Search results for: lumped parameter method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20335

Search results for: lumped parameter method

19375 Maximization of Lifetime for Wireless Sensor Networks Based on Energy Efficient Clustering Algorithm

Authors: Frodouard Minani

Abstract:

Since last decade, wireless sensor networks (WSNs) have been used in many areas like health care, agriculture, defense, military, disaster hit areas and so on. Wireless Sensor Networks consist of a Base Station (BS) and more number of wireless sensors in order to monitor temperature, pressure, motion in different environment conditions. The key parameter that plays a major role in designing a protocol for Wireless Sensor Networks is energy efficiency which is a scarcest resource of sensor nodes and it determines the lifetime of sensor nodes. Maximizing sensor node’s lifetime is an important issue in the design of applications and protocols for Wireless Sensor Networks. Clustering sensor nodes mechanism is an effective topology control approach for helping to achieve the goal of this research. In this paper, the researcher presents an energy efficiency protocol to prolong the network lifetime based on Energy efficient clustering algorithm. The Low Energy Adaptive Clustering Hierarchy (LEACH) is a routing protocol for clusters which is used to lower the energy consumption and also to improve the lifetime of the Wireless Sensor Networks. Maximizing energy dissipation and network lifetime are important matters in the design of applications and protocols for wireless sensor networks. Proposed system is to maximize the lifetime of the Wireless Sensor Networks by choosing the farthest cluster head (CH) instead of the closest CH and forming the cluster by considering the following parameter metrics such as Node’s density, residual-energy and distance between clusters (inter-cluster distance). In this paper, comparisons between the proposed protocol and comparative protocols in different scenarios have been done and the simulation results showed that the proposed protocol performs well over other comparative protocols in various scenarios.

Keywords: base station, clustering algorithm, energy efficient, sensors, wireless sensor networks

Procedia PDF Downloads 144
19374 Flood Predicting in Karkheh River Basin Using Stochastic ARIMA Model

Authors: Karim Hamidi Machekposhti, Hossein Sedghi, Abdolrasoul Telvari, Hossein Babazadeh

Abstract:

Floods have huge environmental and economic impact. Therefore, flood prediction is given a lot of attention due to its importance. This study analysed the annual maximum streamflow (discharge) (AMS or AMD) of Karkheh River in Karkheh River Basin for flood predicting using ARIMA model. For this purpose, we use the Box-Jenkins approach, which contains four-stage method model identification, parameter estimation, diagnostic checking and forecasting (predicting). The main tool used in ARIMA modelling was the SAS and SPSS software. Model identification was done by visual inspection on the ACF and PACF. SAS software computed the model parameters using the ML, CLS and ULS methods. The diagnostic checking tests, AIC criterion, RACF graph and RPACF graphs, were used for selected model verification. In this study, the best ARIMA models for Annual Maximum Discharge (AMD) time series was (4,1,1) with their AIC value of 88.87. The RACF and RPACF showed residuals’ independence. To forecast AMD for 10 future years, this model showed the ability of the model to predict floods of the river under study in the Karkheh River Basin. Model accuracy was checked by comparing the predicted and observation series by using coefficient of determination (R2).

Keywords: time series modelling, stochastic processes, ARIMA model, Karkheh river

Procedia PDF Downloads 287
19373 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation using PINN

Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy

Abstract:

The physics informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary condition to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful to study various optical phenomena.

Keywords: deep learning, optical Soliton, neural network, partial differential equation

Procedia PDF Downloads 127
19372 Liquid-Liquid Plug Flow Characteristics in Microchannel with T-Junction

Authors: Anna Yagodnitsyna, Alexander Kovalev, Artur Bilsky

Abstract:

The efficiency of certain technological processes in two-phase microfluidics such as emulsion production, nanomaterial synthesis, nitration, extraction processes etc. depends on two-phase flow regimes in microchannels. For practical application in chemistry and biochemistry it is very important to predict the expected flow pattern for a large variety of fluids and channel geometries. In the case of immiscible liquids, the plug flow is a typical and optimal regime for chemical reactions and needs to be predicted by empirical data or correlations. In this work flow patterns of immiscible liquid-liquid flow in a rectangular microchannel with T-junction are investigated. Three liquid-liquid flow systems are considered, viz. kerosene – water, paraffin oil – water and castor oil – paraffin oil. Different flow patterns such as parallel flow, slug flow, plug flow, dispersed (droplet) flow, and rivulet flow are observed for different velocity ratios. New flow pattern of the parallel flow with steady wavy interface (serpentine flow) has been found. It is shown that flow pattern maps based on Weber numbers for different liquid-liquid systems do not match well. Weber number multiplied by Ohnesorge number is proposed as a parameter to generalize flow maps. Flow maps based on this parameter are superposed well for all liquid-liquid systems of this work and other experiments. Plug length and velocity are measured for the plug flow regime. When dispersed liquid wets channel walls plug length cannot be predicted by known empirical correlations. By means of particle tracking velocimetry technique instantaneous velocity fields in a plug flow regime were measured. Flow circulation inside plug was calculated using velocity data that can be useful for mass flux prediction in chemical reactions.

