Search results for: electro magnetic tractor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1692

Search results for: electro magnetic tractor

732 A Differential Detection Method for Chip-Scale Spin-Exchange Relaxation Free Atomic Magnetometer

Authors: Yi Zhang, Yuan Tian, Jiehua Chen, Sihong Gu

Abstract:

Chip-scale spin-exchange relaxation free (SERF) atomic magnetometer makes use of millimeter-scale vapor cells micro-fabricated by Micro-electromechanical Systems (MEMS) technique and SERF mechanism, resulting in the characteristics of high spatial resolution and high sensitivity. It is useful for biomagnetic imaging including magnetoencephalography and magnetocardiography. In a prevailing scheme, circularly polarized on-resonance laser beam is adapted for both pumping and probing the atomic polarization. And the magnetic-field-sensitive signal is extracted by transmission laser intensity enhancement as a result of atomic polarization increase on zero field level crossing resonance. The scheme is very suitable for integration, however, the laser amplitude modulation (AM) noise and laser frequency modulation to amplitude modulation (FM-AM) noise is superimposed on the photon shot noise reducing the signal to noise ratio (SNR). To suppress AM and FM-AM noise the paper puts forward a novel scheme which adopts circularly polarized on-resonance light pumping and linearly polarized frequency-detuning laser probing. The transmission beam is divided into transmission and reflection beams by a polarization analyzer, the angle between the analyzer's transmission polarization axis and frequency-detuning laser polarization direction is set to 45°. The magnetic-field-sensitive signal is extracted by polarization rotation enhancement of frequency-detuning laser which induces two beams intensity difference increase as the atomic polarization increases. Therefore, AM and FM-AM noise in two beams are common-mode and can be almost entirely canceled by differential detection. We have carried out an experiment to study our scheme. The experiment reveals that the noise in the differential signal is obviously smaller than that in each beam. The scheme is promising to be applied for developing more sensitive chip-scale magnetometer.

Keywords: atomic magnetometer, chip scale, differential detection, spin-exchange relaxation free

Procedia PDF Downloads 158
731 Laser Beam Bending via Lenses

Authors: Remzi Yildirim, Fatih. V. Çelebi, H. Haldun Göktaş, A. Behzat Şahin

Abstract:

This study is about a single component cylindrical structured lens with gradient curve which we used for bending laser beams. It operates under atmospheric conditions and bends the laser beam independent of temperature, pressure, polarity, polarization, magnetic field, electric field, radioactivity, and gravity. A single piece cylindrical lens that can bend laser beams is invented. Lenses are made of transparent, tinted or colored glasses and used for undermining or absorbing the energy of the laser beams.

Keywords: laser, bending, lens, light, nonlinear optics

Procedia PDF Downloads 469
730 Laser Light Bending via Lenses

Authors: Remzi Yildirim, Fatih V. Çelebi, H. Haldun Göktaş, A. Behzat Şahin

Abstract:

This study is about a single component cylindrical structured lens with gradient curve which we used for bending laser beams. It operates under atmospheric conditions and bends the laser beam independent of temperature, pressure, polarity, polarization, magnetic field, electric field, radioactivity, and gravity. A single piece cylindrical lens that can bend laser beams is invented. Lenses are made of transparent, tinted or colored glasses and used for undermining or absorbing the energy of the laser beams.

Keywords: laser, bending, lens, light, nonlinear optics

Procedia PDF Downloads 680
729 Detection of Concrete Reinforcement Damage Using Piezoelectric Materials: Analytical and Experimental Study

Authors: C. P. Providakis, G. M. Angeli, M. J. Favvata, N. A. Papadopoulos, C. E. Chalioris, C. G. Karayannis

Abstract:

An effort for the detection of damages in the reinforcement bars of reinforced concrete members using PZTs is presented. The damage can be the result of excessive elongation of the steel bar due to steel yielding or due to local steel corrosion. In both cases the damage is simulated by considering reduced diameter of the rebar along the damaged part of its length. An integration approach based on both electro-mechanical admittance methodology and guided wave propagation technique is used to evaluate the artificial damage on the examined longitudinal steel bar. Two actuator PZTs and a sensor PZT are considered to be bonded on the examined steel bar. The admittance of the Sensor PZT is calculated using COMSOL 3.4a. Fast Furrier Transformation for a better evaluation of the results is employed. An effort for the quantification of the damage detection using the root mean square deviation (RMSD) between the healthy condition and damage state of the sensor PZT is attempted. The numerical value of the RSMD yields a level for the difference between the healthy and the damaged admittance computation indicating this way the presence of damage in the structure. Experimental measurements are also presented.

Keywords: concrete reinforcement, damage detection, electromechanical admittance, experimental measurements, finite element method, guided waves, PZT

Procedia PDF Downloads 274
728 Elaboration of Polymethylene Blue on Conducting Glassy Substrate and Study of Its Optical, Electrical and Photoelectrochemical Characterization

Authors: Abdi Djamila, Haffar Hichem

Abstract:

The poly methylene bleu (PMB) has been successfully electro deposited on fluorine doped tin oxide (FTO) conducting glass as substrate. Its optical, electrical and photoelectrochemical characterizations have been carried out in order to show the performances of such polymer. The deposited film shows a good electric conductivity which is well confirmed by the low gap value determinated optically by UV–vis spectroscopy. Like all polymers the PMB presents an absorption difference in the visible range function of the polarization potential, it is expressed by the strong conjugation at oxidized state but is weakened with leucoform formation at reduced state. The electrochemical analysis of the films permit to show the cyclic voltamperogram with the anodic oxidation and cathodic reduction states of the polymer and to locate the corresponding energy levels HOMO and LUMO of this later. The electrochemical impedance spectroscopy permit to see the conductive character of such film and to calculate important parameters as Rtc and CPE. The study of the photoelectro activity of our polymer shows that under exposure to intermittent light source this later exhibit important photocurrents which enables it to be used in photo organic ells.

