Search results for: geographic information systems (GIS)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18743

Search results for: geographic information systems (GIS)

8903 A Recognition Method of Ancient Yi Script Based on Deep Learning

Authors: Shanxiong Chen, Xu Han, Xiaolong Wang, Hui Ma

Abstract:

Yi is an ethnic group mainly living in mainland China, with its own spoken and written language systems, after development of thousands of years. Ancient Yi is one of the six ancient languages in the world, which keeps a record of the history of the Yi people and offers documents valuable for research into human civilization. Recognition of the characters in ancient Yi helps to transform the documents into an electronic form, making their storage and spreading convenient. Due to historical and regional limitations, research on recognition of ancient characters is still inadequate. Thus, deep learning technology was applied to the recognition of such characters. Five models were developed on the basis of the four-layer convolutional neural network (CNN). Alpha-Beta divergence was taken as a penalty term to re-encode output neurons of the five models. Two fully connected layers fulfilled the compression of the features. Finally, at the softmax layer, the orthographic features of ancient Yi characters were re-evaluated, their probability distributions were obtained, and characters with features of the highest probability were recognized. Tests conducted show that the method has achieved higher precision compared with the traditional CNN model for handwriting recognition of the ancient Yi.

Keywords: recognition, CNN, Yi character, divergence

Procedia PDF Downloads 168
8902 Overview of a Quantum Model for Decision Support in a Sensor Network

Authors: Shahram Payandeh

Abstract:

This paper presents an overview of a model which can be used as a part of a decision support system when fusing information from multiple sensing environment. Data fusion has been widely studied in the past few decades and numerous frameworks have been proposed to facilitate decision making process under uncertainties. Multi-sensor data fusion technology plays an increasingly significant role during people tracking and activity recognition. This paper presents an overview of a quantum model as a part of a decision-making process in the context of multi-sensor data fusion. The paper presents basic definitions and relationships associating the decision-making process and quantum model formulation in the presence of uncertainties.

Keywords: quantum model, sensor space, sensor network, decision support

Procedia PDF Downloads 232
8901 Optimization of Ultrasonic Assisted Extraction of Antioxidants and Phenolic Compounds from Coleus Using Response Surface Methodology

Authors: Reihaneh Ahmadzadeh Ghavidel

Abstract:

Free radicals such as reactive oxygen species (ROS) have detrimental effects on human health through several mechanisms. On the other hand, antioxidant molecules reduce free radical generation in biologic systems. Synthetic antioxidants, which are used in food industry, have also negative impact on human health. Therefore recognition of natural antioxidants such as anthocyanins can solve these problems simultaneously. Coleus (Solenostemon scutellarioides) with red leaves is a rich source of anthocyanins compounds. In this study we evaluated the effect of time (10, 20 and 30 min) and temperature (40, 50 and 60° C) on optimization of anthocyanin extraction using surface response method. In addition, the study was aimed to determine maximum extraction for anthocyanin from coleus plant using ultrasound method. The results indicated that the optimum conditions for extraction were 39.84 min at 69.25° C. At this point, total compounds were achieved 3.7451 mg 100 ml⁻¹. Furthermore, under optimum conditions, anthocyanin concentration, extraction efficiency, ferric reducing ability, total phenolic compounds and EC50 were registered 3.221931, 6.692765, 223.062, 3355.605 and 2.614045, respectively.

Keywords: anthocyanin, antioxidant, coleus, extraction, sonication

Procedia PDF Downloads 323
8900 Some Studies on Endometritis in Pure Arabian Mares

Authors: Khairi El Battawy, Monika Skalicki

Abstract:

The present investigation has been done on pure Egyptian Arabian mares that reared in private horse studs. Fifty non-pregnant mares were selected and examined to classify them as either being reproductively healthy or subfertile mares including clinical endometritis, early embryonic death, granulosa cell tumor, repeat breeder (post-breeding endometritis), and anoestrus mares. The purpose of the study was to assess oxidative/antioxidant biochemical metabolites, lipogram, trace elements and reproductive hormones throughout reproductive conditions in mares during regular estrous, anestrum, early pregnancy, granulose cell tumor, ovulation failure, and endometritis. Results showed intensification of the free radical-dependent process in the blood of infertile mare, especially mares with endometritis. Ultrasonography as a diagnostic tool diagnosis of endometritis in mares was an important step as it revealed much information concerning infertility problem.

Keywords: endometritis, ovulation, oxidative, mare

Procedia PDF Downloads 181
8899 Intertextuality in Tourism Advertising: Sources of Knowledge Asymmetries in Translating Vocative Texts

Authors: Maria Ilyushkina

Abstract:

The article addresses the problem of translating vocative texts with intertextual references and describes the influence of language on how knowledge and meaning are developed in the field of advertising. The starting point of the article takes advertisements from the sphere of tourism and the way we choose, translate, and interpret intertexts. The article focuses on the perception and understanding of the information in printed texts advertising recreational facilities and services for tourists as the target audience by representatives of other cultures and the knowledge intertexts convey. The authors argue that intertextuality complicates translation leading to knowledge asymmetries. Studying typical communicative failures is considered to be of great importance, allowing for improvement in the practice of translation in the sphere of advertising as well as preventing the fallacious transfer of knowledge when translating foreign intertexts.