Keywords: flow patterns, hydrodynamics, liquid-liquid flow, microchannel

Procedia PDF Downloads 395
19371 Comparison of Unit Hydrograph Models to Simulate Flood Events at the Field Scale

Authors: Imene Skhakhfa, Lahbaci Ouerdachi

Abstract:

To ensure the overall coherence of simulated results, it is necessary to develop a robust validation process. In many applications, it is no longer content to calibrate and validate the model only in relation to the hydro graph measured at the outlet, but we try to better simulate the functioning of the watershed in space. Therefore the timing also performs compared to other variables such as water level measurements in intermediate stations or groundwater levels. As part of this work, we limit ourselves to modeling flood of short duration for which the process of evapotranspiration is negligible. The main parameters to identify the models are related to the method of unit hydro graph (HU). Three different models were tested: SNYDER, CLARK and SCS. These models differ in their mathematical structure and parameters to be calibrated while hydrological data are the same, the initial water content and precipitation. The models are compared on the basis of their performance in terms six objective criteria, three global criteria and three criteria representing volume, peak flow, and the mean square error. The first type of criteria gives more weight to strong events whereas the second considers all events to be of equal weight. The results show that the calibrated parameter values are dependent and also highlight the problems associated with the simulation of low flow events and intermittent precipitation.

Keywords: model calibration, intensity, runoff, hydrograph

Procedia PDF Downloads 486
19370 Forecasting Exchange Rate between Thai Baht and the US Dollar Using Time Series Analysis

Authors: Kunya Bowornchockchai

Abstract:

The objective of this research is to forecast the monthly exchange rate between Thai baht and the US dollar and to compare two forecasting methods. The methods are Box-Jenkins’ method and Holt’s method. Results show that the Box-Jenkins’ method is the most suitable method for the monthly Exchange Rate between Thai Baht and the US Dollar. The suitable forecasting model is ARIMA (1,1,0)  without constant and the forecasting equation is Yt = Yt-1 + 0.3691 (Yt-1 - Yt-2) When Yt  is the time series data at time t, respectively.

Keywords: Box–Jenkins method, Holt’s method, mean absolute percentage error (MAPE), exchange rate

Procedia PDF Downloads 254
19369 Evaluation of a Surrogate Based Method for Global Optimization

Authors: David Lindström

Abstract:

We evaluate the performance of a numerical method for global optimization of expensive functions. The method is using a response surface to guide the search for the global optimum. This metamodel could be based on radial basis functions, kriging, or a combination of different models. We discuss how to set the cycling parameters of the optimization method to get a balance between local and global search. We also discuss the eventual problem with Runge oscillations in the response surface.

Keywords: expensive function, infill sampling criterion, kriging, global optimization, response surface, Runge phenomenon

Procedia PDF Downloads 578
19368 Optimization Techniques for Microwave Structures

Authors: Malika Ourabia

Abstract:

A new and efficient method is presented for the analysis of arbitrarily shaped discontinuities. The discontinuities is characterized using a hybrid spectral/numerical technique. This structure presents an arbitrary number of ports, each one with different orientation and dimensions. This article presents a hybrid method based on multimode contour integral and mode matching techniques. The process is based on segmentation and dividing the structure into key building blocks. We use the multimode contour integral method to analyze the blocks including irregular shape discontinuities. Finally, the multimode scattering matrix of the whole structure can be found by cascading the blocks. Therefore, the new method is suitable for analysis of a wide range of waveguide problems. Therefore, the present approach can be applied easily to the analysis of any multiport junctions and cascade blocks. The accuracy of the method is validated comparing with results for several complex problems found in the literature. CPU times are also included to show the efficiency of the new method proposed.

Keywords: segmentation, s parameters, simulation, optimization

Procedia PDF Downloads 528
19367 Part Variation Simulations: An Industrial Case Study with an Experimental Validation

Authors: Narendra Akhadkar, Silvestre Cano, Christophe Gourru

Abstract:

Injection-molded parts are widely used in power system protection products. One of the biggest challenges in an injection molding process is shrinkage and warpage of the molded parts. All these geometrical variations may have an adverse effect on the quality of the product, functionality, cost, and time-to-market. The situation becomes more challenging in the case of intricate shapes and in mass production using multi-cavity tools. To control the effects of shrinkage and warpage, it is very important to correctly find out the input parameters that could affect the product performance. With the advances in the computer-aided engineering (CAE), different tools are available to simulate the injection molding process. For our case study, we used the MoldFlow insight tool. Our aim is to predict the spread of the functional dimensions and geometrical variations on the part due to variations in the input parameters such as material viscosity, packing pressure, mold temperature, melt temperature, and injection speed. The input parameters may vary during batch production or due to variations in the machine process settings. To perform the accurate product assembly variation simulation, the first step is to perform an individual part variation simulation to render realistic tolerance ranges. In this article, we present a method to simulate part variations coming from the input parameters variation during batch production. The method is based on computer simulations and experimental validation using the full factorial design of experiments (DoE). The robustness of the simulation model is verified through input parameter wise sensitivity analysis study performed using simulations and experiments; all the results show a very good correlation in the material flow direction. There exists a non-linear interaction between material and the input process variables. It is observed that the parameters such as packing pressure, material, and mold temperature play an important role in spread on functional dimensions and geometrical variations. This method will allow us in the future to develop accurate/realistic virtual prototypes based on trusted simulated process variation and, therefore, increase the product quality and potentially decrease the time to market.