Keywords: polymethylene blue, electropolymerization, homo-lumo, photocurrents

Procedia PDF Downloads 259
727 Biodegradable Polymeric Vesicles Containing Magnetic Nanoparticles, Quantum Dots and Anticancer Drugs for Drug Delivery and Imaging

Authors: Fei Ye, Åsa Barrefelt, Manuchehr Abedi-Valugerdi, Khalid M. Abu-Salah, Salman A. Alrokayan, Mamoun Muhammed, Moustapha Hassan

Abstract:

With appropriate encapsulation in functional nanoparticles drugs are more stable in physiological environment and the kinetics of the drug can be more carefully controlled and monitored. Furthermore, targeted drug delivery can be developed to improve chemotherapy in cancer treatment, not only by enhancing intracellular uptake by target cells but also by reducing the adverse effects in non-target organs. Inorganic imaging agents, delivered together with anti-cancer drugs, enhance the local imaging contrast and provide precise diagnosis as well as evaluation of therapy efficacy. We have developed biodegradable polymeric vesicles as a nanocarrier system for multimodal bio-imaging and anticancer drug delivery. The poly (lactic-co-glycolic acid) PLGA) vesicles were fabricated by encapsulating inorganic imaging agents of superparamagnetic iron oxide nanoparticles (SPION), manganese-doped zinc sulfide (MN:ZnS) quantum dots (QDs) and the anticancer drug busulfan into PLGA nanoparticles via an emulsion-evaporation method. T2-weighted magnetic resonance imaging (MRI) of PLGA-SPION-Mn:ZnS phantoms exhibited enhanced negative contrast with r2 relaxivity of approximately 523 s-1 mM-1 Fe. Murine macrophage (J774A) cellular uptake of PLGA vesicles started fluorescence imaging at 2 h and reached maximum intensity at 24 h incubation. The drug delivery ability PLGA vesicles was demonstrated in vitro by release of busulfan. PLGA vesicles degradation was studied in vitro, showing that approximately 32% was degraded into lactic and glycolic acid over a period of 5 weeks. The biodistribution of PLGA vesicles was investigated in vivo by MRI in a rat model. Change of contrast in the liver could be visualized by MRI after 7 min and maximal signal loss detected after 4 h post-injection of PLGA vesicles. Histological studies showed that the presence of PLGA vesicles in organs was shifted from the lungs to the liver and spleen over time.

Keywords: biodegradable polymers, multifunctional nanoparticles, quantum dots, anticancer drugs

Procedia PDF Downloads 456
726 Quantum Information Scrambling and Quantum Chaos in Silicon-Based Fermi-Hubbard Quantum Dot Arrays

Authors: Nikolaos Petropoulos, Elena Blokhina, Andrii Sokolov, Andrii Semenov, Panagiotis Giounanlis, Xutong Wu, Dmytro Mishagli, Eugene Koskin, Robert Bogdan Staszewski, Dirk Leipold

Abstract:

We investigate entanglement and quantum information scrambling (QIS) by the example of a many-body Extended and spinless effective Fermi-Hubbard Model (EFHM and e-FHM, respectively) that describes a special type of quantum dot array provided by Equal1 labs silicon-based quantum computer. The concept of QIS is used in the framework of quantum information processing by quantum circuits and quantum channels. In general, QIS is manifest as the de-localization of quantum information over the entire quantum system; more compactly, information about the input cannot be obtained by local measurements of the output of the quantum system. In our work, we will first make an introduction to the concept of quantum information scrambling and its connection with the 4-point out-of-time-order (OTO) correlators. In order to have a quantitative measure of QIS we use the tripartite mutual information, in similar lines to previous works, that measures the mutual information between 4 different spacetime partitions of the system and study the Transverse Field Ising (TFI) model; this is used to quantify the dynamical spreading of quantum entanglement and information in the system. Then, we investigate scrambling in the quantum many-body Extended Hubbard Model with external magnetic field Bz and spin-spin coupling J for both uniform and thermal quantum channel inputs and show that it scrambles for specific external tuning parameters (e.g., tunneling amplitudes, on-site potentials, magnetic field). In addition, we compare different Hilbert space sizes (different number of qubits) and show the qualitative and quantitative differences in quantum scrambling as we increase the number of quantum degrees of freedom in the system. Moreover, we find a "scrambling phase transition" for a threshold temperature in the thermal case, that is, the temperature of the model that the channel starts to scramble quantum information. Finally, we make comparisons to the TFI model and highlight the key physical differences between the two systems and mention some future directions of research.

Keywords: condensed matter physics, quantum computing, quantum information theory, quantum physics

Procedia PDF Downloads 79
725 Gadolinium-Based Polymer Nanostructures as Magnetic Resonance Imaging Contrast Agents

Authors: Franca De Sarno, Alfonso Maria Ponsiglione, Enza Torino

Abstract:

Recent advances in diagnostic imaging technology have significantly contributed to a better understanding of specific changes associated with diseases progression. Among different imaging modalities, Magnetic Resonance Imaging (MRI) represents a noninvasive medical diagnostic technique, which shows low sensitivity and long acquisition time and it can discriminate between healthy and diseased tissues by providing 3D data. In order to improve the enhancement of MRI signals, some imaging exams require intravenous administration of contrast agents (CAs). Recently, emerging research reports a progressive deposition of these drugs, in particular, gadolinium-based contrast agents (GBCAs), in the body many years after multiple MRI scans. These discoveries confirm the need to have a biocompatible system able to boost a clinical relevant Gd-chelate. To this aim, several approaches based on engineered nanostructures have been proposed to overcome the common limitations of conventional CAs, such as the insufficient signal-to-noise ratios due to relaxivity and poor safety profile. In particular, nanocarriers, labeling or loading with CAs, capable of carrying high payloads of CAs have been developed. Currently, there’s no a comprehensive understanding of the thermodynamic contributions enable of boosting the efficacy of conventional CAs by using biopolymers matrix. Thus, considering the importance of MRI in diagnosing diseases, here it is reported a successful example of the next generation of these drugs where the commercial gadolinium chelate is incorporate into a biopolymer nanostructure, formed by cross-linked hyaluronic acid (HA), with improved relaxation properties. In addition, they are highlighted the basic principles ruling biopolymer-CA interactions in the perspective of their influence on the relaxometric properties of the CA by adopting a multidisciplinary experimental approach. On the basis of these discoveries, it is clear that the main point consists in increasing the rigidification of readily-available Gd-CAs within the biopolymer matrix by controlling the water dynamics, the physicochemical interactions, and the polymer conformations. In the end, the acquired knowledge about polymer-CA systems has been applied to develop of Gd-based HA nanoparticles with enhanced relaxometric properties.

