Search results for: mechanical refining
2916 Computer Modeling and Plant-Wide Dynamic Simulation for Industrial Flare Minimization
Authors: Sujing Wang, Song Wang, Jian Zhang, Qiang Xu
Abstract:
Flaring emissions during abnormal operating conditions such as plant start-ups, shut-downs, and upsets in chemical process industries (CPI) are usually significant. Flare minimization can help to save raw material and energy for CPI plants, and to improve local environmental sustainability. In this paper, a systematic methodology based on plant-wide dynamic simulation is presented for CPI plant flare minimizations under abnormal operating conditions. Since off-specification emission sources are inevitable during abnormal operating conditions, to significantly reduce flaring emission in a CPI plant, they must be either recycled to the upstream process for online reuse, or stored somewhere temporarily for future reprocessing, when the CPI plant manufacturing returns to stable operation. Thus, the off-spec products could be reused instead of being flared. This can be achieved through the identification of viable design and operational strategies during normal and abnormal operations through plant-wide dynamic scheduling, simulation, and optimization. The proposed study includes three stages of simulation works: (i) developing and validating a steady-state model of a CPI plant; (ii) transiting the obtained steady-state plant model to the dynamic modeling environment; and refining and validating the plant dynamic model; and (iii) developing flare minimization strategies for abnormal operating conditions of a CPI plant via a validated plant-wide dynamic model. This cost-effective methodology has two main merits: (i) employing large-scale dynamic modeling and simulations for industrial flare minimization, which involves various unit models for modeling hundreds of CPI plant facilities; (ii) dealing with critical abnormal operating conditions of CPI plants such as plant start-up and shut-down. Two virtual case studies on flare minimizations for start-up operation (over 50% of emission savings) and shut-down operation (over 70% of emission savings) of an ethylene plant have been employed to demonstrate the efficacy of the proposed study.Keywords: flare minimization, large-scale modeling and simulation, plant shut-down, plant start-up
Procedia PDF Downloads 3252915 A Review of Fused Deposition Modeling Process: Parameter Optimization, Materials and Design
Authors: Elisaveta Doncheva, Jelena Djokikj, Ognen Tuteski, Bojana Hadjieva
Abstract:
In the past decade, additive manufacturing technology or 3D printing has been promoted as an efficient method for fabricating hybrid composite materials and structures with superior mechanical properties and complex shape and geometry. Fused deposition modeling (FDM) process is commonly used additive manufacturing technique for production of polymer products. Therefore, many studies and experiments are focused on investigating the possibilities for improving the obtained results on product properties as a key factor for expanding the spectrum of their application. This article provides an extensive review on recent research advances in FDM and reports on studies that cover the effects of process parameters, material, and design of the product properties. The paper conclusions provide a clear up-to date information for optimum efficiency and enhancement of the mechanical properties of 3D printed samples and recommends further research work and investigations.Keywords: additive manufacturing, critical parameters, filament, print orientation, 3D printing
Procedia PDF Downloads 1982914 The Effect of a Reactive Poly (2-Vinyl-2-Oxazoline) Monolayer of Carbon Fiber Surface on the Mechanical Property of Carbon Fiber/Polypropylene Composite Using Maleic Anhydride Grafted Polypropylene
Authors: Teruya Goto, Hokuto Chiba, Tatsuhiro Takahashi
Abstract:
Carbon fiber reinforced thermoplastic resin using short carbon fiber has been produced by melt mixing and the improvement of mechanical properties has been frequently reported up to now. One of the most frequently reported enhancement has been seen in carbon fiber / polypropylene (PP) composites by adding small amount of maleic anhydride grafted polypropylene (MA-g-PP) into PP matrix. However, the further enhancement of tensile strength and tensile modules has been expected for lightning the composite more. Our present research aims to improve the mechanical property by using a highly reactive monolayer polymer, which can react with both COOH of carbon fiber surface and maleic anhydride of MA-g-PP in the matrix, on carbon fiber for PP/CF composite. It has been known that oxazoline has much higher reactivity with COOH without catalysts, compared with amine group and alcohol OH group. However, oxazoline group has not been used for the interface. To achieve the purpose, poly-2-vinyl-2-oxazoline (Pvozo), having highly reactivity with COOH and maleic anhydride, has been originally synthesized through radical polymerization using 2-vinyl-2-oxazoline as a monomer, resulting in the Mw around 140,000. Monolayer Pvozo chemically reacted on CF was prepared in 1-methoxy-2-propanol solution of Pvozo by heating at 100oC for 3 hours. After this solution treatment, unreacted Pvozo was completely washed out by methanol, resulting the uniform formation of the monolayer Pvozo on CF. Monolayer Pvozo coated CF was melt mixed by with PP and a small amount of MA-g-PP for the preparation of the composite samples using a batch type melt mixer. With performing the tensile strength tests of the composites, the tensile strength of CF/MA-g-PP/PP showed 40% increase, compared to that of CF/PP. While, that of Pvozo coated CF/MA-g-PP/PP exhibited 80% increase, compared to that of CF/PP. To get deeper insight of the dramatic increase, the weight percentage of chemically grafted polymer based on CF was evaluated by dissolving and removing the matrix polymer by xylene using by thermos gravimetric analysis (TGA). The chemically grafted remained polymer was found to be 0.69wt% in CF/PP, 0.98wt% in CF/MA-g-PP/PP, 1.51wt% in Pvozo coated CF/MA-g-PP/PP, suggesting that monolayer Pvozo contributed to the increase of the grafted polymer amount. In addition, the very strong adhesion by Pvozo was confirmed by observing the fractured cross-sectional surface of the composite by scanning electron micrograph (SEM). As a conclusion, the effectiveness of a highly reactive monolayer Pvozo on CF for the enhancement of the mechanical properties of CF/PP composite was demonstrated, which can be interpreted by the clear evidence of the increase of the grafting polymer on CF.Keywords: CFRTP, interface, oxazoline, polymer graft, mechanical property