Keywords: correlation, molding process, tolerance, sensitivity analysis, variation simulation

Procedia PDF Downloads 178
19366 Physical Fitness Factors of School Badminton Players in Kandy District

Authors: P. Cinthuja, J. A. O. A Jayakody, M. P. M. Perera, W. V. D. N. Weerarathna, S.E. Nirosha, D. K. D. C. Indeewari, T. Kaethieswaran, S. B. Adikari

Abstract:

The aims of the study was to measure physical fitness parameters of school badminton players in the Kandy district and determine the factors contributing to improve the physical fitness. Height, weight, handgrip was measured and sit and reach test, shoulder flexibility test, standing long jump test, 20m sprint speed test, agility T-test and 20 m multistage shuttle run test were performed on 183 school badminton players. Linear regression and correlation tests were performed using body mass index, practiced duration, age category, level of performance, additional sports involvement as independent variables and physical fitness parameter as dependent variables. Results: The present study showed that the upper body power, upper body strength and endurance and speed depended on body mass index both in male and female school badminton players. Speed, agility, flexibility of shoulders, explosive power of shoulder and aerobic endurance depended on the duration of practiced. Furthermore, involvement in additional sports other than badminton did not enhance the performance of badminton players. But it decreased player’s performance by decreasing agility and speed. Age had an effect on the upper body power, explosive power of lower limb, agility and speed both in both males and females. Conclusions: The performance of badminton players could be enhanced by maintaining a proper body mass index. Badminton specific parameter could be improved by increasing the duration of practiced. Involvement in other sports does not give an added advantage to badminton players to improve their performance.

Keywords: agility, Body Mass Index, endurance, badminton

Procedia PDF Downloads 425
19365 Analyzing Nonsimilar Convective Heat Transfer in Copper/Alumina Nanofluid with Magnetic Field and Thermal Radiations

Authors: Abdulmohsen Alruwaili

Abstract:

A partial differential system featuring momentum and energy balance is often used to describe simulations of flow initiation and thermal shifting in boundary layers. The buoyancy force in terms of temperature is factored in the momentum balance equation. Buoyancy force causes the flow quantity to fluctuate along the streamwise direction 𝑋; therefore, the problem can be, to our best knowledge, analyzed through nonsimilar modeling. In this analysis, a nonsimilar model is evolved for radiative mixed convection of a magnetized power-law nanoliquid flow on top of a vertical plate installed in a stationary fluid. The upward linear stretching initiated the flow in the vertical direction. Assuming nanofluids are composite of copper (Cu) and alumina (Al₂O₃) nanoparticles, the viscous dissipation in this case is negligible. The nonsimilar system is dealt with analytically by local nonsimilarity (LNS) via numerical algorithm bvp4c. Surface temperature and flow field are shown visually in relation to factors like mixed convection, magnetic field strength, nanoparticle volume fraction, radiation parameters, and Prandtl number. The repercussions of magnetic and mixed convection parameters on the rate of energy transfer and friction coefficient are represented in tabular forms. The results obtained are compared to the published literature. It is found that the existence of nanoparticles significantly improves the temperature profile of considered nanoliquid. It is also observed that when the estimates of the magnetic parameter increase, the velocity profile decreases. Enhancement in nanoparticle concentration and mixed convection parameter improves the velocity profile.

Keywords: nanofluid, power law model, mixed convection, thermal radiation

Procedia PDF Downloads 32
19364 Development of a Microfluidic Device for Low-Volume Sample Lysis

Authors: Abbas Ali Husseini, Ali Mohammad Yazdani, Fatemeh Ghadiri, Alper Şişman

Abstract:

We developed a microchip device that uses surface acoustic waves for rapid lysis of low level of cell samples. The device incorporates sharp-edge glass microparticles for improved performance. We optimized the lysis conditions for high efficiency and evaluated the device's feasibility for point-of-care applications. The microchip contains a 13-finger pair interdigital transducer with a 30-degree focused angle. It generates high-intensity acoustic beams that converge 6 mm away. The microchip operates at a frequency of 16 MHz, exciting Rayleigh waves with a 250 µm wavelength on the LiNbO3 substrate. Cell lysis occurs when Candida albicans cells and glass particles are placed within the focal area. The high-intensity surface acoustic waves induce centrifugal forces on the cells and glass particles, resulting in cell lysis through lateral forces from the sharp-edge glass particles. We conducted 42 pilot cell lysis experiments to optimize the surface acoustic wave-induced streaming. We varied electrical power, droplet volume, glass particle size, concentration, and lysis time. A regression machine-learning model determined the impact of each parameter on lysis efficiency. Based on these findings, we predicted optimal conditions: electrical signal of 2.5 W, sample volume of 20 µl, glass particle size below 10 µm, concentration of 0.2 µg, and a 5-minute lysis period. Downstream analysis successfully amplified a DNA target fragment directly from the lysate. The study presents an efficient microchip-based cell lysis method employing acoustic streaming and microparticle collisions within microdroplets. Integration of a surface acoustic wave-based lysis chip with an isothermal amplification method enables swift point-of-care applications.