Keywords: biopolymers, MRI, nanoparticles, contrast agent

Procedia PDF Downloads 139
724 Modeling and Analysis the Effects of Temperature and Pressure on the Gas-Crossover in Polymer Electrolyte Membrane Electrolyzer

Authors: Abdul Hadi Bin Abdol Rahim, Alhassan Salami Tijani

Abstract:

Hydrogen produced by means of polymer electrolyte membrane electrolyzer (PEME) is one of the most promising methods due to clean and renewable energy source. In the process, some energy loss due to mass transfer through a PEM is caused by diffusion, electro-osmotic drag, and the pressure difference between the cathode channel and anode channel. In PEME water molecules and ionic particles transferred between the electrodes from anode to cathode, Extensive mixing of the hydrogen and oxygen at anode channel due to gases cross-over must be avoided. In recent times the consciousness of safety issue in high pressure PEME where the oxygen mix with hydrogen at anode channel could create, explosive conditions have generated a lot of concern. In this paper, the steady state and simulation analysis of gases crossover in PEME on the temperature and pressure effect are presented. The simulations have been analysis in MATLAB based on the well-known Fick’s Law of molecular diffusion. The simulation results indicated that as temperature increases, there is a significant decrease in operating voltage.

Keywords: diffusion, gases crosover, steady state, Fick’s law

Procedia PDF Downloads 319
723 Changes in Kidney Tissue at Postmortem Magnetic Resonance Imaging Depending on the Time of Fetal Death

Authors: Uliana N. Tumanova, Viacheslav M. Lyapin, Vladimir G. Bychenko, Alexandr I. Shchegolev, Gennady T. Sukhikh

Abstract:

All cases of stillbirth undoubtedly subject to postmortem examination, since it is necessary to find out the cause of the stillbirths, as well as a forecast of future pregnancies and their outcomes. Determination of the time of death is an important issue which is addressed during the examination of the body of a stillborn. It is mean the period from the time of death until the birth of the fetus. The time for fetal deaths determination is based on the assessment of the severity of the processes of maceration. To study the possibilities of postmortem magnetic resonance imaging (MRI) for determining the time of intrauterine fetal death based on the evaluation of maceration in the kidney. We have conducted MRI morphological comparisons of 7 dead fetuses (18-21 gestational weeks) and 26 stillbirths (22-39 gestational weeks), and 15 bodies of died newborns at the age of 2 hours – 36 days. Postmortem MRI 3T was performed before the autopsy. The signal intensity of the kidney tissue (SIK), pleural fluid (SIF), external air (SIA) was determined on T1-WI and T2-WI. Macroscopic and histological signs of maceration severity and time of death were evaluated in the autopsy. Based on the results of the morphological study, the degree of maceration varied from 0 to 4. In 13 cases, the time of intrauterine death was up to 6 hours, in 2 cases - 6-12 hours, in 4 -12-24 hours, in 9 -2-3 days, in 3 -1 week, in 2 -1,5-2 weeks. At 15 dead newborns, signs of maceration were absent, naturally. Based on the data from SIK, SIF, SIA on MR-tomograms, we calculated the coefficient of MR-maceration (M). The calculation of the time of intrauterine death (MP-t) (hours) was performed by our formula: МR-t = 16,87+95,38×М²-75,32×М. A direct positive correlation of MR-t and autopsy data from the dead at the gestational ages 22-40 weeks, with a dead time, not more than 1 week, was received. The maceration at the antenatal fetal death is characterized by changes in T1-WI and T2-WI signals at postmortem MRI. The calculation of MP-t allows defining accurately the time of intrauterine death within one week at the stillbirths who died on 22-40 gestational weeks. Thus, our study convincingly demonstrates that radiological methods can be used for postmortem study of the bodies, in particular, the bodies of stillborn to determine the time of intrauterine death. Postmortem MRI allows for an objective and sufficiently accurate analysis of pathological processes with the possibility of their documentation, storage, and analysis after the burial of the body.

Keywords: intrauterine death, maceration, postmortem MRI, stillborn

Procedia PDF Downloads 112
722 Supersymmetry versus Compositeness: 2-Higgs Doublet Models Tell the Story

Authors: S. De Curtis, L. Delle Rose, S. Moretti, K. Yagyu

Abstract:

Supersymmetry and compositeness are the two prevalent paradigms providing both a solution to the hierarchy problem and motivation for a light Higgs boson state. An open door towards the solution is found in the context of 2-Higgs Doublet Models (2HDMs), which are necessary to supersymmetry and natural within compositeness in order to enable Electro-Weak Symmetry Breaking. In scenarios of compositeness, the two isospin doublets arise as pseudo Nambu-Goldstone bosons from the breaking of SO(6). By calculating the Higgs potential at one-loop level through the Coleman-Weinberg mechanism from the explicit breaking of the global symmetry induced by the partial compositeness of fermions and gauge bosons, we derive the phenomenological properties of the Higgs states and highlight the main signatures of this Composite 2-Higgs Doublet Model at the Large Hadron Collider. These include modifications to the SM-like Higgs couplings as well as production and decay channels of heavier Higgs bosons. We contrast the properties of this composite scenario to the well-known ones established in supersymmetry, with the MSSM being the most notorious example. We show how 2HDM spectra of masses and couplings accessible at the Large Hadron Collider may allow one to distinguish between the two paradigms.