Keywords: advertising, translation, intertext, Russian culture, knowledge asymmetries, tourism, vocative texts

Procedia PDF Downloads 140
8898 Automatic Extraction of Water Bodies Using Whole-R Method

Authors: Nikhat Nawaz, S. Srinivasulu, P. Kesava Rao

Abstract:

Feature extraction plays an important role in many remote sensing applications. Automatic extraction of water bodies is of great significance in many remote sensing applications like change detection, image retrieval etc. This paper presents a procedure for automatic extraction of water information from remote sensing images. The algorithm uses the relative location of R-colour component of the chromaticity diagram. This method is then integrated with the effectiveness of the spatial scale transformation of whole method. The whole method is based on water index fitted from spectral library. Experimental results demonstrate the improved accuracy and effectiveness of the integrated method for automatic extraction of water bodies.

Keywords: feature extraction, remote sensing, image retrieval, chromaticity, water index, spectral library, integrated method

Procedia PDF Downloads 392
8897 Anomaly Detection with ANN and SVM for Telemedicine Networks

Authors: Edward Guillén, Jeisson Sánchez, Carlos Omar Ramos

Abstract:

In recent years, a wide variety of applications are developed with Support Vector Machines -SVM- methods and Artificial Neural Networks -ANN-. In general, these methods depend on intrusion knowledge databases such as KDD99, ISCX, and CAIDA among others. New classes of detectors are generated by machine learning techniques, trained and tested over network databases. Thereafter, detectors are employed to detect anomalies in network communication scenarios according to user’s connections behavior. The first detector based on training dataset is deployed in different real-world networks with mobile and non-mobile devices to analyze the performance and accuracy over static detection. The vulnerabilities are based on previous work in telemedicine apps that were developed on the research group. This paper presents the differences on detections results between some network scenarios by applying traditional detectors deployed with artificial neural networks and support vector machines.

Keywords: anomaly detection, back-propagation neural networks, network intrusion detection systems, support vector machines

Procedia PDF Downloads 362
8896 Wireless Sensor Networks for Water Quality Monitoring: Prototype Design

Authors: Cesar Eduardo Hernández Curiel, Victor Hugo Benítez Baltazar, Jesús Horacio Pacheco Ramírez

Abstract:

This paper is devoted to present the advances in the design of a prototype that is able to supervise the complex behavior of water quality parameters such as pH and temperature, via a real-time monitoring system. The current water quality tests that are performed in government water quality institutions in Mexico are carried out in problematic locations and they require taking manual samples. The water samples are then taken to the institution laboratory for examination. In order to automate this process, a water quality monitoring system based on wireless sensor networks is proposed. The system consists of a sensor node which contains one pH sensor, one temperature sensor, a microcontroller, and a ZigBee radio, and a base station composed by a ZigBee radio and a PC. The progress in this investigation shows the development of a water quality monitoring system. Due to recent events that affected water quality in Mexico, the main motivation of this study is to address water quality monitoring systems, so in the near future, a more robust, affordable, and reliable system can be deployed.

Keywords: pH measurement, water quality monitoring, wireless sensor networks, ZigBee

Procedia PDF Downloads 410
8895 Effects of Soil Neutron Irradiation in Soil Carbon Neutron Gamma Analysis

Authors: Aleksandr Kavetskiy, Galina Yakubova, Nikolay Sargsyan, Stephen A. Prior, H. Allen Torbert

Abstract:

The carbon sequestration question of modern times requires the development of an in-situ method of measuring soil carbon over large landmasses. Traditional chemical analytical methods used to evaluate large land areas require extensive soil sampling prior to processing for laboratory analysis; collectively, this is labor-intensive and time-consuming. An alternative method is to apply nuclear physics analysis, primarily in the form of pulsed fast-thermal neutron-gamma soil carbon analysis. This method is based on measuring the gamma-ray response that appears upon neutron irradiation of soil. Specific gamma lines with energies of 4.438 MeV appearing from neutron irradiation can be attributed to soil carbon nuclei. Based on measuring gamma line intensity, assessments of soil carbon concentration can be made. This method can be done directly in the field using a specially developed pulsed fast-thermal neutron-gamma system (PFTNA system). This system conducts in-situ analysis in a scanning mode coupled with GPS, which provides soil carbon concentration and distribution over large fields. The system has radiation shielding to minimize the dose rate (within radiation safety guidelines) for safe operator usage. Questions concerning the effect of neutron irradiation on soil health will be addressed. Information regarding absorbed neutron and gamma dose received by soil and its distribution with depth will be discussed in this study. This information was generated based on Monte-Carlo simulations (MCNP6.2 code) of neutron and gamma propagation in soil. Received data were used for the analysis of possible induced irradiation effects. The physical, chemical and biological effects of neutron soil irradiation were considered. From a physical aspect, we considered neutron (produced by the PFTNA system) induction of new isotopes and estimated the possibility of increasing the post-irradiation gamma background by comparisons to the natural background. An insignificant increase in gamma background appeared immediately after irradiation but returned to original values after several minutes due to the decay of short-lived new isotopes. From a chemical aspect, possible radiolysis of water (presented in soil) was considered. Based on stimulations of radiolysis of water, we concluded that the gamma dose rate used cannot produce gamma rays of notable rates. Possible effects of neutron irradiation (by the PFTNA system) on soil biota were also assessed experimentally. No notable changes were noted at the taxonomic level, nor was functional soil diversity affected. Our assessment suggested that the use of a PFTNA system with a neutron flux of 1e7 n/s for soil carbon analysis does not notably affect soil properties or soil health.