Keywords: cell lysis, surface acoustic wave, micro-glass particle, droplet

Procedia PDF Downloads 79
19363 A Comparative Assessment of Information Value, Fuzzy Expert System Models for Landslide Susceptibility Mapping of Dharamshala and Surrounding, Himachal Pradesh, India

Authors: Kumari Sweta, Ajanta Goswami, Abhilasha Dixit

Abstract:

Landslide is a geomorphic process that plays an essential role in the evolution of the hill-slope and long-term landscape evolution. But its abrupt nature and the associated catastrophic forces of the process can have undesirable socio-economic impacts, like substantial economic losses, fatalities, ecosystem, geomorphologic and infrastructure disturbances. The estimated fatality rate is approximately 1person /100 sq. Km and the average economic loss is more than 550 crores/year in the Himalayan belt due to landslides. This study presents a comparative performance of a statistical bivariate method and a machine learning technique for landslide susceptibility mapping in and around Dharamshala, Himachal Pradesh. The final produced landslide susceptibility maps (LSMs) with better accuracy could be used for land-use planning to prevent future losses. Dharamshala, a part of North-western Himalaya, is one of the fastest-growing tourism hubs with a total population of 30,764 according to the 2011 census and is amongst one of the hundred Indian cities to be developed as a smart city under PM’s Smart Cities Mission. A total of 209 landslide locations were identified in using high-resolution linear imaging self-scanning (LISS IV) data. The thematic maps of parameters influencing landslide occurrence were generated using remote sensing and other ancillary data in the GIS environment. The landslide causative parameters used in the study are slope angle, slope aspect, elevation, curvature, topographic wetness index, relative relief, distance from lineaments, land use land cover, and geology. LSMs were prepared using information value (Info Val), and Fuzzy Expert System (FES) models. Info Val is a statistical bivariate method, in which information values were calculated as the ratio of the landslide pixels per factor class (Si/Ni) to the total landslide pixel per parameter (S/N). Using this information values all parameters were reclassified and then summed in GIS to obtain the landslide susceptibility index (LSI) map. The FES method is a machine learning technique based on ‘mean and neighbour’ strategy for the construction of fuzzifier (input) and defuzzifier (output) membership function (MF) structure, and the FR method is used for formulating if-then rules. Two types of membership structures were utilized for membership function Bell-Gaussian (BG) and Trapezoidal-Triangular (TT). LSI for BG and TT were obtained applying membership function and if-then rules in MATLAB. The final LSMs were spatially and statistically validated. The validation results showed that in terms of accuracy, Info Val (83.4%) is better than BG (83.0%) and TT (82.6%), whereas, in terms of spatial distribution, BG is best. Hence, considering both statistical and spatial accuracy, BG is the most accurate one.

Keywords: bivariate statistical techniques, BG and TT membership structure, fuzzy expert system, information value method, machine learning technique

Procedia PDF Downloads 127
19362 Optimization of Surface Roughness by Taguchi’s Method for Turning Process

Authors: Ashish Ankus Yerunkar, Ravi Terkar

Abstract:

Study aimed at evaluating the best process environment which could simultaneously satisfy requirements of both quality as well as productivity with special emphasis on reduction of cutting tool flank wear, because reduction in flank wear ensures increase in tool life. The predicted optimal setting ensured minimization of surface roughness. Purpose of this paper is focused on the analysis of optimum cutting conditions to get lowest surface roughness in turning SCM 440 alloy steel by Taguchi method. Design for the experiment was done using Taguchi method and 18 experiments were designed by this process and experiments conducted. The results are analyzed using ANOVA method. Taguchi method has depicted that the depth of cut has significant role to play in producing lower surface roughness followed by feed. The Cutting speed has lesser role on surface roughness from the tests. The vibrations of the machine tool, tool chattering are the other factors which may contribute poor surface roughness to the results and such factors ignored for analyses. The inferences by this method will be useful to other researches for similar type of study and may be vital for further research on tool vibrations, cutting forces etc.