Keywords: beyond the standard model, composite Higgs, supersymmetry, Two-Higgs Doublet Model

Procedia PDF Downloads 109
721 Simulation-Based Optimization Approach for an Electro-Plating Production Process Based on Theory of Constraints and Data Envelopment Analysis

Authors: Mayada Attia Ibrahim

Abstract:

Evaluating and developing the electroplating production process is a key challenge in this type of process. The process is influenced by several factors such as process parameters, process costs, and production environments. Analyzing and optimizing all these factors together requires extensive analytical techniques that are not available in real-case industrial entities. This paper presents a practice-based framework for the evaluation and optimization of some of the crucial factors that affect the costs and production times associated with this type of process, energy costs, material costs, and product flow times. The proposed approach uses Design of Experiments, Discrete-Event Simulation, and Theory of Constraints were respectively used to identify the most significant factors affecting the production process and simulate a real production line to recognize the effect of these factors and assign possible bottlenecks. Several scenarios are generated as corrective strategies for improving the production line. Following that, data envelopment analysis CCR input-oriented DEA model is used to evaluate and optimize the suggested scenarios.

Keywords: electroplating process, simulation, design of experiment, performance optimization, theory of constraints, data envelopment analysis

Procedia PDF Downloads 82
720 Treatment of Neuronal Defects by Bone Marrow Stem Cells Differentiation to Neuronal Cells Cultured on Gelatin-PLGA Scaffolds Coated with Nano-Particles

Authors: Alireza Shams, Ali Zamanian, Atefehe Shamosi, Farnaz Ghorbani

Abstract:

Introduction: Although the application of a new strategy remains a remarkable challenge for treatment of disabilities due to neuronal defects, progress in Nanomedicine and tissue engineering, suggesting the new medical methods. One of the promising strategies for reconstruction and regeneration of nervous tissue is replacing of lost or damaged cells by specific scaffolds after Compressive, ischemic and traumatic injuries of central nervous system. Furthermore, ultrastructure, composition, and arrangement of tissue scaffolds are effective on cell grafts. We followed implantation and differentiation of mesenchyme stem cells to neural cells on Gelatin Polylactic-co-glycolic acid (PLGA) scaffolds coated with iron nanoparticles. The aim of this study was to evaluate the capability of stem cells to differentiate into motor neuron-like cells under topographical cues and morphogenic factors. Methods and Materials: Bone marrow mesenchymal stem cells (BMMSCs) was obtained by primary cell culturing of adult rat bone marrow got from femur bone by flushing method. BMMSCs were incubated with DMEM/F12 (Gibco), 15% FBS and 100 U/ml pen/strep as media. Then, BMMSCs seeded on Gel/PLGA scaffolds and tissue culture (TCP) polystyrene embedded and incorporated by Fe Nano particles (FeNPs) (Fe3o4 oxide (M w= 270.30 gr/mol.). For neuronal differentiation, 2×10 5 BMMSCs were seeded on Gel/PLGA/FeNPs scaffolds was cultured for 7 days and 0.5 µ mol. Retinoic acid, 100 µ mol. Ascorbic acid,10 ng/ml. Basic fibroblast growth factor (Sigma, USA), 250 μM Iso butyl methyl xanthine, 100 μM 2-mercaptoethanol, and 0.2 % B27 (Invitrogen, USA) added to media. Proliferation of BMMSCs was assessed by using MTT assay for cell survival. The morphology of BMMSCs and scaffolds was investigated by scanning electron microscopy analysis. Expression of neuron-specific markers was studied by immunohistochemistry method. Data were analyzed by analysis of variance, and statistical significance was determined by Turkey’s test. Results: Our results revealed that differentiation and survival of BMMSCs into motor neuron-like cells on Gel/PLGA/FeNPs as a biocompatible and biodegradable scaffolds were better than those cultured in Gel/PLGA in absence of FeNPs and TCP scaffolds. FeNPs had raised physical power but decreased capacity absorption of scaffolds. Well defined oriented pores in scaffolds due to FeNPs may activate differentiation and synchronized cells as a mechanoreceptor. Induction effects of magnetic FeNPs by One way flow of channels in scaffolds help to lead the cells and can facilitate direction of their growth processes. Discussion: Progression of biological properties of BMMSCs and the effects of FeNPs spreading under magnetic field was evaluated in this investigation. In vitro study showed that the Gel/PLGA/FeNPs scaffold provided a suitable structure for motor neuron-like cells differentiation. This could be a promising candidate for enhancing repair and regeneration in neural defects. Dynamic and static magnetic field for inducing and construction of cells can provide better results for further experimental studies.

Keywords: differentiation, mesenchymal stem cells, nano particles, neuronal defects, Scaffolds

Procedia PDF Downloads 152
719 Application of Rapid Prototyping to Create Additive Prototype Using Computer System

Authors: Meftah O. Bashir, Fatma A. Karkory

Abstract:

Rapid prototyping is a new group of manufacturing processes, which allows fabrication of physical of any complexity using a layer by layer deposition technique directly from a computer system. The rapid prototyping process greatly reduces the time and cost necessary to bring a new product to market. The prototypes made by these systems are used in a range of industrial application including design evaluation, verification, testing, and as patterns for casting processes. These processes employ a variety of materials and mechanisms to build up the layers to build the part. The present work was to build a FDM prototyping machine that could control the X-Y motion and material deposition, to generate two-dimensional and three-dimensional complex shapes. This study focused on the deposition of wax material. This work was to find out the properties of the wax materials used in this work in order to enable better control of the FDM process. This study will look at the integration of a computer controlled electro-mechanical system with the traditional FDM additive prototyping process. The characteristics of the wax were also analysed in order to optimize the model production process. These included wax phase change temperature, wax viscosity and wax droplet shape during processing.

