Search results for: improvement of properties
3040 Brief Inquisition of Photocatalytic Degradation of Azo Dyes by Magnetically Enhanced Zinc Oxide Nanoparticles
Authors: Thian Khoon Tan, Poi Sim Khiew, Wee Siong Chiu, Chin Hua Chia
Abstract:
This study investigates the efficacy of magnetically enhanced zinc oxide (MZnO) nanoparticles as a photocatalyst in the photodegradation of synthetic dyes, especially azo dyes. This magnetised zinc oxide has been simply fabricated by mechanical mixing through low-temperature calcination. This MZnO has been analysed through several analytical measurements, including FESEM, XRD, BET, EDX, and TEM, as well as VSM analysis which reflects successful fabrication. A high volume of azo dyes was found in industries effluent wastewater. They contribute to serious environmental stability and are very harmful to human health due to their high stability and carcinogenic properties. Therefore, five azo dyes, Reactive Red 120 (RR120), Disperse Blue 15 (DB15), Acid Brown 14 (AB14), Orange G (OG), and Acid Orange 7 (AO7), have been randomly selected to study their photodegradation property with reference to few characteristics, such as number of azo functional groups, benzene groups, molecular mass, and absorbance. The photocatalytic degradation efficiency was analysed by using a UV-vis spectrophotometer, where the reaction rate constant was obtained. It was found that azo dyes were significantly degraded through the first-order rate constant, which shows a higher kinetic constant as the number of azo functional groups and benzene group increases. However, the kinetic constant is inversely proportional to the molecular weight of these azo dyes.Keywords: nanoparticles, photocatalyst, magnetically enhanced, wastewater, synthetic dyes, azo dyes
Procedia PDF Downloads 113039 Experimental Investigation of The Influence of Cement on Soil-Municipal Solid Waste Incineration Fly ash Mix Properties
Authors: Gehan Aouf, Diala Tabbal, Abd El Rahim Sabsabi, Rashad Aouf
Abstract:
The aim of this study is to assess the viability of utilizing Municipal Solid Waste Incineration Fly Ash (MSWIFA) with Ordinary Portland cement as soil reinforcement materials for geotechnical engineering applications. A detailed experimental program is carried out, followed by analysis of results. Soil samples were prepared by adding Cement to MSWIFA-soil mix at different percentages. Then, a series of laboratory tests were performed, namely: Sieve analysis, Atterberg limits tests, Unconfined compression test, and Proctor tests. A parametric study is conducted to investigate the effect of adding the cement at different percentages on the unconfined compression strength, maximum dry density, and optimum moisture content of clayey soil-MSWIFA The variation of contents of admixtures were 10%, 20%, and 30% for MSWIFA by dry total weight of soil and 10%, 15%, and 20% for Portland cement by dry total weight of the mix. The test results reveal that adding MSWIFA to the soil up to 20% increased the MDD of the mixture and decreased the OMC, then an opposite trend for results were found when the percentage of MSWIFA exceeds 20%. This is due to the low specific gravity of MSWIFA and to the greater water absorption of MSWIFA. The laboratory tests also indicate that the UCS values were found to be increased for all the mixtures with curing periods of 7, 14, and 28 days. It is also observed that the cement increased the strength of the finished product of the mix of soil and MSWIFA.Keywords: clayey soil, cement, MSWIFA, unconfined compression strength
Procedia PDF Downloads 1313038 Comparative Antibacterial Property of Matured Trunk and Stem Bark Extract of Tamarindus indica L., Preformulation, Development and Quality Control of Cream
Authors: A. M. T. Jacinto, M.O. Osi
Abstract:
Tamarind has various medicinal properties among which is its antibacterial property. Its bark contains saponins, alkaloids, sesquiterpenes and tannins. It is rich in phlobapenes which is responsible for antibacterial property. The objective of the study was to determine which bark will produce the highest antibacterial property, develop it into a topical cream and evaluate its quality and characteristics. Powdered barks of Tamarind were extracted by soxhlet method using 70% acetone. Stem bark produced a higher yield than trunk bark (5.85 g vs. 4.73 g). It was found that the trunk bark was more sensitive than stem bark to microorganisms namely Staphylococcus aureus, Corynebacterium minutissimum, and Streptococcus spp. Sensitivity of trunk bark can be attributed to a more developed phytoconstituents. Dermal sensitization test on both sexes of rabbits using the following concentrations: 100%, 40% and 20% of extract showed that Tamarind has no irritating property and therefore safe for formulation into an antibacterial cream. Excipients used for formulation such as methyl paraben, propyl paraben, stearyl alcohol and white petrolatum were compatible with the Tamarind acetone extract through Differential Scanning Calorimetry except sodium lauryl sulfate that exhibited crystallization when subjected at 200˚C. The method of manufacture used in cream is fusion, therefore strict compliance of processing temperature should be observed to prevent polymorphism. Quality control tests of formulated cream based on USP 30 and Philippine Pharmacopeia were satisfactory.Keywords: antibacterial, differential scanning calorimetry, tannins, dermal sensitization