Keywords: surface roughness (ra), machining, dry turning, taguchi method, turning process, anova method, mahr perthometer

Procedia PDF Downloads 367
19361 Simulation of GAG-Analogue Biomimetics for Intervertebral Disc Repair

Authors: Dafna Knani, Sarit S. Sivan

Abstract:

Aggrecan, one of the main components of the intervertebral disc (IVD), belongs to the family of proteoglycans (PGs) that are composed of glycosaminoglycan (GAG) chains covalently attached to a core protein. Its primary function is to maintain tissue hydration and hence disc height under the high loads imposed by muscle activity and body weight. Significant PG loss is one of the first indications of disc degeneration. A possible solution to recover disc functions is by injecting a synthetic hydrogel into the joint cavity, hence mimicking the role of PGs. One of the hydrogels proposed is GAG-analogues, based on sulfate-containing polymers, which are responsible for hydration in disc tissue. In the present work, we used molecular dynamics (MD) to study the effect of the hydrogel crosslinking (type and degree) on the swelling behavior of the suggested GAG-analogue biomimetics by calculation of cohesive energy density (CED), solubility parameter, enthalpy of mixing (ΔEmix) and the interactions between the molecules at the pure form and as a mixture with water. The simulation results showed that hydrophobicity plays an important role in the swelling of the hydrogel, as indicated by the linear correlation observed between solubility parameter values of the copolymers and crosslinker weight ratio (w/w); this correlation was found useful in predicting the amount of PEGDA needed for the desirable hydration behavior of (CS)₄-peptide. Enthalpy of mixing calculations showed that all the GAG analogs, (CS)₄ and (CS)₄-peptide are water-soluble; radial distribution function analysis revealed that they form interactions with water molecules, which is important for the hydration process. To conclude, our simulation results, beyond supporting the experimental data, can be used as a useful predictive tool in the future development of biomaterials, such as disc replacement.

Keywords: molecular dynamics, proteoglycans, enthalpy of mixing, swelling

Procedia PDF Downloads 75
19360 Permanent Magnet Machine Can Be a Vibration Sensor for Itself

Authors: M. Barański

Abstract:

The article presents a new vibration diagnostic method designed to (PM) machines with permanent magnets. Those devices are commonly used in small wind and water systems or vehicles drives. The author’s method is very innovative and unique. Specific structural properties of PM machines are used in this method - electromotive force (EMF) generated due to vibrations. There was analysed number of publications which describe vibration diagnostic methods and tests of electrical PM machines and there was no method found to determine the technical condition of such machine basing on their own signals. In this article, the method genesis, the similarity of machines with permanent magnet to vibration sensor and simulation and laboratory tests results will be discussed. The method of determination the technical condition of electrical machine with permanent magnets basing on its own signals is the subject of patent application No P.405669, and it is the main thesis of author’s doctoral dissertation.

Keywords: vibrations, generator, permanent magnet, traction drive, electrical vehicle

Procedia PDF Downloads 366
19359 Evaluation of River Meander Geometry Using Uniform Excess Energy Theory and Effects of Climate Change on River Meandering

Authors: Youssef I. Hafez

Abstract:

Since ancient history rivers have been the fostering and favorite place for people and civilizations to live and exist along river banks. However, due to floods and droughts, especially sever conditions due to global warming and climate change, river channels are completely evolving and moving in the lateral direction changing their plan form either through straightening of curved reaches (meander cut-off) or increasing meandering curvature. The lateral shift or shrink of a river channel affects severely the river banks and the flood plain with tremendous impact on the surrounding environment. Therefore, understanding the formation and the continual processes of river channel meandering is of paramount importance. So far, in spite of the huge number of publications about river-meandering, there has not been a satisfactory theory or approach that provides a clear explanation of the formation of river meanders and the mechanics of their associated geometries. In particular two parameters are often needed to describe meander geometry. The first one is a scale parameter such as the meander arc length. The second is a shape parameter such as the maximum angle a meander path makes with the channel mean down path direction. These two parameters, if known, can determine the meander path and geometry as for example when they are incorporated in the well known sine-generated curve. In this study, a uniform excess energy theory is used to illustrate the origin and mechanics of formation of river meandering. This theory advocates that the longitudinal imbalance between the valley and channel slopes (with the former is greater than the second) leads to formation of curved meander channel in order to reduce the excess energy through its expenditure as transverse energy loss. Two relations are developed based on this theory; one for the determination of river channel radius of curvature at the bend apex (shape parameter) and the other for the determination of river channel sinuosity. The sinuosity equation tested very well when applied to existing available field data. In addition, existing model data were used to develop a relation between the meander arc length and the Darcy-Weisback friction factor. Then, the meander wave length was determined from the equations of the arc length and the sinuosity. The developed equation compared well with available field data. Effects of the transverse bed slope and grain size on river channel sinuosity are addressed. In addition, the concept of maximum channel sinuosity is introduced in order to explain the changes of river channel plan form due to changes in flow discharges and sediment loads induced by global warming and climate changes.