Keywords: carbon sequestration, neutron gamma analysis, radiation effect on soil, Monte-Carlo simulation

Procedia PDF Downloads 151
8894 Automatic Seizure Detection Using Weighted Permutation Entropy and Support Vector Machine

Authors: Noha Seddik, Sherine Youssef, Mohamed Kholeif

Abstract:

The automated epileptic seizure detection research field has emerged in the recent years; this involves analyzing the Electroencephalogram (EEG) signals instead of the traditional visual inspection performed by expert neurologists. In this study, a Support Vector Machine (SVM) that uses Weighted Permutation Entropy (WPE) as the input feature is proposed for classifying normal and seizure EEG records. WPE is a modified statistical parameter of the permutation entropy (PE) that measures the complexity and irregularity of a time series. It incorporates both the mapped ordinal pattern of the time series and the information contained in the amplitude of its sample points. The proposed system utilizes the fact that entropy based measures for the EEG segments during epileptic seizure are lower than in normal EEG.

Keywords: electroencephalogram (EEG), epileptic seizure detection, weighted permutation entropy (WPE), support vector machine (SVM)

Procedia PDF Downloads 376
8893 Development and In vitro Characterization of Diclofenac-Loaded Microparticles

Authors: Prakriti Diwan, S. Saraf

Abstract:

The present study involves preparation and evaluation of microparticles of diclofenac sodium. The microparticles were prepared by the emulsion solvent evaporation techniques using ethylcellulose polymer. Four different batches of microspheres were prepared by varying the concentration of polymer from 50% to 80% w/w. The microspheres were characterized for drug content, percentage yield and encapsulation efficiency, particle size analysis and surface morphology. Microsphere prepared with high drug content produces higher percentage yield and encapsulation efficiency values. It was observed the increase in concentration of the polymer, increases the mean particle size of the microspheres. The effect of polymer concentration on the in vitro release of diclofenac from the microspheres was also studied. The production microparticles yield showed 98.74%, mean particle size 956.32µm and loading efficiency 97.15%. The results were found that microparticles prepared had slower release than microparticles (p>0.05). Therefore, it may be concluded that drug loaded microparticles are suitable delivery systems for diclofenac sodium.

Keywords: diclofenac sodium, emulsion solvent evaporation, ethylcellulose, microparticles

Procedia PDF Downloads 290
8892 Optimal Feature Extraction Dimension in Finger Vein Recognition Using Kernel Principal Component Analysis

Authors: Amir Hajian, Sepehr Damavandinejadmonfared

Abstract:

In this paper the issue of dimensionality reduction is investigated in finger vein recognition systems using kernel Principal Component Analysis (KPCA). One aspect of KPCA is to find the most appropriate kernel function on finger vein recognition as there are several kernel functions which can be used within PCA-based algorithms. In this paper, however, another side of PCA-based algorithms -particularly KPCA- is investigated. The aspect of dimension of feature vector in PCA-based algorithms is of importance especially when it comes to the real-world applications and usage of such algorithms. It means that a fixed dimension of feature vector has to be set to reduce the dimension of the input and output data and extract the features from them. Then a classifier is performed to classify the data and make the final decision. We analyze KPCA (Polynomial, Gaussian, and Laplacian) in details in this paper and investigate the optimal feature extraction dimension in finger vein recognition using KPCA.

Keywords: biometrics, finger vein recognition, principal component analysis (PCA), kernel principal component analysis (KPCA)

Procedia PDF Downloads 369
8891 A Technical Solution for Micro Mixture with Micro Fluidic Oscillator in Chemistry

Authors: Brahim Dennai, Abdelhak Bentaleb, Rachid Khelfaoui, Asma Abdenbi

Abstract:

The diffusion flux given by the Fick’s law characterizethe mixing rate. A passive mixing strategy is proposed to enhance mixing of two fluids through perturbed jet low. A numerical study of passive mixers has been presented. This paper is focused on the modeling of a micro-injection systems composed of passive amplifier without mechanical part. The micro-system modeling is based on geometrical oscillators form. An asymmetric micro-oscillator design based on a monostable fluidic amplifier is proposed. The characteristic size of the channels is generally about a few hundred of microns. The numerical results indicate that the mixing performance can be as high as 99 % within a typical mixing chamber of 0.20 mm diameter inlet and 2.0 mm distance of nozzle - spliter. In addition, the results confirm that self-rotation in the circular mixer significantly enhances the mixing performance. The novel micro mixing method presented in this study provides a simple solution to mixing problems in microsystem for application in chemistry.