Procedia PDF Downloads 4863037 Estimates of (Co)Variance Components and Genetic Parameters for Body Weights and Growth Efficiency Traits in the New Zealand White Rabbits
Authors: M. Sakthivel, A. Devaki, D. Balasubramanyam, P. Kumarasamy, A. Raja, R. Anilkumar, H. Gopi
Abstract:
The genetic parameters of growth traits in the New Zealand White rabbits maintained at Sheep Breeding and Research Station, Sandynallah, The Nilgiris, India were estimated by partitioning the variance and covariance components. The (co)variance components of body weights at weaning (W42), post-weaning (W70) and marketing (W135) age and growth efficiency traits viz., average daily gain (ADG), relative growth rate (RGR) and Kleiber ratio (KR) estimated on a daily basis at different age intervals (1=42 to 70 days; 2=70 to 135 days and 3=42 to 135 days) from weaning to marketing were estimated by restricted maximum likelihood, fitting six animal models with various combinations of direct and maternal effects. Data were collected over a period of 15 years (1998 to 2012). A log-likelihood ratio test was used to select the most appropriate univariate model for each trait, which was subsequently used in bivariate analysis. Heritability estimates for W42, W70 and W135 were 0.42 ± 0.07, 0.40 ± 0.08 and 0.27 ± 0.07, respectively. Heritability estimates of growth efficiency traits were moderate to high (0.18 to 0.42). Of the total phenotypic variation, maternal genetic effect contributed 14 to 32% for early body weight traits (W42 and W70) and ADG1. The contribution of maternal permanent environmental effect varied from 6 to 18% for W42 and for all the growth efficiency traits except for KR2. Maternal permanent environmental effect on most of the growth efficiency traits was a carryover effect of maternal care during weaning. Direct maternal genetic correlations, for the traits in which maternal genetic effect was significant, were moderate to high in magnitude and negative in direction. Maternal effect declined as the age of the animal increased. The estimates of total heritability and maternal across year repeatability for growth traits were moderate and an optimum rate of genetic progress seems possible in the herd by mass selection. The estimates of genetic and phenotypic correlations among body weight traits were moderate to high and positive; among growth efficiency traits were low to high with varying directions; between body weights and growth efficiency traits were very low to high in magnitude and mostly negative in direction. Moderate to high heritability and higher genetic correlation in body weight traits promise good scope for genetic improvement provided measures are taken to keep the inbreeding at the lowest level.Keywords: genetic parameters, growth traits, maternal effects, rabbit genetics
Procedia PDF Downloads 4473036 Finite-Sum Optimization: Adaptivity to Smoothness and Loopless Variance Reduction
Authors: Bastien Batardière, Joon Kwon
Abstract:
For finite-sum optimization, variance-reduced gradient methods (VR) compute at each iteration the gradient of a single function (or of a mini-batch), and yet achieve faster convergence than SGD thanks to a carefully crafted lower-variance stochastic gradient estimator that reuses past gradients. Another important line of research of the past decade in continuous optimization is the adaptive algorithms such as AdaGrad, that dynamically adjust the (possibly coordinate-wise) learning rate to past gradients and thereby adapt to the geometry of the objective function. Variants such as RMSprop and Adam demonstrate outstanding practical performance that have contributed to the success of deep learning. In this work, we present AdaLVR, which combines the AdaGrad algorithm with loopless variance-reduced gradient estimators such as SAGA or L-SVRG that benefits from a straightforward construction and a streamlined analysis. We assess that AdaLVR inherits both good convergence properties from VR methods and the adaptive nature of AdaGrad: in the case of L-smooth convex functions we establish a gradient complexity of O(n + (L + √ nL)/ε) without prior knowledge of L. Numerical experiments demonstrate the superiority of AdaLVR over state-of-the-art methods. Moreover, we empirically show that the RMSprop and Adam algorithm combined with variance-reduced gradients estimators achieve even faster convergence.Keywords: convex optimization, variance reduction, adaptive algorithms, loopless
Procedia PDF Downloads 713035 Literature Review of the Antibacterial Effects of Salvia Officinalis L.