Keywords: river channel meandering, sinuosity, radius of curvature, meander arc length, uniform excess energy theory, transverse energy loss, transverse bed slope, flow discharges, sediment loads, grain size, climate change, global warming

Procedia PDF Downloads 223
19358 Selection of Designs in Ordinal Regression Models under Linear Predictor Misspecification

Authors: Ishapathik Das

Abstract:

The purpose of this article is to find a method of comparing designs for ordinal regression models using quantile dispersion graphs in the presence of linear predictor misspecification. The true relationship between response variable and the corresponding control variables are usually unknown. Experimenter assumes certain form of the linear predictor of the ordinal regression models. The assumed form of the linear predictor may not be correct always. Thus, the maximum likelihood estimates (MLE) of the unknown parameters of the model may be biased due to misspecification of the linear predictor. In this article, the uncertainty in the linear predictor is represented by an unknown function. An algorithm is provided to estimate the unknown function at the design points where observations are available. The unknown function is estimated at all points in the design region using multivariate parametric kriging. The comparison of the designs are based on a scalar valued function of the mean squared error of prediction (MSEP) matrix, which incorporates both variance and bias of the prediction caused by the misspecification in the linear predictor. The designs are compared using quantile dispersion graphs approach. The graphs also visually depict the robustness of the designs on the changes in the parameter values. Numerical examples are presented to illustrate the proposed methodology.

Keywords: model misspecification, multivariate kriging, multivariate logistic link, ordinal response models, quantile dispersion graphs

Procedia PDF Downloads 393
19357 Application of a Modified Crank-Nicolson Method in Metallurgy

Authors: Kobamelo Mashaba

Abstract:

The molten slag has a high substantial temperatures range between 1723-1923, carrying a huge amount of useful energy for reducing energy consumption and CO₂ emissions under the heat recovery process. Therefore in this study, we investigated the performance of the modified crank Nicolson method for a delayed partial differential equation on the heat recovery of molten slag in the metallurgical mining environment. It was proved that the proposed method converges quickly compared to the classic method with the existence of a unique solution. It was inferred from numerical result that the proposed methodology is more viable and profitable for the mining industry.

Keywords: delayed partial differential equation, modified Crank-Nicolson Method, molten slag, heat recovery, parabolic equation

Procedia PDF Downloads 101
19356 Rule-Based Mamdani Type Fuzzy Modeling of Performances of Anode Side of Proton Exchange Membrane Fuel Cell Spin-Coated with Yttria-Stabilized Zirconia

Authors: Sadık Ata, Kevser Dincer

Abstract:

In this study, performance of proton exchange membrane (PEM) fuel cell was experimentally investigated and modelled with Rule-Based Mamdani-Type Fuzzy (RBMTF) modelling technique. Coating on the anode side of the PEM fuel cell was accomplished with the spin method by using Yttria-stabilized zirconia (YSZ). Input parameters voltage density (V/cm2), and current density (A/cm2), temperature (°C), time (s); output parameter power density (W/cm2) were described by RBMTF if-then rules. Numerical parameters of input and output variables were fuzzificated as linguistic variables: Very Very Low (L1), Very Low (L2), Low (L3), Negative Medium (L4), Medium (L5), Positive Medium (L6), High (L7), Very High (L8) and Very Very High (L9) linguistic classes. The comparison between experimental data and RBMTF is done by using statistical methods like absolute fraction of variance (R2). The actual values and RBMTF results indicated that RBMTF can be successfully used for the analysis of performance of PEM fuel cell.

Keywords: proton exchange membrane (PEM), fuel cell, rule-based Mamdani-type fuzzy (RMBTF) modeling, yttria-stabilized zirconia (YSZ)

Procedia PDF Downloads 362
19355 Implicit Off-Grid Block Method for Solving Fourth and Fifth Order Ordinary Differential Equations Directly

Authors: Olusola Ezekiel Abolarin, Gift E. Noah

Abstract:

This research work considered an innovative procedure to numerically approximate higher-order Initial value problems (IVP) of ordinary differential equations (ODE) using the Legendre polynomial as the basis function. The proposed method is a half-step, self-starting Block integrator employed to approximate fourth and fifth order IVPs without reduction to lower order. The method was developed through a collocation and interpolation approach. The basic properties of the method, such as convergence, consistency and stability, were well investigated. Several test problems were considered, and the results compared favorably with both exact solutions and other existing methods.

Keywords: initial value problem, ordinary differential equation, implicit off-grid block method, collocation, interpolation

Procedia PDF Downloads 84
19354 First Order Reversal Curve Method for Characterization of Magnetic Nanostructures

Authors: Bashara Want

Abstract:

One of the key factors limiting the performance of magnetic memory is that the coercivity has a distribution with finite width, and the reversal starts at the weakest link in the distribution. So one must first know the distribution of coercivities in order to learn how to reduce the width of distribution and increase the coercivity field to obtain a system with narrow width. First Order Reversal Curve (FORC) method characterizes a system with hysteresis via the distribution of local coercivities and, in addition, the local interaction field. The method is more versatile than usual conventional major hysteresis loops that give only the statistical behaviour of the magnetic system. The FORC method will be presented and discussed at the conference.

Keywords: magnetic materials, hysteresis, first-order reversal curve method, nanostructures

Procedia PDF Downloads 82
19353 Inverse Scattering of Two-Dimensional Objects Using an Enhancement Method

Authors: A.R. Eskandari, M.R. Eskandari

Abstract:

A 2D complete identification algorithm for dielectric and multiple objects immersed in air is presented. The employed technique consists of initially retrieving the shape and position of the scattering object using a linear sampling method and then determining the electric permittivity and conductivity of the scatterer using adjoint sensitivity analysis. This inversion algorithm results in high computational speed and efficiency, and it can be generalized for any scatterer structure. Also, this method is robust with respect to noise. The numerical results clearly show that this hybrid approach provides accurate reconstructions of various objects.

