracy of the machine learning prediction and are subsequently used to further improve the model.

Keywords: protein-interactions, machine-learning, metagenomics, microbiome

Procedia PDF Downloads 376
651 Walmart Sales Forecasting using Machine Learning in Python

Authors: Niyati Sharma, Om Anand, Sanjeev Kumar Prasad

Abstract:

Assuming future sale value for any of the organizations is one of the major essential characteristics of tactical development. Walmart Sales Forecasting is the finest illustration to work with as a beginner; subsequently, it has the major retail data set. Walmart uses this sales estimate problem for hiring purposes also. We would like to analyzing how the internal and external effects of one of the largest companies in the US can walk out their Weekly Sales in the future. Demand forecasting is the planned prerequisite of products or services in the imminent on the basis of present and previous data and different stages of the market. Since all associations is facing the anonymous future and we do not distinguish in the future good demand. Hence, through exploring former statistics and recent market statistics, we envisage the forthcoming claim and building of individual goods, which are extra challenging in the near future. As a result of this, we are producing the required products in pursuance of the petition of the souk in advance. We will be using several machine learning models to test the exactness and then lastly, train the whole data by Using linear regression and fitting the training data into it. Accuracy is 8.88%. The extra trees regression model gives the best accuracy of 97.15%.

Keywords: random forest algorithm, linear regression algorithm, extra trees classifier, mean absolute error

Procedia PDF Downloads 149
650 Development and Evaluation of Naringenin Nanosuspension to Improve Antioxidant Potential

Authors: Md. Shadab, Mariyam N. Nashid, Venkata Srikanth Meka, Thiagarajan Madheswaran

Abstract:

Naringenin (NAR), is a naturally occurring plant flavonoid, found predominantly in citrus fruits, that possesses a wide range of pharmacological properties including anti-oxidant, anti-inflammatory behaviour, cholesterol-lowering and anticarcinogenic activities. However, despite the therapeutic potential of naringenin shown in a number of animal models, its clinical development has been hindered due to its low aqueous solubility, slow dissolution rate and inefficient transport across biological membranes resulting in low bioavailability. Naringenin nanosuspension were produced using stabilizers Tween® 80 by high pressure homogenization techniques. The nanosuspensions were characterized with regard to size (photon correlation spectroscopy (PCS), size distribution, charge (zeta potential measurements), morphology, short term physical stability, dissolution profile and antioxidant potential. A nanocrystal PCS size of about 500 nm was obtained after 20 homogenization cycles at 1500 bar. The short-term stability was assessed by storage of the nanosuspensions at 4 ◦C, room temperature and 40 ◦C. Result showed that naringenin nanosuspension was physically unstable due to large fluctuations in the particle size and zeta potential after 30 days. Naringenin nanosuspension demonstrated higher drug dissolution (97.90%) compared to naringenin powder (62.76%) after 120 minutes of testing. Naringenin nanosuspension showed increased antioxidant activity compared to naringenin powder with a percentage DPPH radical scavenging activity of 49.17% and 31.45% respectively at the lowest DPPH concentration.

Keywords: bioavailability, naringenin, nanosuspension, oral delivery

Procedia PDF Downloads 326
649 Oral Grammatical Errors of Arabic as Second Language (ASL) Learners: An Applied Linguistic Approach

Authors: Sadeq Al Yaari, Fayza Al Hammadi, Ayman Al Yaari, Adham Al Yaari, Montaha Al Yaari, Aayah Al Yaari, Sajedah Al Yaari, Salah Al Yami

Abstract:

Background: When we further take Arabic grammatical issues into account in accordance with applied linguistic investigations on Arabic as Second Language (ASL) learners, a fundamental issue arises at this point as to the production of speech in Arabic: Oral grammatical errors committed by ASL learners. Aims: Using manual rating as well as computational analytic methodology to test a corpus of recorded speech by Second Language (ASL) learners of Arabic, this study aims to find the areas of difficulties in learning Arabic grammar. More specifically, it examines how and why ASL learners make grammatical errors in their oral speech. Methods: Tape recordings of four (4) Arabic as Second Language (ASL) learners who ranged in age from 23 to 30 were naturally collected. All participants have completed an intensive Arabic program (two years) and 20 minute-speech was recorded for each participant. Having the collected corpus, the next procedure was to rate them against Arabic standard grammar. The rating includes four processes: Description, analysis and assessment. Conclusions: Outcomes made from the issues addressed in this paper can be summarized in the fact that ASL learners face many grammatical difficulties when studying Arabic word order, tenses and aspects, function words, subject-verb agreement, verb form, active-passive voice, global and local errors, processes-based errors including addition, omission, substitution or a combination of any of them.

Keywords: grammar, error, oral, Arabic, second language, learner, applied linguistics.