Authors: Benguerine Zohra, Merzak Siham, Bouziane Cheimaa, Si Tayeb Fatima, Jou Siham, Belkessam
Abstract:
Introduction: Antibiotics, widely produced and consumed in large quantities, have proven problematic due to various types of side effects. The development of bacterial resistance to currently available antibiotics has made the search for new antibacterial agents necessary. One alternative strategy to combat antibiotic-resistant bacteria is the use of natural antimicrobial substances such as plant extracts. The objective of this study is to provide an overview of the antibacterial effects of a plant native to the Middle East and Mediterranean regions, Salvia officinalis (sage). Materials and Methods: This review article was conducted by searching studies in the PubMed, Scopus, JSTOR, and SpringerLink databases. The search terms were "Salvia officinalis L." and "antibacterial effects." Only studies that met our inclusion criteria (in English, antibacterial effects of Salvia officinalis L., and primarily dating from 2012 to 2023) were accepted for further review. Results and Discussion: The initial search strategy identified approximately 78 references, with only 13 articles included in this review. The synthesis of the articles revealed that several data sources confirm the antimicrobial effects of S. officinalis. Its essential oil and alcoholic extract exhibit strong bactericidal and bacteriostatic effects against both Gram-positive and Gram-negative bacteria. Conclusion: The significant value of the extract, oil, and leaves of S. officinalis calls for further studies on the other useful and unknown properties of this multi-purpose plant.Keywords: salvia officinalis, literature review, antibacterial, effects
Procedia PDF Downloads 383034 Influence of AAR-Induced Expansion Level on Confinement Efficiency of CFRP Wrapping Applied to Damaged Circular Concrete Columns
Authors: Thamer Kubat, Riadh Al Mahiadi, Ahmad Shayan
Abstract:
The alkali-aggregate reaction (AAR) in concrete has a negative influence on the mechanical properties and durability of concrete. Confinement by carbon fiber reinforced polymer (CFRP) is an effective method of treatment for some AAR-affected elements. Eighteen reinforced columns affected by different levels of expansion due to AAR were confined using CFRP to evaluate the effect of expansion level on confinement efficiency. Strength and strain capacities (axial and circumferential) were measured using photogrammetry under uniaxial compressive loading to evaluate the efficiency of CFRP wrapping for the rehabilitation of affected columns. In relation to uniaxial compression capacity, the results indicated that the confinement of AAR-affected columns by one layer of CFRP is sufficient to reach and exceed the load capacity of unaffected sound columns. Parallel to the experimental study, finite element (FE) modeling using ATENA software was employed to predict the behavior of CFRP-confined damaged concrete and determine the possibility of using the model in a parametric study by simulating the number of CFRP layers. A comparison of the experimental results with the results of the theoretical models showed that FE modeling could be used for the prediction of the behavior of confined AAR-damaged concrete.Keywords: ATENA, carbon fiber reinforced polymer (CFRP), confinement efficiency, finite element (FE)
Procedia PDF Downloads 763033 Micro-Arc Oxidation Titanium and Post Treatment by Cold Plasma and Graft Polymerization of Acrylic Acid for Biomedical Application
Authors: Shu-Chuan Liao, Chia-Ti Chang, Ko-Shao Chen
Abstract:
Titanium and its alloy are widely used in many fields such as dentistry or orthopaedics. Due to their high strength low elastic modulus that chemical inertness and bio inert. The micro-arc oxidation used to formation a micro porous ceramic oxide layer film on Titanium surface and also to improve the resistance corrosion. For improving the biocompatibility, micro-arc oxidation surfaces bio-inert need to introduce reactive group. We introduced boundary layer by used plasma enhanced chemical vapor deposition of hexamethyldisilazane (HMDS) and organic active layer by UV light graft reactive monomer acrylic acid (AAc) therefore we can immobilize Chondroitin sulphate on surface easily by crosslinking