Keywords: inverse scattering, microwave imaging, two-dimensional objects, Linear Sampling Method (LSM)

Procedia PDF Downloads 387
19352 Evaluation of the Rheological Properties of Bituminous Binders Modified with Biochars Obtained from Various Biomasses by Pyrolysis Method

Authors: Muhammed Ertuğrul Çeloğlu, Mehmet Yılmaz

Abstract:

In this study, apricot seed shell, walnut shell, and sawdust were chosen as biomass sources. The materials were sorted by using a sieve No. 50 and the sieved materials were subjected to pyrolysis process at 400 °C, resulting in three different biochar products. The resulting biochar products were added to the bitumen at three different rates (5%, 10% and 15%), producing modified bitumen. Penetration, softening point, rotation viscometer and dynamic shear rheometer (DSR) tests were conducted on modified binders. Thus the modified bitumen, which was obtained by using additives at 3 different rates obtained from biochar produced at 400 °C temperatures of 3 different biomass sources were compared and the effects of pyrolysis temperature and additive rates were evaluated. As a result of the conducted tests, it was determined that the rheology of the pure bitumen improved significantly as a result of the modification of the bitumen with the biochar. Additionally, with biochar additive, it was determined that the rutting parameter values obtained from softening point, viscometer and DSR tests were increased while the values in terms of penetration and phase angle decreased. It was also observed that the most effective biomass is sawdust while the least effective was ground apricot seed shell.

Keywords: rheology, biomass, pyrolysis, biochar

Procedia PDF Downloads 178
19351 A New Reliability Allocation Method Based on Fuzzy Numbers

Authors: Peng Li, Chuanri Li, Tao Li

Abstract:

Reliability allocation is quite important during early design and development stages for a system to apportion its specified reliability goal to subsystems. This paper improves the reliability fuzzy allocation method and gives concrete processes on determining the factor set, the factor weight set, judgment set, and multi-grade fuzzy comprehensive evaluation. To determine the weight of factor set, the modified trapezoidal numbers are proposed to reduce errors caused by subjective factors. To decrease the fuzziness in the fuzzy division, an approximation method based on linear programming is employed. To compute the explicit values of fuzzy numbers, centroid method of defuzzification is considered. An example is provided to illustrate the application of the proposed reliability allocation method based on fuzzy arithmetic.

Keywords: reliability allocation, fuzzy arithmetic, allocation weight, linear programming

Procedia PDF Downloads 342
19350 Comparative Study between Classical P-Q Method and Modern Fuzzy Controller Method to Improve the Power Quality of an Electrical Network

Authors: A. Morsli, A. Tlemçani, N. Ould Cherchali, M. S. Boucherit

Abstract:

This article presents two methods for the compensation of harmonics generated by a nonlinear load. The first is the classic method P-Q. The second is the controller by modern method of artificial intelligence specifically fuzzy logic. Both methods are applied to an Active Power Filter shunt (APFs) based on a three-phase voltage converter at five levels NPC topology. In calculating the harmonic currents of reference, we use the algorithm P-Q and pulse generation, we use the intersective PWM. For flexibility and dynamics, we use fuzzy logic. The results give us clear that the rate of Harmonic Distortion issued by fuzzy logic is better than P-Q.

Keywords: fuzzy logic controller, P-Q method, pulse width modulation (PWM), shunt active power filter (sAPF), total harmonic distortion (THD)

Procedia PDF Downloads 548
19349 Probing Multiple Relaxation Process in Zr-Cu Base Alloy Using Mechanical Spectroscopy

Authors: A. P. Srivastava, D. Srivastava, D. J. Browne

Abstract:

Relaxation dynamics of Zr44Cu40Al8Ag8 bulk metallic glass (BMG) has been probed using dynamic mechanical analyzer. The BMG sample was casted in the form of a plate of dimension 55 mm x 40 mm x 3 mm using tilt casting technique. X-ray diffraction and transmission electron microscope have been used for the microstructural characterization of as-cast BMG. For the mechanical spectroscopy study, samples in the form of a bar of size 55 mm X 2 mm X 3 mm were machined from the BMG plate. The mechanical spectroscopy was performed on dynamic mechanical analyzer (DMA) by 50 mm 3-point bending method in a nitrogen atmosphere. It was observed that two glass transition process were competing in supercooled liquid region around temperature 390°C and 430°C. The supercooled liquid state was completely characterized using DMA and differential scanning calorimeter (DSC). In addition to the main α-relaxation process, presence of β relaxation process around temperature 360°C; below the glass transition temperature was also observed. The β relaxation process could be described by Arrhenius law with the activation energy of 160 kJ/mole. The volume of the flow unit associated with this relaxation process has been estimated. The results from DMA study has been used to characterize the shear transformation zone in terms of activation volume and size. High fragility parameter value of 34 and higher activation volume indicates that this alloy could show good plasticity in supercooled liquid region. The possible mechanism for the relaxation processes has been discussed.