Procedia PDF Downloads 2172913 Understanding the Classification of Rain Microstructure and Estimation of Z-R Relationship using a Micro Rain Radar in Tropical Region
Authors: Tomiwa, Akinyemi Clement
Abstract:
Tropical regions experience diverse and complex precipitation patterns, posing significant challenges for accurate rainfall estimation and forecasting. This study addresses the problem of effectively classifying tropical rain types and refining the Z-R (Reflectivity-Rain Rate) relationship to enhance rainfall estimation accuracy. Through a combination of remote sensing, meteorological analysis, and machine learning, the research aims to develop an advanced classification framework capable of distinguishing between different types of tropical rain based on their unique characteristics. This involves utilizing high-resolution satellite imagery, radar data, and atmospheric parameters to categorize precipitation events into distinct classes, providing a comprehensive understanding of tropical rain systems. Additionally, the study seeks to improve the Z-R relationship, a crucial aspect of rainfall estimation. One year of rainfall data was analyzed using a Micro Rain Radar (MRR) located at The Federal University of Technology Akure, Nigeria, measuring rainfall parameters from ground level to a height of 4.8 km with a vertical resolution of 0.16 km. Rain rates were classified into low (stratiform) and high (convective) based on various microstructural attributes such as rain rates, liquid water content, Drop Size Distribution (DSD), average fall speed of the drops, and radar reflectivity. By integrating diverse datasets and employing advanced statistical techniques, the study aims to enhance the precision of Z-R models, offering a more reliable means of estimating rainfall rates from radar reflectivity data. This refined Z-R relationship holds significant potential for improving our understanding of tropical rain systems and enhancing forecasting accuracy in regions prone to heavy precipitation.Keywords: remote sensing, precipitation, drop size distribution, micro rain radar
Procedia PDF Downloads 442912 Mathematical Study of CO₂ Dispersion in Carbonated Water Injection Enhanced Oil Recovery Using Non-Equilibrium 2D Simulator
Authors: Ahmed Abdulrahman, Jalal Foroozesh
Abstract:
CO₂ based enhanced oil recovery (EOR) techniques have gained massive attention from major oil firms since they resolve the industry's two main concerns of CO₂ contribution to the greenhouse effect and the declined oil production. Carbonated water injection (CWI) is a promising EOR technique that promotes safe and economic CO₂ storage; moreover, it mitigates the pitfalls of CO₂ injection, which include low sweep efficiency, early CO₂ breakthrough, and the risk of CO₂ leakage in fractured formations. One of the main challenges that hinder the wide adoption of this EOR technique is the complexity of accurate modeling of the kinetics of CO₂ mass transfer. The mechanisms of CO₂ mass transfer during CWI include the slow and gradual cross-phase CO₂ diffusion from carbonated water (CW) to the oil phase and the CO₂ dispersion (within phase diffusion and mechanical mixing), which affects the oil physical properties and the spatial spreading of CO₂ inside the reservoir. A 2D non-equilibrium compositional simulator has been developed using a fully implicit finite difference approximation. The material balance term (k) was added to the governing equation to account for the slow cross-phase diffusion of CO₂ from CW to the oil within the gird cell. Also, longitudinal and transverse dispersion coefficients have been added to account for CO₂ spatial distribution inside the oil phase. The CO₂-oil diffusion coefficient was calculated using the Sigmund correlation, while a scale-dependent dispersivity was used to calculate CO₂ mechanical mixing. It was found that the CO₂-oil diffusion mechanism has a minor impact on oil recovery, but it tends to increase the amount of CO₂ stored inside the formation and slightly alters the residual oil properties. On the other hand, the mechanical mixing mechanism has a huge impact on CO₂ spatial spreading (accurate prediction of CO₂ production) and the noticeable change in oil physical properties tends to increase the recovery factor. A sensitivity analysis has been done to investigate the effect of formation heterogeneity (porosity, permeability) and injection rate, it was found that the formation heterogeneity tends to increase CO₂ dispersion coefficients, and a low injection rate should be implemented during CWI.Keywords: CO₂ mass transfer, carbonated water injection, CO₂ dispersion, CO₂ diffusion, cross phase CO₂ diffusion, within phase CO2 diffusion, CO₂ mechanical mixing, non-equilibrium simulation
Procedia PDF Downloads 1842911 Use of Fine Marble in Concrete Based On Sand Dune
Authors: M. Belachia, R. Djebien
Abstract:
In the development that our country has in all areas and especially in the field of Building and Construction, the development of new building materials is a current problem where researchers are trying to find the right materials for each region and returning cheapest countries. Enhancement of crushed sand and sand dunes and reuse of waste as additions in concrete can help to overcome the deficit in aggregates. This work focuses on the development of concrete made from sand, knowing that our country has huge potential in sand dune. This study is complemented by a review of the possibility of using certain recycled wastes in concrete sand, including the effect of fines (marble powders) on the rheological and mechanical properties of concrete and sand to the outcome optimal formulation. After the characterization phase of basic materials, we proceeded to carry out the experimental program was to search the optimum characteristics by adding different percentages of fines. The aim is to show that the possibility of using local materials (sand dune) for the manufacture of concrete and reuse of waste (marble powders) in the implementation of concrete.Keywords: sand dune, mechanical properties, rheological properties, fine marble