Keywords: micro oscillator, modeling, micro mixture, diffusion, size effect, chemical equation

Procedia PDF Downloads 437
8890 A Coordinate-Based Heuristic Route Search Algorithm for Delivery Truck Routing Problem

Authors: Ahmed Tarek, Ahmed Alveed

Abstract:

Vehicle routing problem is a well-known re-search avenue in computing. Modern vehicle routing is more focused with the GPS-based coordinate system, as the state-of-the-art vehicle, and trucking systems are equipped with digital navigation. In this paper, a new two dimensional coordinate-based algorithm for addressing the vehicle routing problem for a supply chain network is proposed and explored, and the algorithm is compared with other available, and recently devised heuristics. For the algorithms discussed, which includes the pro-posed coordinate-based search heuristic as well, the advantages and the disadvantages associated with the heuristics are explored. The proposed algorithm is studied from the stand point of a small supermarket chain delivery network that supplies to its stores in four different states around the East Coast area, and is trying to optimize its trucking delivery cost. Minimizing the delivery cost for the supply network of a supermarket chain is important to ensure its business success.

Keywords: coordinate-based optimal routing, Hamiltonian Circuit, heuristic algorithm, traveling salesman problem, vehicle routing problem

Procedia PDF Downloads 151
8889 Deep Reinforcement Learning and Generative Adversarial Networks Approach to Thwart Intrusions and Adversarial Attacks

Authors: Fabrice Setephin Atedjio, Jean-Pierre Lienou, Frederica F. Nelson, Sachin S. Shetty, Charles A. Kamhoua

Abstract:

Malicious users exploit vulnerabilities in computer systems, significantly disrupting their performance and revealing the inadequacies of existing protective solutions. Even machine learning-based approaches, designed to ensure reliability, can be compromised by adversarial attacks that undermine their robustness. This paper addresses two critical aspects of enhancing model reliability. First, we focus on improving model performance and robustness against adversarial threats. To achieve this, we propose a strategy by harnessing deep reinforcement learning. Second, we introduce an approach leveraging generative adversarial networks to counter adversarial attacks effectively. Our results demonstrate substantial improvements over previous works in the literature, with classifiers exhibiting enhanced accuracy in classification tasks, even in the presence of adversarial perturbations. These findings underscore the efficacy of the proposed model in mitigating intrusions and adversarial attacks within the machine-learning landscape.

Keywords: machine learning, reliability, adversarial attacks, deep-reinforcement learning, robustness

Procedia PDF Downloads 22
8888 Quantitative, Preservative Methodology for Review of Interview Transcripts Using Natural Language Processing

Authors: Rowan P. Martnishn

Abstract:

During the execution of a National Endowment of the Arts grant, approximately 55 interviews were collected from professionals across various fields. These interviews were used to create deliverables – historical connections for creations that began as art and evolved entirely into computing technology. With dozens of hours’ worth of transcripts to be analyzed by qualitative coders, a quantitative methodology was created to sift through the documents. The initial step was to both clean and format all the data. First, a basic spelling and grammar check was applied, as well as a Python script for normalized formatting which used an open-source grammatical formatter to make the data as coherent as possible. 10 documents were randomly selected to manually review, where words often incorrectly translated during the transcription were recorded and replaced throughout all other documents. Then, to remove all banter and side comments, the transcripts were spliced into paragraphs (separated by change in speaker) and all paragraphs with less than 300 characters were removed. Secondly, a keyword extractor, a form of natural language processing where significant words in a document are selected, was run on each paragraph for all interviews. Every proper noun was put into a data structure corresponding to that respective interview. From there, a Bidirectional and Auto-Regressive Transformer (B.A.R.T.) summary model was then applied to each paragraph that included any of the proper nouns selected from the interview. At this stage the information to review had been sent from about 60 hours’ worth of data to 20. The data was further processed through light, manual observation – any summaries which proved to fit the criteria of the proposed deliverable were selected, as well their locations within the document. This narrowed that data down to about 5 hours’ worth of processing. The qualitative researchers were then able to find 8 more connections in addition to our previous 4, exceeding our minimum quota of 3 to satisfy the grant. Major findings of the study and subsequent curation of this methodology raised a conceptual finding crucial to working with qualitative data of this magnitude. In the use of artificial intelligence there is a general trade off in a model between breadth of knowledge and specificity. If the model has too much knowledge, the user risks leaving out important data (too general). If the tool is too specific, it has not seen enough data to be useful. Thus, this methodology proposes a solution to this tradeoff. The data is never altered outside of grammatical and spelling checks. Instead, the important information is marked, creating an indicator of where the significant data is without compromising the purity of it. Secondly, the data is chunked into smaller paragraphs, giving specificity, and then cross-referenced with the keywords (allowing generalization over the whole document). This way, no data is harmed, and qualitative experts can go over the raw data instead of using highly manipulated results. Given the success in deliverable creation as well as the circumvention of this tradeoff, this methodology should stand as a model for synthesizing qualitative data while maintaining its original form.