Keywords: rapid prototyping, wax, manufacturing processes, shape

Procedia PDF Downloads 447
718 Computational Study on Traumatic Brain Injury Using Magnetic Resonance Imaging-Based 3D Viscoelastic Model

Authors: Tanu Khanuja, Harikrishnan N. Unni

Abstract:

Head is the most vulnerable part of human body and may cause severe life threatening injuries. As the in vivo brain response cannot be recorded during injury, computational investigation of the head model could be really helpful to understand the injury mechanism. Majority of the physical damage to living tissues are caused by relative motion within the tissue due to tensile and shearing structural failures. The present Finite Element study focuses on investigating intracranial pressure and stress/strain distributions resulting from impact loads on various sites of human head. This is performed by the development of the 3D model of a human head with major segments like cerebrum, cerebellum, brain stem, CSF (cerebrospinal fluid), and skull from patient specific MRI (magnetic resonance imaging). The semi-automatic segmentation of head is performed using AMIRA software to extract finer grooves of the brain. To maintain the accuracy high number of mesh elements are required followed by high computational time. Therefore, the mesh optimization has also been performed using tetrahedral elements. In addition, model validation with experimental literature is performed as well. Hard tissues like skull is modeled as elastic whereas soft tissues like brain is modeled with viscoelastic prony series material model. This paper intends to obtain insights into the severity of brain injury by analyzing impacts on frontal, top, back, and temporal sites of the head. Yield stress (based on von Mises stress criterion for tissues) and intracranial pressure distribution due to impact on different sites (frontal, parietal, etc.) are compared and the extent of damage to cerebral tissues is discussed in detail. This paper finds that how the back impact is more injurious to overall head than the other. The present work would be helpful to understand the injury mechanism of traumatic brain injury more effectively.

Keywords: dynamic impact analysis, finite element analysis, intracranial pressure, MRI, traumatic brain injury, von Misses stress

Procedia PDF Downloads 145
717 Novel Routes to the Synthesis and Functionalization of Metallic and Semiconductor Thin Film and Nanoparticles

Authors: Hanan. Al Chaghouri, Mohammad Azad Malik, P. John Thomas, Paul O’Brien

Abstract:

The process of assembling metal nanoparticles at the interface of two liquids has received a great deal of attention over the past few years due to a wide range of important applications and their unusual properties as compared to bulk materials. We present a low cost, simple and cheap synthesis of metal nanoparticles, core/shell structures and semiconductors followed by assembly of these particles between immiscible liquids. The aim of this talk is divided to three parts: Firstly, to describe the achievement of a closed loop recycling for producing cadmium sulfide as powders and/or nanostructured thin films for solar cells or other optoelectronic devices applications by using a different chain length of commercially available secondary amines of dithiocarbamato complexes. The approach can be extended to other metal sulfides such as those of Zn, Pb, Cu, or Fe and many transition metals and oxides. Secondly, to synthesis significantly cheaper magnetic particles suited for the mass market. Ni/NiO nanoparticles with ferromagnetic properties at room temperature were among the smallest and strongest magnets (5 nm) were made in solution. The applications of this work can be to produce viable storage devices and the other possibility is to disperse these nanocrystals in solution and use it to make ferrofluids which have a number of mature applications. The third part is about preparing and assembling of submicron silver, cobalt and nickel particles by using polyol methods and liquid/liquid interface, respectively. Coinage metals like gold, copper and silver are suitable for plasmonic thin film solar cells because of their low resistivity and strong interactions with visible light waves. Silver is the best choice for solar cell application since it has low absorption losses and high radiative efficiency compared to gold and copper. Assembled cobalt and nickel as films are promising for spintronic, magnetic and magneto-electronic and biomedics.

Keywords: metal nanoparticles, core/shell structures and semiconductors, ferromagnetic properties, closed loop recycling, liquid/liquid interface

Procedia PDF Downloads 448
716 Analytical Investigation of Modeling and Simulation of Different Combinations of Sinusoidal Supplied Autotransformer under Linear Loading Conditions

Authors: M. Salih Taci, N. Tayebi, I. Bozkır

Abstract:

This paper investigates the operation of a sinusoidal supplied autotransformer on the different states of magnetic polarity of primary and secondary terminals for four different step-up and step-down analytical conditions. In this paper, a new analytical modeling and equations for dot-marked and polarity-based step-up and step-down autotransformer are presented. These models are validated by the simulation of current and voltage waveforms for each state. PSpice environment was used for simulation.

Keywords: autotransformer modeling, autotransformer simulation, step-up autotransformer, step-down autotransformer, polarity

Procedia PDF Downloads 293
715 Relationship between Mannheimia haemolytica and the Fertility Characteristics of Boer Goats

Authors: Muhammad Naveed Ali

Abstract:

A study was conducted to determine the effects on the severity of pneumonia due to Mannheimia haemolytica and its relation with the fertility of bucks. A total of 12 crossbred Boer bucks of 3 treatment groups of equal number (4 goats per group, aged 12-14 months) were selected in this study. Group A was intranasally inoculated live M. haemolytica 1 × 105 (cfu). Group B was first immunized subcutaneously M. haemolytica killed vaccine (2 ml) two week before intranasal inoculation of M. haemolytica 1 × 105 (cfu). Group C was treated with normal saline (PBS) as control. Electro-ejaculator was used for semen collection once per week whilst scrotal circumference was measured before and after challenge. The semen volume, sperm concentration, sperm motility, live/dead percentage and morphology were evaluated. From the semen evaluation, goats in Group A exhibited significant decrease in the semen volume, sperm concentration, motility and live/dead sperm compared with vaccinated group B. The scrotal circumference was significantly decreased in group A compared to B. There were non-significant differences in scrotal circumferences of group B and C. The results suggested that M. haemolytica infection has negative effects on the fertility of Boer bucks.