Procedia PDF Downloads 4702910 Recycling of Post-Industrial Cotton Wastes: Quality and Rotor Spinning of Reclaimed Fibers
Authors: Béchir Wanassi, Béchir Azzouz, Taher Halimi, Mohamed Ben Hassen
Abstract:
Mechanical recycling of post-industrial cotton yarn wastes, as well as the effects of passage number on the properties of reclaimed fibers, have been investigated. A new Modified Fiber Quality Index (MFQI) and Spinning Consistency Index (MSCI) for the characterization of the quality are presented. This index gives the real potential of spinnability according to its physical properties. The best quality of reclaimed fibers (after 7th passage) was used to produce rotor yarns. 100% recycling cotton yarns were produced in open-end spinning system with different rotor speed (i.e. 65000, 70000, and 80000 rpm), opening roller speed (i.e. 7700, 8200, and 8700 rpm) and twist factor (i.e. 137, 165, and 183). The effects of spinning parameters were investigated to evaluate a 100% recycling cotton yarns quality (TQI, hairiness, thin places, and thick places) using DOE method.Keywords: cotton wastes, DOE, mechanical recycling, rotor spinning
Procedia PDF Downloads 3102909 Improving the Dimensional Stability of Bamboo Woven Strand Board
Authors: Gulelat Gatew
Abstract:
Bamboo Woven Strand Board (WSB) products are manufactured from Ethiopia highland bamboo (Yushania alpina) as a multiple layer mat structure for enhanced mechanical performance. Hence, it shows similar mechanical properties as tropical hardwood products. WSB, therefore, constitutes a sustainable alternative to tropical hardwood products. The resin and wax ratio had a great influence on the determinants properties of the product quality such as internal bonding, water absorption, thickness swelling, bending and stiffness properties. Among these properties, because of the hygroscopic nature of the bamboo, thickness swelling and water absorption are important performances of WSB for using in construction and outdoor facilities. When WSB is exposed to water or moist environment, they tend to swell and absorb water in all directions. The degree of swelling and water absorption depends on the type of resin used, resin formulation, resin ratio, wax type and ratio. The objective of this research is investigating effects of phenol formaldehyde and wax on thickness swelling and water absorption behavior on bamboo WSB for construction and outdoor facilities. The experiments were conducted to measure the effects of wax and phenol-formaldehyde resin content on WSB thickness swelling and water absorption which leads to investigate its effect on dimension stability and mechanical properties. Both experiments were performed with 2–hour and 24-hour water immersion test and a significant set of data regarding the influence of such method parameters is also presented. The addition of up to 2% wax with 10% of phenol formaldehyde significantly reduced thickness swelling and water absorption of WSB which resulted in making it more hydrophobic and less susceptible to the influences of moisture in high humidity conditions compared to the panels without wax.Keywords: woven strand board (WSB), water absorption, thickness swelling, phenol formaldehyde resin
Procedia PDF Downloads 2152908 Model-Based Process Development for the Comparison of a Radial Riveting and Roller Burnishing Process in Mechanical Joining Technology
Authors: Tobias Beyer, Christoph Friedrich
Abstract:
Modern simulation methodology using finite element models is nowadays a recognized tool for product design/optimization. Likewise, manufacturing process design is increasingly becoming the focus of simulation methodology in order to enable sustainable results based on reduced real-life tests here as well. In this article, two process simulations -radial riveting and roller burnishing- used for mechanical joining of components are explained. In the first step, the required boundary conditions are developed and implemented in the respective simulation models. This is followed by process space validation. With the help of the validated models, the interdependencies of the input parameters are investigated and evaluated by means of sensitivity analyses. Limit case investigations are carried out and evaluated with the aid of the process simulations. Likewise, a comparison of the two joining methods to each other becomes possible.Keywords: FEM, model-based process development, process simulation, radial riveting, roller burnishing, sensitivity analysis
Procedia PDF Downloads 1142907 Design and Simulation of Variable Air Volume Air Conditioning System Based on Improved Sliding Mode Control
Authors: Abbas Anser, Ahmad Irfan
Abstract:
The main purpose of the VAV (Variable Air Volume) in Heating, Ventilation, and Air Conditioning (HVAC) system is to reduce energy consumption and make the buildings comfortable for the occupants. For better performance of the air conditioning system, different control techniques have been developed. In this paper, an Improved Sliding Mode Control (ISMC), based on Power Rate Exponential Reaching Law (PRERL), has been implemented on a VAV air conditioning system. Through the proposed technique, fast response and robustness have been achieved. To verify the efficacy of ISMC, a comparison of the suggested control technique has been made with Exponential Reaching Law (ERL) based SMC. And secondly, chattering, which is unfavorable as it deteriorates the mechanical parts of the air conditioning system by the continuous movement of the mechanical parts and consequently it increases the energy loss in the air conditioning system, has been alleviated. MATLAB/SIMULINK results show the effectiveness of the utilized scheme, which ensures the enhancement of the energy efficiency of the VAV air conditioning system.Keywords: PID, SMC, HVAC, PRERL, feedback linearization, VAV, chattering
Procedia PDF Downloads 1272906 Clay Hydrogel Nanocomposite for Controlled Small Molecule Release
Authors: Xiaolin Li, Terence Turney, John Forsythe, Bryce Feltis, Paul Wright, Vinh Truong, Will Gates
Abstract:
Clay-hydrogel nanocomposites have attracted great attention recently, mainly because of their enhanced mechanical properties and ease of fabrication. Moreover, the unique platelet structure of clay nanoparticles enables the incorporation of bioactive molecules, such as proteins or drugs, through ion exchange, adsorption or intercalation. This study seeks to improve the mechanical and rheological properties of a novel hydrogel system, copolymerized from a tetrapodal polyethylene glycol (PEG) thiol and a linear, triblock PEG-PPG-PEG (PPG: polypropylene glycol) α,ω-bispropynoate polymer, with the simultaneous incorporation of various amounts of Na-saturated, montmorillonite clay (MMT) platelets (av. lateral dimension = 200 nm), to form a bioactive three-dimensional network. Although the parent hydrogel has controlled swelling ability and its PEG groups have good affinity for the clay platelets, it suffers from poor mechanical stability and is currently unsuitable for potential applications. Nanocomposite hydrogels containing 4wt% MMT showed a twelve-fold enhancement in compressive strength, reaching 0.75MPa, and also a three-fold acceleration in gelation time, when compared with the parent hydrogel. Interestingly, clay nanoplatelet incorporation into the hydrogel slowed down the rate of its dehydration in air. Preliminary results showed that protein binding by the MMT varied with the nature of the protein, as horseradish peroxidase (HRP) was more strongly bound than bovine serum albumin. The HRP was no longer active when bound, presumably as a result of extensive structural refolding. Further work is being undertaken to assess protein binding behaviour within the nanocomposite hydrogel for potential diabetic wound healing applications.Keywords: hydrogel, nanocomposite, small molecule, wound healing
Procedia PDF Downloads 2722905 Influence of Natural Rubber on the Frictional and Mechanical Behavior of the Composite Brake Pad Materials
Authors: H. Yanar, G. Purcek, H. H. Ayar
Abstract:
The ingredients of composite materials used for the production of composite brake pads play an important role in terms of safety braking performance of automobiles and trains. Therefore, the ingredients must be selected carefully and used in appropriate ratios in the matrix structure of the brake pad materials. In the present study, a non-asbestos organic composite brake pad materials containing binder resin, space fillers, solid lubricants, and friction modifier was developed, and its fillers content was optimized by adding natural rubber with different rate into the specified matrix structure in order to achieve the best combination of tribo-performance and mechanical properties. For this purpose, four compositions with different rubber content (2.5wt.%, 5.0wt.%, 7.5wt.% and 10wt.%) were prepared and then test samples with the diameter of 20 mm and length of 15 mm were produced to evaluate the friction and mechanical behaviors of the mixture. The friction and wear tests were performed using a pin-on-disc type test rig which was designed according to NF-F-11-292 French standard. All test samples were subjected to two different types of friction tests defined as periodic braking and continuous braking (also known as fade test). In this way, the coefficient of friction (CoF) of composite sample with different rubber content were determined as a function of number of braking cycle and temperature of the disc surface. The results demonstrated that addition of rubber into the matrix structure of the composite caused a significant change in the CoF. Average CoF of the composite samples increased linearly with increasing rubber content into the matrix. While the average CoF was 0.19 for the rubber-free composite, the composite sample containing 20wt.% rubber had the maximum CoF of about 0.24. Although the CoF of composite sample increased, the amount of specific wear rate decreased with increasing rubber content into the matrix. On the other hand, it was observed that the CoF decreased with increasing temperature generated in-between sample and disk depending on the increasing rubber content. While the CoF decreased to the minimum value of 0.15 at 400 °C for the rubber-free composite sample, the sample having the maximum rubber content of 10wt.% exhibited the lowest one of 0.09 at the same temperature. Addition of rubber into the matrix structure decreased the hardness and strength of the samples. It was concluded from the results that the composite matrix with 5 wt.% rubber had the best composition regarding the performance parameters such as required frictional and mechanical behavior. This composition has the average CoF of 0.21, specific wear rate of 0.024 cm³/MJ and hardness value of 63 HRX.Keywords: brake pad composite, friction and wear, rubber, friction materials
Procedia PDF Downloads 1422904 Application of Biomass Ashes as Supplementary Cementitious Materials in the Cement Mortar Production
Authors: S. Šupić, M. Malešev, V. Radonjanin, M. Radeka, M. Laban
Abstract:
The production of low cost and environmentally friendly products represents an important step for developing countries. Biomass is one of the largest renewable energy sources, and Serbia is among the top European countries in terms of the amount of available and unused biomass. Substituting cement with the ashes obtained by the combustion of biomass would reduce the negative impact of concrete industry on the environment and would provide a waste valorization by the reuse of this type of by-product in mortars and concretes manufacture. The study contains data on physical properties, chemical characteristics and pozzolanic properties of obtained biomass ashes: wheat straw ash and mixture of wheat and soya straw ash in Serbia, which were, later, used as supplementary cementitious materials in preparation of mortars. Experimental research of influence of biomass ashes on physical and mechanical properties of cement mortars was conducted. The results indicate that the biomass ashes can be successfully used in mortars as substitutes of cement without compromising their physical and mechanical performances.Keywords: biomass, ash, cementitious material, mortar
Procedia PDF Downloads 1862903 Thermomechanical Processing of a CuZnAl Shape-Memory Alloy
Authors: Pedro Henrique Alves Martins, Paulo Guilherme Ferreira De Siqueira, Franco De Castro Bubani, Maria Teresa Paulino Aguilar, Paulo Roberto Cetlin
Abstract:
Cu-base shape-memory alloys (CuZnAl, CuAlNi, CuAlBe, etc.) are promising engineering materials for several unconventional devices, such as sensors, actuators, and mechanical vibration dampers. Brittleness is one of the factors that limit the commercial use of these alloys, as it makes thermomechanical processing difficult. In this work, a method for the hot extrusion of a 75.50% Cu, 16,74% Zn, 7,76% Al (weight %) alloy is presented. The effects of the thermomechanical processing in the microstructure and the pseudoelastic behavior of the alloy are assessed by optical metallography, compression and hardness tests. Results show that hot extrusion is a suitable method to obtain severe cross-section reductions in the CuZnAl shape-memory alloy studied. The alloy maintained its pseudoelastic effect after the extrusion and the modifications in the mechanical behavior caused by precipitation during hot extrusion can be minimized by a suitable precipitate dissolution heat treatment.Keywords: hot extrusion, pseudoelastic, shape-memory alloy, thermomechanical processing
Procedia PDF Downloads 3782902 Microwave Sintering and Its Application on Cemented Carbides
Authors: Rumman M. D. Raihanuzzaman, Lee Chang Chuan, Zonghan Xie, Reza Ghomashchi
Abstract:
Cemented carbides, owing to their excellent mechanical properties, have been of immense interest in the field of hard materials for the past few decades. A number of processing techniques have been developed to obtain high quality carbide tools, with a wide range of grain size depending on the application and requirements. Microwave sintering is one of the heating processes, which has been used on a wide range of materials including ceramics. The complete understanding of microwave sintering and its contribution towards control of grain growth and on deformation of the resulting carbide materials needs further studies and attention. In addition, the effect of binder materials and their behaviour as a function of microwave sintering is another area that requires clear understanding. This review aims to focus on microwave sintering, providing information of how the process works and what type of materials it is best suited for. In addition, a closer look at some microwave sintered Tungsten Carbide-Cobalt samples will be taken and discussed, addressing some of the key issues and challenges faced in the research.Keywords: cemented carbides, consolidation, microwave sintering, mechanical properties
Procedia PDF Downloads 6022901 Characterization of Aluminium Alloy 6063 Hybrid Metal Matrix Composite by Using Stir Casting Method
Authors: Balwinder Singh
Abstract:
The present research is a paper on the characterization of aluminum alloy-6063 hybrid metal matrix composites using three different reinforcement materials (SiC, red mud, and fly ash) through stir casting method. The red mud was used in solid form, and particle size range varies between 103-150 µm. During this investigation, fly ash is received from Guru Nanak Dev Thermal Plant (GNDTP), Bathinda. The study has been done by using Taguchi’s L9 orthogonal array by taking fraction wt.% (SiC 5%, 7.5%, and 10% and Red Mud and Fly Ash 2%, 4%, and 6%) as input parameters with their respective levels. The study of the mechanical properties (tensile strength, impact strength, and microhardness) has been done by using Analysis of Variance (ANOVA) with the help of MINITAB 17 software. It is revealed that silicon carbide is the most significant parameter followed by red mud and fly ash affecting the mechanical properties, respectively. The fractured surface morphology of the composites using Field Emission Scanning Electron Microscope (FESEM) shows that there is a good mixing of reinforcement particles in the matrix. Energy-dispersive X-ray spectroscopy (EDS) was performed to know the presence of the phases of the reinforced material.Keywords: reinforcement, silicon carbide, fly ash, red mud
Procedia PDF Downloads 1622900 Study on Constitutive Model of Particle Filling Material Considering Volume Expansion
Authors: Xu Jinsheng, Tong Xin, Zheng Jian, Zhou Changsheng
Abstract:
The NEPE (nitrate ester plasticized polyether) propellant is a kind of particle filling material with relatively high filling fraction. The experimental results show that the microcracks, microvoids and dewetting can cause the stress softening of the material. In this paper, a series of mechanical testing in inclusion with CCD technique were conducted to analyze the evolution of internal defects of propellant. The volume expansion function of the particle filling material was established by measuring of longitudinal and transverse strain with optical deformation measurement system. By analyzing the defects and internal damages of the material, a visco-hyperelastic constitutive model based on free energy theory was proposed incorporating damage function. The proposed constitutive model could accurately predict the mechanical properties of uniaxial tensile tests and tensile-relaxation tests.Keywords: dewetting, constitutive model, uniaxial tensile tests, visco-hyperelastic, nonlinear
Procedia PDF Downloads 3072899 Mechanical Properties of Organic Polymer and Exfoliated Graphite Reinforced Bacteria Cellulose Paper
Authors: T. Thompson, E. F. Zegeye
Abstract:
Bacterial Cellulose (BC) is a structural organic compound produced in the anaerobic process. This material can be a useful eco-friendly substitute for commercial textiles that are used in industries today. BC is easily and sustainably produced and has the capabilities to be used as a replacement in textiles. However, BC is extremely fragile when it completely dries. This research was conducted to improve the mechanical properties of the BC by reinforcing with an organic polymer and exfoliated graphite (EG). The BC films were grown over a period of weeks in a green tea and kombucha solution at 30 °C, then cleaned and added to an enhancing solution. The enhancing solutions were a mixture of 2.5 wt% polymer and 2.5 wt% latex solution, a 5 wt% polymer solution, a 0.20 wt% graphite solution and were each allowed to sit in a furnace for 48 h at 50 °C. Tensile test samples were prepared and tested until fracture at a strain rate of 8 mm/min. From the research with the addition of a 5 wt% polymer solution, the flexibility of the BC has significantly improved with the maximum strain significantly larger than that of the base sample. The addition of EG has also increased the modulus of elasticity of the BC by about 25%.Keywords: bacterial cellulose, exfoliated graphite, kombucha scoby, tensile test
Procedia PDF Downloads 1212898 Characterization of Himalayan Phyllite with Reference to Foliation Planes