Keywords: B.A.R.T.model, keyword extractor, natural language processing, qualitative coding

Procedia PDF Downloads 34
8887 Research on Reducing Food Losses by Extending the Date of Minimum Durability on the Example of Cereal Products

Authors: Monika Trzaskowska, Dorota Zielinska, Anna Lepecka, Katarzyna Neffe-Skocinska, Beata Bilska, Marzena Tomaszewska, Danuta Kolozyn-Krajewska

Abstract:

Microbiological quality and food safety are important food characteristics. Regulation (EU) No 1169/2011 of the European Parliament and of the Council on the provision of food information to consumers introduces the obligation to provide information on the 'use-by' date or the date of minimum durability (DMD). The second term is the date until which the properly stored or transported foodstuff retains its physical, chemical, microbiological and organoleptic properties. The date should be preceded by 'best before'. It is used for durable products, e.g., pasta. In relation to reducing food losses, the question may be asked whether products with the date of minimum durability currently declared retain quality and safety beyond this. The aim of the study was to assess the sensory quality and microbiological safety of selected cereal products, i.e., pasta and millet after DMD. The scope of the study was to determine the markers of microbiological quality, i.e., the total viable count (TVC), the number of bacteria from the Enterobacteriaceae family and the number of yeast and mold (TYMC) on the last day of DMD and after 1 and 3 months of storage. In addition, the presence of Salmonella and Listeria monocytogenes was examined on the last day of DMD. The sensory quality of products was assessed by quantitative descriptive analysis (QDA), the intensity of 14 differentiators and overall quality were defined and determined. In the tested samples of millet and pasta, no pathogenic bacteria Salmonella and Listeria monocytogenes were found. The value of the distinguishing features of selected quality and microbiological safety indicators on the last DMD day was in the range of about 3-1 log cfu/g. This demonstrates the good microbiological quality of the tested food. Comparing the products, a higher number of microorganisms was found in the samples of millet. After 3 months of storage, TVC decreased in millet, while in pasta, it was found to increase in value. In both products, the number of bacteria from the Enterobacretiaceae family decreased. In contrast, the number of TYMCs increased in samples of millet, and in pasta decreased. The intensity of sensory characteristic in the studied period varied. It remained at a similar level or increased. Millet was found to increase the intensity and flavor of 'cooked porridge' 3 months after DMD. Similarly, in the pasta, the smell and taste of 'cooked pasta' was more intense. To sum up, the researched products on the last day of the minimum durability date were characterized by very good microbiological and sensory quality, which was maintained for 3 months after this date. Based on these results, the date of minimum durability of tested products could be extended. The publication was financed on the basis of an agreement with the National Center for Research and Development No. Gospostrateg 1/385753/1/NCBR/2018 for the implementation and financing of the project under the strategic research and development program 'social and economic development of Poland in the conditions of globalizing markets – GOSPOSTRATEG - acronym PROM'.

Keywords: date of minimum durability, food losses, food quality and safety, millet, pasta

Procedia PDF Downloads 165
8886 Time Efficient Color Coding for Structured-Light 3D Scanner

Authors: Po-Hao Huang, Pei-Ju Chiang

Abstract:

The structured light 3D scanner is commonly used for measuring the 3D shape of an object. Through projecting designed light patterns on the object, deformed patterns can be obtained and used for the geometric shape reconstruction. At present, Gray code is the most reliable and commonly used light pattern in the structured light 3D scanner. However, the trade-off between scanning efficiency and accuracy is a long-standing and challenging problem. The design of light patterns plays a significant role in the scanning efficiency and accuracy. Thereby, we proposed a novel encoding method integrating color information and Gray-code to improve the scanning efficiency. We will demonstrate that with the proposed method, the scanning time can be reduced to approximate half of the one needed by Gray-code without reduction of precision.

Keywords: gray-code, structured light scanner, 3D shape acquisition, 3D reconstruction

Procedia PDF Downloads 464
8885 Evaluation of the Effect of Learning Disabilities and Accommodations on the Prediction of the Exam Performance: Ordinal Decision-Tree Algorithm

Authors: G. Singer, M. Golan

Abstract:

Providing students with learning disabilities (LD) with extra time to grant them equal access to the exam is a necessary but insufficient condition to compensate for their LD; there should also be a clear indication that the additional time was actually used. For example, if students with LD use more time than students without LD and yet receive lower grades, this may indicate that a different accommodation is required. If they achieve higher grades but use the same amount of time, then the effectiveness of the accommodation has not been demonstrated. The main goal of this study is to evaluate the effect of including parameters related to LD and extended exam time, along with other commonly-used characteristics (e.g., student background and ability measures such as high-school grades), on the ability of ordinal decision-tree algorithms to predict exam performance. We use naturally-occurring data collected from hundreds of undergraduate engineering students. The sub-goals are i) to examine the improvement in prediction accuracy when the indicator of exam performance includes 'actual time used' in addition to the conventional indicator (exam grade) employed in most research; ii) to explore the effectiveness of extended exam time on exam performance for different courses and for LD students with different profiles (i.e., sets of characteristics). This is achieved by using the patterns (i.e., subgroups) generated by the algorithms to identify pairs of subgroups that differ in just one characteristic (e.g., course or type of LD) but have different outcomes in terms of exam performance (grade and time used). Since grade and time used to exhibit an ordering form, we propose a method based on ordinal decision-trees, which applies a weighted information-gain ratio (WIGR) measure for selecting the classifying attributes. Unlike other known ordinal algorithms, our method does not assume monotonicity in the data. The proposed WIGR is an extension of an information-theoretic measure, in the sense that it adjusts to the case of an ordinal target and takes into account the error severity between two different target classes. Specifically, we use ordinal C4.5, random-forest, and AdaBoost algorithms, as well as an ensemble technique composed of ordinal and non-ordinal classifiers. Firstly, we find that the inclusion of LD and extended exam-time parameters improves prediction of exam performance (compared to specifications of the algorithms that do not include these variables). Secondly, when the indicator of exam performance includes 'actual time used' together with grade (as opposed to grade only), the prediction accuracy improves. Thirdly, our subgroup analyses show clear differences in the effect of extended exam time on exam performance among different courses and different student profiles. From a methodological perspective, we find that the ordinal decision-tree based algorithms outperform their conventional, non-ordinal counterparts. Further, we demonstrate that the ensemble-based approach leverages the strengths of each type of classifier (ordinal and non-ordinal) and yields better performance than each classifier individually.

Keywords: actual exam time usage, ensemble learning, learning disabilities, ordinal classification, time extension

Procedia PDF Downloads 103
8884 Code – Switching in a Flipped Classroom for Foreign Students

Authors: E. Tutova, Y. Ebzeeva, L. Gishkaeva, Y.Smirnova, N. Dubinina

Abstract:

We have been working with students from different countries and found it crucial to switch the languages to explain something. Whether it is Russian, or Chinese, explaining in a different language plays an important role for students’ cognitive abilities. In this work we are going to explore how code switching may impact the student’s perception of information. Code-switching is a tool defined by linguists as a switch from one language to another for convenience, explanation of terms unavailable in an initial language or sometimes prestige. In our case, we are going to consider code-switching from the function of convenience. As a rule, students who come to study Russian in a language environment, lack many skills in speaking the language. Thus, it is made harder to explain the rules for them of another language, which is English. That is why switching between English, Russian and Mandarin is crucial for their better understanding. In this work we are going to explore the code-switching as a tool which can help a teacher in a flipped classroom.

Keywords: bilingualism, psychological linguistics, code-switching, social linguistics

Procedia PDF Downloads 87
8883 Development and Analysis of Multigeneration System by Using Combined Solar and Geothermal Energy Resources

Authors: Muhammad Umar Khan, Mahesh Kumar, Faraz Neakakhtar

Abstract:

Although industrialization marks to the economy of a country yet it increases the pollution and temperature of the environment. The world is now shifting towards green energy because the utilization of fossil fuels is resulting in global warming. So we need to develop systems that can operate on renewable energy resources and have low heat losses. The combined solar and geothermal multigeneration system can solve this issue. Rather than making rankine cycle purely a solar-driven, heat from solar is used to drive vapour absorption cycle and reheated to generate power using geothermal reservoir. The results are displayed by using Engineering Equation Solver software, where inputs are varied to optimize the energy and exergy efficiencies of the system. The cooling effect is 348.2 KW, while the network output is 23.8 MW and reducing resultant emission of 105553 tons of CO₂ per year. This eco-friendly multigeneration system is capable of eliminating the use of fossil fuels and increasing the geothermal energy efficiency.

Keywords: cooling effect, eco-friendly, green energy, heat loses, multigeneration system, renewable energy, work output

Procedia PDF Downloads 272
8882 Aspiring to Achieve a Fairer Society

Authors: Bintou Jobe

Abstract:

Background: The research is focused on the concept of equality, diversity, and inclusion (EDI) and the need to achieve equity by treating individuals according to their circumstances and needs. The research is rooted in the UK Equality Act 2010, which emphasizes the importance of equal opportunities for all individuals regardless of their background and social life. However, inequality persists in society, particularly for those from minority backgrounds who face discrimination. Research Aim: The aim of this research is to promote equality, diversity, and inclusion by encouraging the regeneration of minds and the eradication of stereotypes. The focus is on promoting good Equality, Diversity and Inclusion practices in various settings, including schools, colleges, universities, and workplaces, to create environments where every individual feels a sense of belonging. Methodology: The research utilises a literature review approach to gather information on promoting inclusivity, diversity, and inclusion. Findings: The research highlights the significance of promoting equality, diversity, and inclusion practices to ensure that individuals receive the respect and dignity they deserve. It emphasises the importance of treating individuals based on their unique circumstances and needs rather than relying on stereotypes. The research also emphasises the benefits of diversity and inclusion in enhancing innovation, creativity, and productivity. The theoretical importance of this research is to raise awareness about the importance of regenerating minds, challenging stereotypes, and promoting equality, diversity, and inclusion. The emphasis is on treating individuals based on their circumstances and needs rather than relying on generalizations. Diversity and inclusion are beneficial in different settings, as highlighted by the research. By raising awareness about the importance of mind regeneration, eradicating stereotypes, and promoting equality, diversity, and inclusion, this research makes a significant contribution to the subject area. It emphasizes the necessity of treating individuals based on their unique circumstances instead of relying on generalizations. However, the methodology could be strengthened by incorporating primary research to complement the literature review approach. Data Collection and Analysis Procedures: The research utilised a literature review approach to gather relevant information on promoting inclusivity, diversity, and inclusion. NVivo software application was used to analysed and synthesize the findings to identify themes and support the research aim and objectives. Question Addressed: This research addresses the question of how to promote inclusivity, diversity, and inclusion and reduce the prevalence of stereotypes and prejudice. It explores the need to treat individuals based on their unique circumstances and needs rather than relying on generic assumptions. Encourage individuals to adopt a more inclusive approach. Provide managers with responsibility and training that helps them understand the importance of their roles in shaping the workplace culture. Have an equality, diversity, and inclusion manager from a majority background at the senior level who can speak up for underrepresented groups and flag any issues that need addressing. Conclusion: The research emphasizes the importance of promoting equality, diversity, and inclusion practices to create a fairer society. It highlights the need to challenge stereotypes, treat individuals according to their circumstances and needs, and promote a culture of respect and dignity.

Keywords: equality, fairer society, inclusion, diversity

Procedia PDF Downloads 51
8881 MLOps Scaling Machine Learning Lifecycle in an Industrial Setting

Authors: Yizhen Zhao, Adam S. Z. Belloum, Goncalo Maia Da Costa, Zhiming Zhao

Abstract:

Machine learning has evolved from an area of academic research to a real-word applied field. This change comes with challenges, gaps and differences exist between common practices in academic environments and the ones in production environments. Following continuous integration, development and delivery practices in software engineering, similar trends have happened in machine learning (ML) systems, called MLOps. In this paper we propose a framework that helps to streamline and introduce best practices that facilitate the ML lifecycle in an industrial setting. This framework can be used as a template that can be customized to implement various machine learning experiment. The proposed framework is modular and can be recomposed to be adapted to various use cases (e.g. data versioning, remote training on cloud). The framework inherits practices from DevOps and introduces other practices that are unique to the machine learning system (e.g.data versioning). Our MLOps practices automate the entire machine learning lifecycle, bridge the gap between development and operation.

Keywords: cloud computing, continuous development, data versioning, DevOps, industrial setting, MLOps

Procedia PDF Downloads 271
8880 An E-Government Implementation Model for Peruvian State Companies Based on COBIT 5.0: Definition and Goals of the Model

Authors: M. Bruzza, M. Tupia, F. Rodríguez

Abstract:

As part of the regulatory compliance process and the streamlining of public administration, the Peruvian government has implemented the National E-Government Plan in all state institutions with the aim of providing citizens with solid services based on the use of Information and Communications Technologies (ICT). As part of the regulations, the requisites to be met by public institutions have been submitted. However, the lack of an implementation model was detected, one that can serve as a guide to such institutions in order to materialize the organizational and technological structures needed, which allow them to provide the required digital services. This paper develops an implementation model of electronic government (e-government) for Peru’s state institutions, in compliance with current regulations based on a COBIT 5.0 framework. Furthermore, the paper introduces phase 1 of this model: business and IT goals, the goals cascade and the future model of processes.

Keywords: e-government, u-government, COBIT, implementation model

Procedia PDF Downloads 331
8879 The Role of Context in Interpreting Emotional Body Language in Robots

Authors: Jekaterina Novikova, Leon Watts

Abstract:

In the emerging world of human-robot interaction, people and robots will interact socially in real-world situations. This paper presents the results of an experimental study probing the interaction between situational context and emotional body language in robots. 34 people rated video clips of robots performing expressive behaviours in different situational contexts both for emotional expressivity on Valence-Arousal-Dominance dimensions and by selecting a specific emotional term from a list of suggestions. Results showed that a contextual information enhanced a recognition of emotional body language of a robot, although it did not override emotional signals provided by robot expressions. Results are discussed in terms of design guidelines on how an emotional body language of a robot can be used by roboticists developing social robots.

Keywords: social robotics, non-verbal communication, situational context, artificial emotions, body language

Procedia PDF Downloads 290
8878 Theoretical Study of Flexible Edge Seals for Vacuum Glazing

Authors: Farid Arya, Trevor Hyde

Abstract:

The development of vacuum glazing represents a significant advancement in the area of low heat loss glazing systems with the potential to substantially reduce building heating and cooling loads. Vacuum glazing consists of two or more glass panes hermetically sealed together around the edge with a vacuum gap between the panes. To avoid the glass panes from collapsing and touching each other under the influence of atmospheric pressure an array of support pillars is provided between the glass panes. A high level of thermal insulation is achieved by evacuating the spaces between the glass panes to a very low pressure which greatly reduces conduction and convection within the space; therefore heat transfer through this kind of glazing is significantly lower when compared with conventional insulating glazing. However, vacuum glazing is subject to inherent stresses due to atmospheric pressure and temperature differentials which can lead to fracture of the glass panes and failure of the edge seal. A flexible edge seal has been proposed to minimise the impact of these issues. In this paper, vacuum glazing system with rigid and flexible edge seals is theoretically studied and their advantages and disadvantages are discussed.