Keywords: Boer bucks, Mannheimia haemolytica, semen evaluation, vaccination

Procedia PDF Downloads 142
714 Soft Ground Improved by Prefabricated Vertical Drains with Vacuum and Thermal Preloading

Authors: Gia Lam Le, Dennis T. Bergado, Thi Ngoc Truc Nguyen

Abstract:

This study focuses on behaviors of improved soft clay using prefabricated vertical drain (PVD) combined with vacuum and electro-osmotic preloading. Large-scale consolidations of reconstituted soft Bangkok clay were conducted for PVD improvement with vacuum (vacuum-PVD), and vacuum combined with heat (vacuum-thermo-PVD). The research revealed that vacuum-thermo-PVD gives high efficiency of the consolidation rate compared to the vacuum-PVD. In addition, the magnitude of settlement of the specimen improved by the vacuum-thermo-PVD is higher than the vacuum-PVD because the assistance of heat causes the collapse of the clay structure. Particularly, to reach 90% degree of consolidation, the thermal-vacuum-PVD reduced about 58% consolidation time compared to the vacuum-PVD. The increase in consolidation rate is resulted from the increase in horizontal coefficient of consolidation, Ch, the reduction of the smear effect expressed by the ratio of the horizontal hydraulic conductivity in the undisturbed zone, kh, and the horizontal hydraulic conductivity in the smeared zone, ks. Furthermore, the shear strength, Su, increased about 100% when compared using the vacuum-thermal-PVD to the vacuum PVD. In addition, numerical simulations gave reasonable results compared to the laboratory data.

Keywords: PVD improvement, vacuum preloading, prefabricated vertical drain, thermal PVD

Procedia PDF Downloads 442
713 Preliminary Study on Analysis of Pinching Motion Actuated by Electro-Active Polymers

Authors: Doo W. Lee, Soo J. Lee, Bye R. Yoon, Jae Y. Jho, Kyehan Rhee

Abstract:

Hand exoskeletons have been developed in order to assist daily activities for disabled and elder people. A figure exoskeleton was developed using ionic polymer metal composite (IPMC) actuators, and the performance of it was evaluated in this study. In order to study dynamic performance of a finger dummy performing pinching motion, force generating characteristics of an IPMC actuator and pinching motion of a thumb and index finger dummy actuated by IMPC actuators were analyzed. The blocking force of 1.54 N was achieved under 4 V of DC. A thumb and index finger dummy, which has one degree of freedom at the proximal joint of each figure, was manufactured by a three dimensional rapid prototyping. Each figure was actuated by an IPMC actuator, and the maximum fingertip force was 1.18 N. Pinching motion of a dummy was analyzed by two video cameras in vertical top and horizontal left end view planes. A figure dummy powered by IPMC actuators could perform flexion and extension motion of an index figure and a thumb.

Keywords: finger exoskeleton, ionic polymer metal composite, flexion and extension, motion analysis

Procedia PDF Downloads 221
712 Fire Effects on Soil Properties of Meshchera Plain, Russia

Authors: Anna Tsibart, Timur Koshovskii

Abstract:

The properties of soils affected by the wildfires of 2002, 2010, and 2012 in Meshchera plain (Moscow region, Russia) were considered in a current research. The formation of ash horizons instead of organic peat horizons was detected both in histosols and histic podzols. The increase of pH and magnetic susceptibility was observed in soil profiles. Significant burning out of organic matter was observed, but already two years after the fire the new stage of organic matter accumulation started.

Keywords: wildfires, peat soils, organic matter, Meshchera plain

Procedia PDF Downloads 642
711 Nafion Multiwalled Carbon Nano Tubes Composite Film Modified Glassy Carbon Sensor for the Voltammetric Estimation of Dianabol Steroid in Pharmaceuticals and Biological Fluids

Authors: Nouf M. Al-Ourfi, A. S. Bashammakh, M. S. El-Shahawi

Abstract:

The redox behavior of dianabol steroid (DS) on Nafion Multiwalled Carbon nano -tubes (MWCNT) composite film modified glassy carbon electrode (GCE) in various buffer solutions was studied using cyclic voltammetry (CV) and differential pulse- adsorptive cathodic stripping voltammetry (DP-CSV) and successfully compared with the results at non modified bare GCE. The Nafion-MWCNT composite film modified GCE exhibited the best electrochemical response among the two electrodes for the electro reduction of DS that was inferred from the EIS, CV and DP-CSV. The modified sensor showed a sensitive, stable and linear response in the concentration range of 5 – 100 nM with a detection limit of 0.08 nM. The selectivity of the proposed sensor was assessed in the presence of high concentration of major interfering species. The analytical application of the sensor for the quantification of DS in pharmaceutical formulations and biological fluids (urine) was determined and the results demonstrated acceptable recovery and RSD of 5%. Statistical treatment of the results of the proposed method revealed no significant differences in the accuracy and precision. The relative standard deviations for five measurements of 50 and 300 ng mL−1 of DS were 3.9 % and 1.0 %, respectively.