EDC/NHS. The surface properties and composition of the modified layer were measured by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) and water contact angle. Water contact angle of the plasma-treated Ti surface decreases from 60° to 38°, which is an indication of hydrophilicity. The results of electrochemical polarization analysis showed that the sample plasma treated at micro-arc oxidation after plasma treatment has the best corrosion resistance. The result showed that we can immobilize chondroitin sulfate successful by a series of modification and MTT assay indicated the biocompatibility has been improved in this study.Keywords: MAO, plasma, graft polymerization, biomedical application
Procedia PDF Downloads 2593032 Research on the Strategy of Orbital Avoidance for Optical Remote Sensing Satellite
Authors: Zheng DianXun, Cheng Bo, Lin Hetong
Abstract:
This paper focuses on the orbit avoidance strategies of optical remote sensing satellite. The optical remote sensing satellite, moving along the Sun-synchronous orbit, is equipped with laser warning equipment to alert CCD camera from laser attacks. There are three ways to protect the CCD camera: closing the camera cover, satellite attitude maneuver and satellite orbit avoidance. In order to enhance the safety of optical remote sensing satellite in orbit, this paper explores the strategy of satellite avoidance. The avoidance strategy is expressed as the evasion of pre-determined target points in the orbital coordinates of virtual satellite. The so-called virtual satellite is a passive vehicle which superposes the satellite at the initial stage of avoidance. The target points share the consistent cycle time and the same semi-major axis with the virtual satellite, which ensures the properties of the satellite’s Sun-synchronous orbit remain unchanged. Moreover, to further strengthen the avoidance capability of satellite, it can perform multi-target-points avoid maneuvers. On occasions of fulfilling the satellite orbit tasks, the orbit can be restored back to virtual satellite through orbit maneuvers. Thereinto, the avoid maneuvers adopts pulse guidance. And the fuel consumption is also optimized. The avoidance strategy discussed in this article is applicable to optical remote sensing satellite when it is encountered with hostile attack of space-based laser anti-satellite.Keywords: optical remote sensing satellite, satellite avoidance, virtual satellite, avoid target-point, avoid maneuver
Procedia PDF Downloads 4043031 Collaborative Data Refinement for Enhanced Ionic Conductivity Prediction in Garnet-Type Materials
Authors: Zakaria Kharbouch, Mustapha Bouchaara, F. Elkouihen, A. Habbal, A. Ratnani, A. Faik
Abstract:
Solid-state lithium-ion batteries have garnered increasing interest in modern energy research due to their potential for safer, more efficient, and sustainable energy storage systems. Among the critical components of these batteries, the electrolyte plays a pivotal role, with LLZO garnet-based electrolytes showing significant promise. Garnet materials offer intrinsic advantages such as high Li-ion conductivity, wide electrochemical stability, and excellent compatibility with lithium metal anodes. However, optimizing ionic conductivity in garnet structures poses a complex challenge, primarily due to the multitude of potential dopants that can be incorporated into the LLZO crystal lattice. The complexity of material design, influenced by numerous dopant options, requires a systematic method to find the most effective combinations. This study highlights the utility of machine learning (ML) techniques in the materials discovery process to navigate the complex range of factors in garnet-based electrolytes. Collaborators from the materials science and ML fields worked with a comprehensive dataset previously employed in a similar study and collected from various literature sources. This dataset served as the foundation for an extensive data refinement phase, where meticulous error identification, correction, outlier removal, and garnet-specific feature engineering were conducted. This rigorous process substantially improved the dataset's quality, ensuring it accurately captured the underlying physical and chemical principles governing garnet ionic conductivity. The data refinement effort resulted in a significant improvement in the predictive performance of the machine learning model. Originally starting at an accuracy of 0.32, the model underwent substantial refinement, ultimately achieving an accuracy of 0.88. This enhancement highlights the effectiveness of the interdisciplinary approach and underscores the substantial potential of machine learning techniques in materials science research.Keywords: lithium batteries, all-solid-state batteries, machine learning, solid state electrolytes