Keywords: flexible edge seal, stress, support pillar, vacuum glazing

Procedia PDF Downloads 236
8877 Material Detection by Phase Shift Cavity Ring-Down Spectroscopy

Authors: Rana Muhammad Armaghan Ayaz, Yigit Uysallı, Nima Bavili, Berna Morova, Alper Kiraz

Abstract:

Traditional optical methods for example resonance wavelength shift and cavity ring-down spectroscopy used for material detection and sensing have disadvantages, for example, less resistance to laser noise, temperature fluctuations and extraction of the required information can be a difficult task like ring downtime in case of cavity ring-down spectroscopy. Phase shift cavity ring down spectroscopy is not only easy to use but is also capable of overcoming the said problems. This technique compares the phase difference between the signal coming out of the cavity with the reference signal. Detection of any material is made by the phase difference between them. By using this technique, air, water, and isopropyl alcohol can be recognized easily. This Methodology has far-reaching applications and can be used in air pollution detection, human breath analysis and many more.

Keywords: materials, noise, phase shift, resonance wavelength, sensitivity, time domain approach

Procedia PDF Downloads 154
8876 Canned Sealless Pumps for Hazardous Applications

Authors: Shuja Alharbi

Abstract:

Oil and Gas industry has many applications considered as toxic or hazardous, where process fluid leakage is not permitted and leads to health, safety, and environmental impacts. Caustic/Acidic applications, High Benzene Concentrations, Hydrogen sulfide rich oil/gas as well as liquids operating above their auto-ignition temperatures are examples of such liquids that pose as a risk to the industry operation, and for those, special arrangements are in place to allow for the safe operation environment. Pumps in the industry requires special attention, specifically in the interface between the fluid and the environment, where the potential of leakages are foreseen. Mechanical Seals are used to contain the fluid within the equipment, but the prices are ever increasing for such seals, along with maintenance, design, and operating requirements. Several alternatives to seals are being employed nowadays, such as Sealless systems, which is hermitically sealed from the atmosphere and does not require sealing. This technology is considered relatively new and requires more studies to understand the limitations and factors associated from an owner and design perspective. Things like financial factors, maintenance factors, and design limitation should be studies further in order to have a mature and reliable technical solution available to end users.

Keywords: pump, sealless, selection, failure

Procedia PDF Downloads 103
8875 Detect Cable Force of Cable Stayed Bridge from Accelerometer Data of SHM as Real Time

Authors: Nguyen Lan, Le Tan Kien, Nguyen Pham Gia Bao

Abstract:

The cable-stayed bridge belongs to the combined system, in which the cables is a major strutual element. Cable-stayed bridges with large spans are often arranged with structural health monitoring systems to collect data for bridge health diagnosis. Cables tension monitoring is a structural monitoring content. It is common to measure cable tension by a direct force sensor or cable vibration accelerometer sensor, thereby inferring the indirect cable tension through the cable vibration frequency. To translate cable-stayed vibration acceleration data to real-time tension requires some necessary calculations and programming. This paper introduces the algorithm, labview program that converts cable-stayed vibration acceleration data to real-time tension. The research results are applied to the monitoring system of Tran Thi Ly cable-stayed bridge and Song Hieu cable-stayed bridge in Vietnam.

Keywords: cable-stayed bridge, cable fore, structural heath monitoring (SHM), fast fourie transformed (FFT), real time, vibrations

Procedia PDF Downloads 78
8874 Evaluation Methods for Question Decomposition Formalism

Authors: Aviv Yaniv, Ron Ben Arosh, Nadav Gasner, Michael Konviser, Arbel Yaniv

Abstract:

This paper introduces two methods for the evaluation of Question Decomposition Meaning Representation (QDMR) as predicted by sequence-to-sequence model and COPYNET parser for natural language questions processing, motivated by the fact that previous evaluation metrics used for this task do not take into account some characteristics of the representation, such as partial ordering structure. To this end, several heuristics to extract such partial dependencies are formulated, followed by the hereby proposed evaluation methods denoted as Proportional Graph Matcher (PGM) and Conversion to Normal String Representation (Nor-Str), designed to better capture the accuracy level of QDMR predictions. Experiments are conducted to demonstrate the efficacy of the proposed evaluation methods and show the added value suggested by one of them- the Nor-Str, for better distinguishing between high and low-quality QDMR when predicted by models such as COPYNET. This work represents an important step forward in the development of better evaluation methods for QDMR predictions, which will be critical for improving the accuracy and reliability of natural language question-answering systems.

Keywords: NLP, question answering, question decomposition meaning representation, QDMR evaluation metrics

Procedia PDF Downloads 82