Keywords: DMA, glass transition, metallic glass, thermoplastic forming

Procedia PDF Downloads 296
19348 Computer Simulation Approach in the 3D Printing Operations of Surimi Paste

Authors: Timilehin Martins Oyinloye, Won Byong Yoon

Abstract:

Simulation technology is being adopted in many industries, with research focusing on the development of new ways in which technology becomes embedded within production, services, and society in general. 3D printing (3DP) technology is fast developing in the food industry. However, the limited processability of high-performance material restricts the robustness of the process in some cases. Significantly, the printability of materials becomes the foundation for extrusion-based 3DP, with residual stress being a major challenge in the printing of complex geometry. In many situations, the trial-a-error method is being used to determine the optimum printing condition, which results in time and resource wastage. In this report, the analysis of 3 moisture levels for surimi paste was investigated for an optimum 3DP material and printing conditions by probing its rheology, flow characteristics in the nozzle, and post-deposition process using the finite element method (FEM) model. Rheological tests revealed that surimi pastes with 82% moisture are suitable for 3DP. According to the FEM model, decreasing the nozzle diameter from 1.2 mm to 0.6 mm, increased the die swell from 9.8% to 14.1%. The die swell ratio increased due to an increase in the pressure gradient (1.15107 Pa to 7.80107 Pa) at the nozzle exit. The nozzle diameter influenced the fluid properties, i.e., the shear rate, velocity, and pressure in the flow field, as well as the residual stress and the deformation of the printed sample, according to FEM simulation. The post-printing stability of the model was investigated using the additive layer manufacturing (ALM) model. The ALM simulation revealed that the residual stress and total deformation of the sample were dependent on the nozzle diameter. A small nozzle diameter (0.6 mm) resulted in a greater total deformation (0.023), particularly at the top part of the model, which eventually resulted in the sample collapsing. As the nozzle diameter increased, the accuracy of the model improved until the optimum nozzle size (1.0 mm). Validation with 3D-printed surimi products confirmed that the nozzle diameter was a key parameter affecting the geometry accuracy of 3DP of surimi paste.

Keywords: 3D printing, deformation analysis, die swell, numerical simulation, surimi paste

Procedia PDF Downloads 68
19347 Evaluation of Surface Roughness Condition Using App Roadroid

Authors: Diego de Almeida Pereira

Abstract:

The roughness index of a road is considered the most important parameter about the quality of the pavement, as it has a close relation with the comfort and safety of the road users. Such condition can be established by means of functional evaluation of pavement surface deviations, measured by the International Roughness Index (IRI), an index that came out of the international evaluation of pavements, coordinated by the World Bank, and currently owns, as an index of limit measure, for purposes of receiving roads in Brazil, the value of 2.7 m/km. This work make use of the e.IRI parameter, obtained by the Roadroid app. for smartphones which use Android operating system. The choice of such application is due to the practicality for the user interaction, as it possesses a data storage on a cloud of its own, and the support given to universities all around the world. Data has been collected for six months, once in each month. The studies begun in March 2018, season of precipitations that worsen the conditions of the roads, besides the opportunity to accompany the damage and the quality of the interventions performed. About 350 kilometers of sections of four federal highways were analyzed, BR-020, BR-040, BR-060 and BR-070 that connect the Federal District (area where Brasilia is located) and surroundings, chosen for their economic and tourist importance, been two of them of federal and two others of private exploitation. As well as much of the road network, the analyzed stretches are coated of Hot Mix Asphalt (HMA). Thus, this present research performs a contrastive discussion between comfort conditions and safety of the roads under private exploitation in which users pay a fee to the concessionaires so they could travel on a road that meet the minimum requirements for usage, and regarding the quality of offered service on the roads under Federal Government jurisdiction. And finally, the contrast of data collected by National Department of Transport Infrastructure – DNIT, by means of a laser perfilometer, with data achieved by Roadroid, checking the applicability, the practicality and cost-effective, considering the app limitations.

Keywords: roadroid, international roughness index, Brazilian roads, pavement

Procedia PDF Downloads 85
19346 Implicit Eulerian Fluid-Structure Interaction Method for the Modeling of Highly Deformable Elastic Membranes

Authors: Aymen Laadhari, Gábor Székely

Abstract:

This paper is concerned with the development of a fully implicit and purely Eulerian fluid-structure interaction method tailored for the modeling of the large deformations of elastic membranes in a surrounding Newtonian fluid. We consider a simplified model for the mechanical properties of the membrane, in which the surface strain energy depends on the membrane stretching. The fully Eulerian description is based on the advection of a modified surface tension tensor, and the deformations of the membrane are tracked using a level set strategy. The resulting nonlinear problem is solved by a Newton-Raphson method, featuring a quadratic convergence behavior. A monolithic solver is implemented, and we report several numerical experiments aimed at model validation and illustrating the accuracy of the presented method. We show that stability is maintained for significantly larger time steps.

Keywords: finite element method, implicit, level set, membrane, Newton method

Procedia PDF Downloads 304