Keywords: dianabol steroid, determination, modified GCE, urine

Procedia PDF Downloads 271
710 Impact Factor of Annealing on Electrical Properties of Zinc Selenide (ZnSe) Thin Films

Authors: Esubalew Yehualaw Melaku, Tizazu Abeza

Abstract:

ZnSe thin films in an aqueous solution of zinc acetate and hydrazine hydrate (HH) using the non-toxic complexing agent EDTA along with the films were annealed at 200, 300, and 400oC. This research aimed to investigate the effect of annealing on the structural, optical, and electrical properties of the films. X-ray diffraction (XRD) analysis was used to study the structure and crystallite size of the ZnSe thin film. The ZnSe thin films are annealed in an oven at various temperatures which are characterized by structural and optical properties. An increase in annealing temperature distorted the nanocrystillinity and made the ZnSe thin films amorphous. The variation of resistivity indicates the semiconducting nature of the thin film. The electrical resistivity of the films decreases with increasing annealing temperature. In this study, the Band gap of ZnSe decreases from 2.8eV to 2.65eV with the increase in temperature and decreases for as-deposited to 2.5eV. As a result of this research, ZnSe is used for certain applications; it has been widely utilized in various optoelectronic devices such as thin film solar cells, green-blue light emitting diodes, lasers, photo-luminescent, and electro-luminescent devices.

Keywords: chemical bath deposition, ZnSe thin film, band gap, solar cells

Procedia PDF Downloads 109
709 Freshwater Recovering and Water Pollution Controlling Technology

Authors: Habtamu Abdisa

Abstract:

In nature, water may not be free from contaminants due to its polar nature. But, more than this, the environmental water is highly polluted by manmade activities from industrial, agricultural, recreation, shipping, and domestic sites, thereby increasing the shortage of freshwater for designated purposes. Therefore, in the face of water scarcity, human beings are enforced to look at all the existing opportunities to get an adequate amount of freshwater resources. The most probable water resource is wastewater, from which the water can be recovered to serve designated purposes (for industrial, agricultural, drinking, and other domestic uses). Present-day, the most preferable method for recovering water from different wastewater streams for re-use is membrane technology. This paper looks at the progressive development of membrane technology in wastewater treatment. The applications of pressure-driven membrane separation technology (microfiltration, ultrafiltration, nano-filtration, reverse osmosis, and tissue purification) and no pressure membrane separation technology (semipermeable membrane, liquefiedfilm, and electro-dialysis) and also ion-exchange were reviewed. More than all, the technology for converting environmental water pollutants into energy is of considerable attention. Finally, recommendations for future research relating to the application of membrane technology in wastewater treatment were made. Also, further research recommendation about membrane fouling and cleaning was made.

Keywords: environmental pollution, membrane technology, water quality, wastewater

Procedia PDF Downloads 73
708 Detailed Investigation of Thermal Degradation Mechanism and Product Characterization of Co-Pyrolysis of Indian Oil Shale with Rubber Seed Shell

Authors: Bhargav Baruah, Ali Shemsedin Reshad, Pankaj Tiwari

Abstract:

This work presents a detailed study on the thermal degradation kinetics of co-pyrolysis of oil shale of Upper Assam, India with rubber seed shell, and lab-scale pyrolysis to investigate the influence of pyrolysis parameters on product yield and composition of products. The physicochemical characteristics of oil shale and rubber seed shell were studied by proximate analysis, elemental analysis, Fourier transform infrared spectroscopy and X-ray diffraction. The physicochemical study showed the mixture to be of low moisture, high ash, siliceous, sour with the presence of aliphatic, aromatic, and phenolic compounds. The thermal decomposition of the oil shale with rubber seed shell was studied using thermogravimetric analysis at heating rates of 5, 10, 20, 30, and 50 °C/min. The kinetic study of the oil shale pyrolysis process was performed on the thermogravimetric (TGA) data using three model-free isoconversional methods viz. Friedman, Flynn Wall Ozawa (FWO), and Kissinger Akahira Sunnose (KAS). The reaction mechanisms were determined using the Criado master plot. The understanding of the composition of Indian oil shale and rubber seed shell and pyrolysis process kinetics can help to establish the experimental parameters for the extraction of valuable products from the mixture. Response surface methodology (RSM) was employed usinf central composite design (CCD) model to setup the lab-scale experiment using TGA data, and optimization of process parameters viz. heating rate, temperature, and particle size. The samples were pre-dried at 115°C for 24 hours prior to pyrolysis. The pyrolysis temperatures were set from 450 to 650 °C, at heating rates of 2 to 20°C/min. The retention time was set between 2 to 8 hours. The optimum oil yield was observed at 5°C/min and 550°C with a retention time of 5 hours. The pyrolytic oil and gas obtained at optimum conditions were subjected to characterization using Fourier transform infrared spectroscopy (FT-IR) gas chromatography and mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR).

Keywords: Indian oil shale, rubber seed shell, co-pyrolysis, isoconversional methods, gas chromatography, nuclear magnetic resonance, Fourier transform infrared spectroscopy

Procedia PDF Downloads 128
707 Immobilization of Cobalt Ions on F-Multi-Wall Carbon Nanotubes-Chitosan Thin Film: Preparation and Application for Paracetamol Detection

Authors: Shamima Akhter, Samira Bagheri, M. Shalauddin, Wan Jefrey Basirun

Abstract:

In the present study, a nanocomposite of f-MWCNTs-Chitosan was prepared by the immobilization of Co(II) transition metal through self-assembly method and used for the simultaneous voltammetric determination of paracetamol (PA). The composite material was characterized by field emission scanning electron microscopy (FESEM) and energy dispersive X-Ray analysis (EDX). The electroactivity of cobalt immobilized f-MWCNTs with excellent adsorptive polymer chitosan was assessed during the electro-oxidation of paracetamol. The resulting GCE modified f-MWCNTs/CTS-Co showed electrocatalytic activity towards the oxidation of PA. The electrochemical performances were investigated using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) methods. Under favorable experimental conditions, differential pulse voltammetry showed a linear dynamic range for paracetamol solution in the range of 0.1 to 400µmol L⁻¹ with a detection limit of 0.01 µmol L⁻¹. The proposed sensor exhibited significant selectivity for the paracetamol detection. The proposed method was successfully applied for the determination of paracetamol in commercial tablets and human serum sample.