Procedia PDF Downloads 45
648 Production of Soy Yoghurt Using Soymilk-Based Lactic Acid Bacteria as Starter Culture

Authors: Ayobami Solomon Popoola, Victor N. Enujiugha

Abstract:

Production of soy-yogurt by fermentation of soymilk with lactic acid bacteria isolated from soymilk was studied. Soymilk was extracted from dehulled soybean seeds and pasteurized at 95 °C for 15 min. The soymilk was left to naturally ferment (temperature 40 °C; time 8 h) and lactic acid bacteria were isolated, screened and selected for yogurt production. Freshly prepared soymilk was pasteurized (95 °C, 15 min), inoculated with the lactic acid bacteria isolated (3% w/v starter culture) and incubated at 40 °C for 8 h. The yogurt produced was stored at 4 °C. Investigations were carried out with the aim of improving the sensory qualities and acceptability of soy yogurt. Commercial yogurt was used as a control. The percentage of soymilk inoculated was 70% of the broth. Soy-yoghurt samples produced were subsequently subjected to biochemical and microbiological assays which included total viable counts of fresh milk and soy-based yoghurt; proximate composition of functional soy-based yoghurt fermented with Lactobacillus plantarum; changes in pH, Titratable acidity, and lactic acid bacteria during a 14 day period of storage; as well as morphological and biochemical characteristics of lactic acid bacteria isolated. The results demonstrated that using Lactobacillus plantarum to inoculate soy milk for yogurt production takes about 8 h. The overall acceptability of the soy-based yogurt produced was not significantly different from that of the control sample. The use of isolate from soymilk had the added advantage of reducing the cost of yogurt starter culture, thereby making soy-yogurt, a good source of much desired good quality protein. However, more experiments are needed to improve the sensory qualities such as beany or astringent flavor and color.

Keywords: soy, soymilk, yoghurt, starter culture

Procedia PDF Downloads 263
647 Change Detection Analysis on Support Vector Machine Classifier of Land Use and Land Cover Changes: Case Study on Yangon

Authors: Khin Mar Yee, Mu Mu Than, Kyi Lint, Aye Aye Oo, Chan Mya Hmway, Khin Zar Chi Winn

Abstract:

The dynamic changes of Land Use and Land Cover (LULC) changes in Yangon have generally resulted the improvement of human welfare and economic development since the last twenty years. Making map of LULC is crucially important for the sustainable development of the environment. However, the exactly data on how environmental factors influence the LULC situation at the various scales because the nature of the natural environment is naturally composed of non-homogeneous surface features, so the features in the satellite data also have the mixed pixels. The main objective of this study is to the calculation of accuracy based on change detection of LULC changes by Support Vector Machines (SVMs). For this research work, the main data was satellite images of 1996, 2006 and 2015. Computing change detection statistics use change detection statistics to compile a detailed tabulation of changes between two classification images and Support Vector Machines (SVMs) process was applied with a soft approach at allocation as well as at a testing stage and to higher accuracy. The results of this paper showed that vegetation and cultivated area were decreased (average total 29 % from 1996 to 2015) because of conversion to the replacing over double of the built up area (average total 30 % from 1996 to 2015). The error matrix and confidence limits led to the validation of the result for LULC mapping.

Keywords: land use and land cover change, change detection, image processing, support vector machines

Procedia PDF Downloads 139
646 Monitoring the Vegetation Cover Dynamics of the African Great Green Wall in Yobe State Nigeria

Authors: Isa Muhammad Zumo

Abstract:

The African Great Green Wall (GGW) is a significant initiative in northern Nigeria because it promotes land restoration and conservation utilizing both commercial and species of forest trees while also helping to mitigate desertification and hazards from the sand dunes and shifting Sahara deserts. Conflicts and weather, however, pose a significant danger to the achievement of these goals. The scientific method for monitoring the vegetation dynamics since inception has not received the required attention, despite the African Development Bank (ADB)'s help in funding the project and its integration into the state's development plans for GGW initiatives. This study will monitor the changes in the vegetation cover of the great green wall within Yobe State Nigeria from 2014 to 2023. The vegetation dynamics will be monitored using Landsat 8 Operational Land Imager (OLI) for 6 years at 2 years intervals. The result will show the fluctuations in the vegetation cover density within the period of study. This will guide the design and implementation of policies of the GGW in achieving its objectives. The result can also contribute to the realization of Sustainable Development Goal (SDG) Target 13.2: Integrate climate change measures into national policies, strategies, and planning.

Keywords: monitoring, green wall, Landsat 8, Nigeria

Procedia PDF Downloads 84
645 Foreign Investment, Technological Diffusion and Competiveness of Exports: A Case for Textile Industry in Pakistan

Authors: Syed Toqueer Akhter, Muhammad Awais

Abstract:

Pakistan is a country which is gifted by naturally abundant resources these resources are a pioneer towards a prospect and developed country. Pakistan is the fourth largest exporter of the textile in the world and with the passage of time the competitiveness of these exports is subject to a decline. With a lot of International players in the textile world like China, Bangladesh, India, and Sri Lanka, Pakistan needs to put up a lot of effort to compete with these countries. This research paper would determine the impact of Foreign Direct Investment upon technological diffusion and that how significantly it may be affecting on export performance of the country. It would also demonstrate that with the increase in Foreign Direct Investment, technological diffusion, strong property rights, and using different policy tools, export competitiveness of the country could be improved. The research has been carried out using time series data from 1995 to 2013 and the results have been estimated by using competing Econometrics modes such as Robust regression and Generalized least squares so that to consolidate the impact of the Foreign Investments and Technological diffusion upon export competitiveness comprehensively. Distributed Lag model has also been used to encompass the lagged effect of policy tools variables used by the government. Model estimates entail that 'FDI' and 'Technological Diffusion' do have a significant impact on the competitiveness of the exports of Pakistan. It may also be inferred that competitiveness of Textile Sector requires integrated policy framework, primarily including the reduction in interest rates, providing subsides, and manufacturing of value added products.

Keywords: high technology export, robust regression, patents, technological diffusion, export competitiveness

Procedia PDF Downloads 500