Authors: Divyanshoo Singh, Hemant Kumar Singh, Kumar Nilankar
Abstract:
Major engineering constructions and foundations (e.g., dams, tunnels, bridges, underground caverns, etc.) in and around the Himalayan region of Uttarakhand are not only confined within hard and crystalline rocks but also stretched within weak and anisotropic rocks. While constructing within such anisotropic rocks, engineers more often encounter geotechnical complications such as structural instability, slope failure, and excessive deformation. These severities/complexities arise mainly due to inherent anisotropy such as layering/foliations, preferred mineral orientations, and geo-mechanical anisotropy present within rocks and vary when measured in different directions. Of all the inherent anisotropy present within the rocks, major geotechnical complexities mainly arise due to the inappropriate orientation of weak planes (bedding/foliation). Thus, Orientations of such weak planes highly affect the fracture patterns, failure mechanism, and strength of rocks. This has led to an improved understanding of the physico-mechanical behavior of anisotropic rocks with different orientations of weak planes. Therefore, in this study, block samples of phyllite belonging to the Chandpur Group of Lesser Himalaya were collected from the Srinagar area of Uttarakhand, India, to investigate the effect of foliation angles on physico-mechanical properties of the rock. Further, collected block samples were core drilled of diameter 50 mm at different foliation angles, β (angle between foliation plane and drilling direction), i.e., 0⁰, 30⁰, 60⁰, and 90⁰, respectively. Before the test, drilled core samples were oven-dried at 110⁰C to achieve uniformity. Physical and mechanical properties such as Seismic wave velocity, density, uniaxial compressive strength (UCS), point load strength (PLS), and Brazilian tensile strength (BTS) test were carried out on prepared core specimens. The results indicate that seismic wave velocities (P-wave and S-wave) decrease with increasing β angle. As the β angle increases, the number of foliation planes that the wave needs to pass through increases and thus causes the dissipation of wave energy with increasing β. Maximum strength for UCS, PLS, and BTS was found to be at β angle of 90⁰. However, minimum strength for UCS and BTS was found to be at β angle of 30⁰, which differs from PLS, where minimum strength was found at 0⁰ β angle. Furthermore, failure modes also correspond to the strength of the rock, showing along foliation and non-central failure as characteristics of low strength values, while multiple fractures and central failure as characteristics of high strength values. Thus, this study will provide a better understanding of the anisotropic features of phyllite for the purpose of major engineering construction and foundations within the Himalayan Region.Keywords: anisotropic rocks, foliation angle, Physico-mechanical properties, phyllite, Himalayan region
Procedia PDF Downloads 642897 Engineering Parameters and Classification of Marly Soils of Tabriz
Authors: Amirali Mahouti, Hooshang Katebi
Abstract:
Enlargement of Tabriz metropolis to the east and north-east caused urban construction to be built on Marl layers and because of increase in excavations depth, further information of this layer is inescapable. Looking at geotechnical investigation shows there is not enough information about Tabriz Marl and this soil has been classified only by color. Tabriz Marl is lacustrine carbonate sediment outcrops, surrounds eastern, northern and southern region of city in the East Azerbaijan Province of Iran and is known as bed rock of city under alluvium sediments. This investigation aims to characterize geotechnical parameters of this soil to identify and set it in classification system of carbonated soils. For this purpose, specimens obtained from 80 locations over the city and subjected to physical and mechanical tests, such as Atterberg limits, density, moisture content, unconfined compression, direct shear and consolidation. CaCO3 content, organic content, PH, XRD, XRF, TGA and geophysical downhole tests also have been done on some of them.Keywords: carbonated soils, classification of soils, mineralogy, physical and mechanical tests for Marls, Tabriz Marl
Procedia PDF Downloads 3222896 Modal Dynamic Analysis of a Mechanism with Deformable Elements from an Oil Pump Unit Structure
Authors: N. Dumitru, S. Dumitru, C. Copilusi, N. Ploscaru
Abstract:
On this research, experimental analyses have been performed in order to determine the oil pump mechanism dynamics and stability from an oil unit mechanical structure. The experimental tests were focused on the vibrations which occur inside of the rod element during functionality of the oil pump unit. The oil pump mechanism dynamic parameters were measured and also determined through numerical computations. Entire research is based on the oil pump unit mechanical system virtual prototyping. For a complete analysis of the mechanism, the frequency dynamic response was identified, mainly for the mechanism driven element, based on two methods: processing and virtual simulations with MSC Adams aid and experimental analysis. In fact, through this research, a complete methodology is presented where numerical simulations of a mechanism with deformed elements are developed on a dynamic mode and these can be correlated with experimental tests.Keywords: modal dynamic analysis, oil pump, vibrations, flexible elements, frequency response
Procedia PDF Downloads 3222895 High Pressure Torsion Deformation Behavior of a Low-SFE FCC Ternary Medium Entropy Alloy
Authors: Saumya R. Jha, Krishanu Biswas, Nilesh P. Gurao
Abstract:
Several recent investigations have revealed medium entropy alloys exhibiting better mechanical properties than their high entropy counterparts. This clearly establishes that although a higher entropy plays a vital role in stabilization of particular phase over complex intermetallic phases, configurational entropy is not the primary factor responsible for the high inherent strengthening in these systems. Above and beyond a high contribution from friction stresses and solid solution strengthening, strain hardening is an important contributor to the strengthening in these systems. In this regard, researchers have developed severe plastic deformation (SPD) techniques like High Pressure Torsion (HPT) to incorporate very high shear strain in the material, thereby leading to ultrafine grained (UFG) microstructures, which cause manifold increase in the strength. The presented work demonstrates a meticulous study of the variation in mechanical properties at different radial displacements from the center of HPT tested equiatomic ternary FeMnNi synthesized by casting route, which is a low stacking fault energy FCC alloy that shows significantly higher toughness than its high entropy counterparts like Cantor alloy. The gradient in grain sizes along the radial direction of these specimens has been modeled using microstructure entropy for predicting the mechanical properties, which has also been validated by indentation tests. The dislocation density is computed by FEM simulations for varying strains and validated by analyzing synchrotron diffraction data. Thus, the proposed model can be utilized to predict the strengthening behavior of similar systems deformed by HPT subjected to varying loading conditions.Keywords: high pressure torsion, severe plastic deformation, configurational entropy, dislocation density, FEM simulation
Procedia PDF Downloads 1562894 Investigation of Mechanical and Rheological Properties of Poly (trimethylene terephthalate) (PTT)/Polyethylene Blend Using Carboxylate and Ionomer as Compatibilizers
Authors: Wuttikorn Chayapanja, Sutep Charoenpongpool, Manit Nithitanakul, Brian P. Grady
Abstract:
Poly (trimethylene terephthalate) (PTT) is a linear aromatic polyester with good strength and stiffness, good surface appearance, low shrinkage and war page, and good dimensional stability. However, it has low impact strength which is a problem in automotive application. Thus, modification of PTT with the other polymer or polymer blending is a one way to develop a new material with excellence properties. In this study, PTT/High Density Polyethylene (HDPE) blends and PTT/Linear Low Density Polyethylene (LLDPE) blends with and without compatibilizers base on maleic anhydride grafted HDPE (MAH-g-HDPE) and ethylene-methacrylic acid neutralized sodium metal (Na-EMAA) were prepared by a twin-screw extruder. The blended samples with different ratios of polymers and compatibilizers were characterized on mechanical and rheological properties. Moreover, the phase morphology and dispersion size were studied by using SEM to give better understanding of the compatibility of the blends.Keywords: poly trimethylene terephthalate, polyethylene, compatibilizer, polymer blend
Procedia PDF Downloads 4192893 Synthesis and Characterization of Akermanite Nanoparticles (AMN) as a Bio-Ceramic Nano Powder by Sol-Gel Method for Use in Biomedical
Authors: Seyedmahdi Mousavihashemi
Abstract:
Natural Akermanite (NAM) has been successfully prepared by a modified sol-gel method. Optimization in calcination temperature and mechanical ball milling resulted in a pure and nano-sized powder which characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared Spectroscopy (FT–IR). We hypothesized that nano-sized Akermanite (AM) would mimic more efficiently the nanocrystal structure and function of natural bone apatite, owing to the higher surface area, compare to conventional micron-size Akermanite (AM). Accordingly, we used the unique advantage of nanotechnology to improve novel nano akermanite particles as a potential candidate for bone tissue regeneration whether as a per implant filling powder or in combination with other biomaterials as a composite scaffold. Pure Akermanite (PAM) powders were successfully obtained via a simple sol-gel method followed by calcination at 1250 °C. Mechanical grinding in a ceramic ball mill for 7 hours resulted in akermanite (AM) nanoparticles in the range of about 30- 45 nm.Keywords: biomedical engineering, nano composite, SEM, TEM
Procedia PDF Downloads 2422892 Characterization of Biodegradable Polycaprolactone Containing Titanium Dioxide Micro and Nanoparticles
Authors: Emi Govorčin Bajsića, Vesna Ocelić Bulatović, Miroslav Slouf, Ana Šitum
Abstract:
Composites based on a biodegradable polycaprolactone (PCL) containing 0.5, 1.0 and 2.0 wt % of titanium dioxide (TiO2) micro and nanoparticles were prepared by melt mixing and the effect of filler type and contents on the thermal properties, dynamic-mechanical behaviour and morphology were investigated. Measurements of storage modulus and loss modulus by dynamic mechanical analysis (DMA) showed better results for microfilled PCL/TiO2 composites than nanofilled composites, with the same filler content. DSC analysis showed that the Tg and Tc of micro and nanocomposites were slightly lower than those of neat PCL. The crystallinity of the PCL increased with the addition of TiO2 micro and nanoparticles; however, the c for the PCL was unchanged with micro TiO2 content. The thermal stability of PCL/TiO2 composites were characterized using thermogravimetric analysis (TGA). The initial weight loss (5 wt %) occurs at slightly higher temperature with micro and nano TiO2 addition and with increasing TiO2 content.Keywords: polycaprolactone, titanium dioxide, thermal properties, morphology
Procedia PDF Downloads 3652891 Optimizing Volume Fraction Variation Profile of Bidirectional Functionally Graded Circular Plate under Mechanical Loading to Minimize Its Stresses
Authors: Javad Jamali Khouei, Mohammadreza Khoshravan
Abstract:
Considering that application of functionally graded material is increasing in most industries, it seems necessary to present a methodology for designing optimal profile of structures such as plate under mechanical loading which is highly consumed in industries. Therefore, volume fraction variation profile of functionally graded circular plate which has been considered two-directional is optimized so that stress of structure is minimized. For this purpose, equilibrium equations of two-directional functionally graded circular plate are solved by applying semi analytical-numerical method under mechanical loading and support conditions. By solving equilibrium equations, deflections and stresses are obtained in terms of control variables of volume fraction variation profile. As a result, the problem formula can be defined as an optimization problem by aiming at minimization of critical von-mises stress under constraints of deflections, stress and a physical constraint relating to structure of material. Then, the related problem can be solved with help of one of the metaheuristic algorithms such as genetic algorithm. Results of optimization for the applied model under constraints and loadings and boundary conditions show that functionally graded plate should be graded only in radial direction and there is no need for volume fraction variation of the constituent particles in thickness direction. For validating results, optimal values of the obtained design variables are graphically evaluated.Keywords: two-directional functionally graded material, single objective optimization, semi analytical-numerical solution, genetic algorithm, graphical solution with contour