Keywords: nanomaterials, paracetamol, electrochemical technique, multi-wall carbon nanotube

Procedia PDF Downloads 187
706 Engineering the Topological Insulator Structures for Terahertz Detectors

Authors: M. Marchewka

Abstract:

The article is devoted to the possible optical transitions in double quantum wells system based on HgTe/HgCd(Mn)Te heterostructures. Such structures can find applications as detectors and sources of radiation in the terahertz range. The Double Quantum Wells (DQW) systems consist of two QWs separated by the transparent for electrons barrier. Such systems look promising from the point of view of the additional degrees of freedom. In the case of the topological insulator in about 6.4nm wide HgTe QW or strained 3D HgTe films at the interfaces, the topologically protected surface states appear at the interfaces/surfaces. Electrons in those edge states move along the interfaces/surfaces without backscattering due to time-reversal symmetry. Combination of the topological properties, which was already verified by the experimental way, together with the very well know properties of the DQWs, can be very interesting from the applications point of view, especially in the THz area. It is important that at the present stage, the technology makes it possible to create high-quality structures of this type, and intensive experimental and theoretical studies of their properties are already underway. The idea presented in this paper is based on the eight-band KP model, including the additional terms related to the structural inversion asymmetry, interfaces inversion asymmetry, the influence of the magnetically content, and the uniaxial strain describe the full pictures of the possible real structure. All of this term, together with the external electric field, can be sources of breaking symmetry in investigated materials. Using the 8 band KP model, we investigated the electronic shape structure with and without magnetic field from the application point of view as a THz detector in a small magnetic field (below 2T). We believe that such structures are the way to get the tunable topological insulators and the multilayer topological insulator. Using the one-dimensional electrons at the topologically protected interface states as fast and collision-free signal carriers as charge and signal carriers, the detection of the optical signal should be fast, which is very important in the high-resolution detection of signals in the THz range. The proposed engineering of the investigated structures is now one of the important steps on the way to get the proper structures with predicted properties.

Keywords: topological insulator, THz spectroscopy, KP model, II-VI compounds

Procedia PDF Downloads 108
705 Examines the Proportionality between the Needs of Industry and Technical and Vocational Training of Male and Female Vocational Schools

Authors: Khalil Aryanfar, Pariya Gholipor, Elmira Hafez

Abstract:

This study examines the proportionality between the needs of industry and technical and vocational training of male and female vocational schools. The research method was descriptive that was conducted in two parts: documentary analysis and needs assessment and Delphi method was used in the need assessment. The statistical population of the study included 312 individuals from the industry sector employers and 52 of them were selected through stratified random sampling. Methods of data collection in this study, upstream documents include: document of the development of technical and vocational training, Statistical Yearbook 1393 in Tehran, the available documents in Isfahan Planning Department, the findings indicate that there is an almost proportionality between the needs of industry and Vocational training of male and female vocational schools in fields of welding, industrial electronics, electro technique, industrial drawing, auto mechanics, design, packaging, machine tool, metalworking, construction, accounting, computer graphics and the Administrative Affairs. The findings indicate that there is no proportionality between the needs of industry and Vocational training of male and female vocational schools in fields of Thermal - cooling systems, building electricity, building drawing, interior architecture, car electricity and motor repair.

Keywords: needs assessment, technical and vocational training, industry

Procedia PDF Downloads 437
704 Electro-Thermal Imaging of Breast Phantom: An Experimental Study

Authors: H. Feza Carlak, N. G. Gencer

Abstract:

To increase the temperature contrast in thermal images, the characteristics of the electrical conductivity and thermal imaging modalities can be combined. In this experimental study, it is objected to observe whether the temperature contrast created by the tumor tissue can be improved just due to the current application within medical safety limits. Various thermal breast phantoms are developed to simulate the female breast tissue. In vitro experiments are implemented using a thermal infrared camera in a controlled manner. Since experiments are implemented in vitro, there is no metabolic heat generation and blood perfusion. Only the effects and results of the electrical stimulation are investigated. Experimental study is implemented with two-dimensional models. Temperature contrasts due to the tumor tissues are obtained. Cancerous tissue is determined using the difference and ratio of healthy and tumor images. 1 cm diameter single tumor tissue causes almost 40 °mC temperature contrast on the thermal-breast phantom. Electrode artifacts are reduced by taking the difference and ratio of background (healthy) and tumor images. Ratio of healthy and tumor images show that temperature contrast is increased by the current application.

Keywords: medical diagnostic imaging, breast phantom, active thermography, breast cancer detection

Procedia PDF Downloads 410
703 Adsorption and Corrosion Inhibition of New Synthesized Thiophene Schiff Base on Mild Steel in HCL Solution

Authors: H. Elmsellem, A. Aouniti, S. Radi, A. Chetouani, B. Hammouti

Abstract:

The synthesis of new organic molecules offers various molecular structures containing heteroatoms and substituents for corrosion protection in acid pickling of metals. The most synthesized compounds are the nitrogen heterocyclic compounds, which are known to be excellent complex or chelate forming substances with metals. The choice of the inhibitor is based on two considerations: first it could be synthesized conveniently from relatively cheap raw materials, secondly, it contains the electron cloud on the aromatic ring or, the electro negative atoms such as nitrogen and oxygen in the relatively long chain compounds. In the present study, (NE)‐2‐methyl‐N‐(thiophen‐2‐ylmethylidene) aniline(T) was synthesized and its inhibiting action on the corrosion of mild steel in 1 M hydrochloric acid was examined by different corrosion methods, such as weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The experimental results suggest that this compound is an efficient corrosion inhibitor and the inhibition efficiency increases with the increase in inhibitor concentration. Adsorption of this compound on mild steel surface obeys Langmuir’s isotherm. Correlation between quantum chemical calculations and inhibition efficiency of the investigated compound is discussed using the Density Functional Theory method (DFT).

Keywords: mild steel, Schiff base, inhibition, corrosion, HCl, quantum chemical

Procedia PDF Downloads 313