Procedia PDF Downloads 2842890 A Two-Dimensional Problem Micropolar Thermoelastic Medium under the Effect of Laser Irradiation and Distributed Sources
Authors: Devinder Singh, Rajneesh Kumar, Arvind Kumar
Abstract:
The present investigation deals with the deformation of micropolar generalized thermoelastic solid subjected to thermo-mechanical loading due to a thermal laser pulse. Laplace transform and Fourier transform techniques are used to solve the problem. Thermo-mechanical laser interactions are taken as distributed sources to describe the application of the approach. The closed form expressions of normal stress, tangential stress, coupled stress and temperature are obtained in the domain. Numerical inversion technique of Laplace transform and Fourier transform has been implied to obtain the resulting quantities in the physical domain after developing a computer program. The normal stress, tangential stress, coupled stress and temperature are depicted graphically to show the effect of relaxation times. Some particular cases of interest are deduced from the present investigation.Keywords: pulse laser, integral transform, thermoelastic, boundary value problem
Procedia PDF Downloads 6192889 Electro-Mechanical Response and Engineering Properties of Piezocomposite with Imperfect Interface
Authors: Rattanan Tippayaphalapholgul, Yasothorn Sapsathiarn
Abstract:
Composites of piezoelectric materials are widely use in practical applications such as nondestructive testing devices, smart adaptive structures and medical devices. A thorough understanding of coupled electro-elastic response and properties of piezocomposite are crucial for the development and design of piezoelectric composite materials used in advanced applications. The micromechanics analysis is employed in this paper to determine the response and engineering properties of the piezocomposite. A mechanical imperfect interface bonding between piezoelectric inclusion and polymer matrix is taken into consideration in the analysis. The micromechanics analysis is based on the Boundary Element Method (BEM) together with the periodic micro-field micromechanics theory. A selected set of numerical results is presented to investigate the influence of volume ratio and interface bonding condition on effective piezocomposite material coefficients and portray basic features of coupled electroelastic response within the domain of piezocomposite unit cell.Keywords: effective engineering properties, electroelastic response, imperfect interface, piezocomposite
Procedia PDF Downloads 2352888 Characterization of Biocomposites Based on Mussel Shell Wastes
Authors: Suheyla Kocaman, Gulnare Ahmetli, Alaaddin Cerit, Alize Yucel, Merve Gozukucuk
Abstract:
Shell wastes represent a considerable quantity of byproducts in the shellfish aquaculture. From the viewpoint of ecofriendly and economical disposal, it is highly desirable to convert these residues into high value-added products for industrial applications. So far, the utilization of shell wastes was confined at relatively lower levels, e.g. wastewater decontaminant, soil conditioner, fertilizer constituent, feed additive and liming agent. Shell wastes consist of calcium carbonate and organic matrices, with the former accounting for 95-99% by weight. Being the richest source of biogenic CaCO3, shell wastes are suitable to prepare high purity CaCO3 powders, which have been extensively applied in various industrial products, such as paper, rubber, paints and pharmaceuticals. Furthermore, the shell waste could be further processed to be the filler of polymer composites. This paper presents a study on the potential use of mussel shell waste as biofiller to produce the composite materials with different epoxy matrices, such as bisphenol-A type, CTBN modified and polyurethane modified epoxy resins. Morphology and mechanical properties of shell particles reinforced epoxy composites were evaluated to assess the possibility of using it as a new material. The effects of shell particle content on the mechanical properties of the composites were investigated. It was shown that in all composites, the tensile strength and Young’s modulus values increase with the increase of mussel shell particles content from 10 wt% to 50 wt%, while the elongation at break decreased, compared to pure epoxy resin. The highest Young’s modulus values were determined for bisphenol-A type epoxy composites.Keywords: biocomposite, epoxy resin, mussel shell, mechanical properties
Procedia PDF Downloads 3162887 Synthesis, Characterization, and Physico–Chemical Properties of Nano Zinc Oxide and PVA Composites
Authors: S. H. Rashmi, G. M. Madhu, A. A. Kittur, R. Suresh
Abstract:
Polymer nanocomposites represent a new class of materials in which nanomaterials act as the reinforcing material in composites, wherein small additions of nanomaterials lead to large enhancements in thermal, optical, and mechanical properties. A boost in these properties is due to the large interfacial area per unit volume or weight of the nanoparticles and the interactions between the particle and the polymer. Micro-sized particles used as reinforcing agents scatter light, thus, reducing light transmittance and optical clarity. Efficient nanoparticle dispersion combined with good polymer–particle interfacial adhesion eliminates scattering and allows the exciting possibility of developing strong yet transparent films, coatings and membranes. This paper aims at synthesizing zinc oxide nanoparticles which are reinforced in poly vinyl alcohol (PVA) polymer. The mechanical properties showed that the tensile strength of the PVA nanocomposites increases with the increase in the amount of nanoparticles.Keywords: glutaraldehyde, polymer nanocomposites, poly vinyl alcohol, zinc oxide
Procedia PDF Downloads 300