Procedia PDF Downloads 613030 Experimental Investigation, Analysis and Optimization of Performance and Emission Characteristics of Composite Oil Methyl Esters at 160 bar, 180 bar and 200 bar Injection Pressures by Multifunctional Criteria Technique
Authors: Yogish Huchaiah, Chandrashekara Krishnappa
Abstract:
This study considers the optimization and validation of experimental results using Multi-Functional Criteria Technique (MFCT). MFCT is concerned with structuring and solving decision and planning problems involving multiple variables. Production of biodiesel from Composite Oil Methyl Esters (COME) of Jatropha and Pongamia oils, mixed in various proportions and Biodiesel thus obtained from two step transesterification process were tested for various Physico-Chemical properties and it has been ascertained that they were within limits proposed by ASTME. They were blended with Petrodiesel in various proportions. These Methyl Esters were blended with Petrodiesel in various proportions and coded. These blends were used as fuels in a computerized CI DI engine to investigate Performance and Emission characteristics. From the analysis of results, it was found that 180MEM4B20 blend had the maximum Performance and minimum Emissions. To validate the experimental results, MFCT was used. Characteristics such as Fuel Consumption (FC), Brake Power (BP), Brake Specific Fuel Consumption (BSFC), Brake Thermal Efficiency (BTE), Carbon dioxide (CO2), Carbon Monoxide (CO), Hydro Carbon (HC) and Nitrogen oxide (NOx) were considered as dependent variables. It was found from the application of this method that the optimized combination of Injection Pressure (IP), Mix and Blend is 178MEM4.2B24. Overall corresponding variation between optimization and experimental results was found to be 7.45%.Keywords: COME, IP, MFCT, optimization, PI, PN, PV
Procedia PDF Downloads 2113029 Designing Modified Nanocarriers Containing Selenium Nanoparticles Extracted from the Lactobacillus acidophilus and Their Anticancer Properties
Authors: Mahnoosh Aliahmadi, Akbar Esmaeili
Abstract:
This study synthesized new modified imaging nanocapsules (NCs) of gallium@deferoxamine/folic acid/chitosan/polyaniline/polyvinyl alcohol (Ga@DFA/FA/CS/PANI/PVA) containing Morus nigra extract by selenium nanoparticles prepared from Lactobacillus acidophilus. Se nanoparticles were then deposited on (Ga@DFA/FA/CS/PANI/PVA) using the impregnation method. The modified contrast agents were mixed with M. nigra extract, and their antibacterial activities were investigated by applying them to L929 cell lines. The influence of variable factors including surfactant, solvent, aqueous phase, pH, buffer, minimum Inhibitory concentration (MIC), minimum bactericidal concentration (MBC), cytotoxicity on cancer cells, antibiotic, antibiogram, release and loading, stirring effect, the concentration of nanoparticle, olive oil, and thermotical methods was investigated. The structure and morphology of the synthesized contrast agents were characterized by zeta potential sizer analysis (ZPS), X-Ray diffraction (XRD), Fourier-transform infrared (FT-IR), and energy-dispersive X-ray (EDX), ultraviolet-visible (UV-Vis) spectra, and scanning electron microscope (SEM). The experimental section was conducted and monitored by response surface methods (RSM) and MTT conversion assay. Antibiogram testing of NCs on Pseudomonas aeruginosa bacteria was successful, and the MIC=2 factor was obtained with a less harmful effect.Keywords: imaging contrast agent, nanoparticles, response surface method, Lactobacillus acidophilus, selenium
Procedia PDF Downloads 803028 Novel Hybrid Ceramic Nanocomposites Fabricated by Rapid Sintering Technology
Authors: Iftikhar Ahmad, Abulhakim Almajid
Abstract:
Alumina (Al2O3) is an attractive structural ceramic however; brittleness turns Al2O3 down for advanced applications. Development of multi-phase phase ceramics systems is promising to curtail the brittleness and the incorporation of strong/elastic graphene, as third phase, into dual phase (Al2O3-SiC) is striking for mechanical upgrading purpose. Thin graphene nanosheets (GNS) were prepared by thermal exfoliation process and reinforced into dual phase ceramic system. The hybrid nanocomposite was consolidated by novel HF-IH (high-frequency induction heating) sintering furnace at 1500 °C under 50 MPa in vacuum conditions. Structural features and grain size of the resulting nanocomposite were analyzed by SEM and TEM whilst the mechanical properties were assessed by microhardness and nanoindentation techniques. The fracture toughness of the hybrid nanocomposites was appraised by direct crack measurement method. Electron microscopic investigations confirmed the preparation of thin (< 10 nm) graphene nanosheets (GNS). HF-IH sintering route condensed the three-phase (GNS-Al2O3-SiC) hybrid nanocomposite system to > 99% relative densities. SEM of the hybrid nanocomposites fractured surfaces revealed even distribution of the nanocomposite constituents and changed in fracture-mode. Structurally, 88% grain reduction into hybrid nanocomposite was also obtained. Mechanically, enhanced fracture toughness (50%) and hardness (53%) were also achieved for hybrid nanocomposites were attained against bench marked monolithic Al2O3.Keywords: alumina, graphene, hybrid nanocomposites, rapid sintering
Procedia PDF Downloads 3783027 Separation, Identification, and Measuring Gossypol in the Cottonseed Oil and Investigating the Performance of Drugs Prepared from the Combination of Plant Extract and Oil in the Treatment of Cutaneous Leishmaniasis Resistant to Drugs
Authors: Sara Taghdisi, M. Mirmohammadi, M. Mokhtarian
Abstract:
In 2013, the World Health Organization announced the cases of Cutaneous leishmaniasis infection in Iran between 69,000 to 113,000. The most common chemical drugs for Cutaneous leishmaniasis treatment are sodium stibogluconate, and meglumine antimonate, which not only have relatively many side effects, but also some species of the Leishmania genus have become resistant to them .The most prominent compound existing in different parts of the cotton plant is a yellow polyphenol called Gossypol. Gossypol is an extremely valuable compound and has anti-cancer properties. In the current project, Gossypol was extracted with a liquid-liquid extraction method in 120 minutes in the presence of Phosphoric acid from the cotton seed oil of Golestan beach varieties, then got crystallized in darkness using Acetic acid and isolated as Gossypol Acetic acid. The efficiency of the extracted crystal was obtained at 0.12+- 1.28. the cotton plant could be efficient in the treatment of Cutaneous leishmaniasis. The extract of the green-leaf cotton boll of Jargoyeh varieties was tested as an ointment on the target group of patients suffering from Cutaneous leishmaniasis resistant to drugs esistant to drugs by our colleagues in the research team. The results showed the Pearson's correlation coefficient of 0.72 between the two variables of wound diameter and the extract use over time which indicated the positive effect of this extract on the treatment of Cutaneous leishmaniasis was resistant to drugs.Keywords: cottonseed oil, crystallization, gossypol, green-leaf
Procedia PDF Downloads 1093026 Design and Fabrication of ZSO Nanocomposite Thin Film Based NO2 Gas Sensor
Authors: Bal Chandra Yadav, Rakesh K. Sonker, Anjali Sharma, Punit Tyagi, Vinay Gupta, Monika Tomar
Abstract:
In the present study, ZnO doped SnO2 thin films of various compositions were deposited on the surface of a corning substrate by dropping the two sols containing the precursors for composite (ZSO) with subsequent heat treatment. The sensor materials used for selective detection of nitrogen dioxide (NO2) were designed from the correlation between the sensor composition and gas response. The available NO2 sensors are operative at very high temperature (150-800 °C) with low sensing response (2-100) even in higher concentrations. Efforts are continuing towards the development of NO2 gas sensor aiming with an enhanced response along with a reduction in operating temperature by incorporating some catalysts or dopants. Thus in this work, a novel sensor structure based on ZSO nanocomposite has been fabricated using chemical route for the detection of NO2 gas. The structural, surface morphological and optical properties of prepared films have been studied by using X-ray diffraction (XRD), Atomic force microscopy (AFM), Transmission electron microscope (TEM) and UV-visible spectroscopy respectively. The effect of thickness variation from 230 nm to 644 nm of ZSO composite thin film has been studied and the ZSO thin film of thickness ~ 460 nm was found to exhibit the maximum gas sensing response ~ 2.1×103 towards 20 ppm NO2 gas at an operating temperature of 90 °C. The average response and recovery times of the sensor were observed to be 3.51 and 6.91 min respectively. Selectivity of the sensor was checked with the cross-exposure of vapour CO, acetone, IPA, CH4, NH3 and CO2 gases. It was found that besides the higher sensing response towards NO2 gas, the prepared ZSO thin film was also highly selective towards NO2 gas.Keywords: ZSO nanocomposite thin film, ZnO tetrapod structure, NO2 gas sensor, sol-gel method
Procedia PDF Downloads 3393025 LWD Acquisition of Caliper and Drilling Mechanics in a Geothermal Well, A Case Study in Sorik Marapi Field – Indonesia
Authors: Vinda B. Manurung, Laila Warkhaida, David Hutabarat, Sentanu Wisnuwardhana, Christovik Simatupang, Dhani Sanjaya, Ashadi, Redha B. Putra, Kiki Yustendi
Abstract:
The geothermal drilling environment presents many obstacles that have limited the use of directional drilling and logging-while-drilling (LWD) technologies, such as borehole washout, mud losses, severe vibration, and high temperature. The case study presented in this paper demonstrates a practice to enhance data logging in geothermal drilling by deploying advanced telemetry and LWD technologies. This operation is aiming continuous improvement in geothermal drilling operations. The case study covers a 12.25-in. hole section of well XX-05 in Pad XX of the Sorik Marapi Geothermal Field. LWD string consists of electromagnetic (EM) telemetry, pressure while drilling (PWD), vibration (DDSr), and acoustic calliper (ACAL). Through this tool configuration, the operator acquired drilling mechanics and caliper logs in real-time and recorded mode, enabling effective monitoring of wellbore stability. Throughout the real-time acquisition, EM-PPM telemetry had provided a three times faster data rate to the surface unit. With the integration of Caliper data and Drilling mechanics data (vibration and ECD -equivalent circulating density), the borehole conditions were more visible to the directional driller, allowing for better control of drilling parameters to minimize vibration and achieve optimum hole cleaning in washed-out or tight formation sequences. After reaching well TD, the recorded data from the caliper sensor indicated an average of 8.6% washout for the entire 12.25-in. interval. Washout intervals were compared with loss occurrence, showing potential for the caliper to be used as an indirect indicator of fractured intervals and validating fault trend prognosis. This LWD case study has given added value in geothermal borehole characterization for both drilling operation and subsurface. Identified challenges while running LWD in this geothermal environment need to be addressed for future improvements, such as the effect of tool eccentricity and the impact of vibration. A perusal of both real-time and recorded drilling mechanics and caliper data has opened various possibilities for maximizing sensor usage in future wells.Keywords: geothermal drilling, geothermal formation, geothermal technologies, logging-while-drilling, vibration, caliper, case study
Procedia PDF Downloads 1303024 The Impact of Artificial Intelligence on Medicine Production
Authors: Yasser Ahmed Mahmoud Ali Helal
Abstract:
The use of CAD (Computer Aided Design) technology is ubiquitous in the architecture, engineering and construction (AEC) industry. This has led to its inclusion in the curriculum of architecture schools in Nigeria as an important part of the training module. This article examines the ethical issues involved in implementing CAD (Computer Aided Design) content into the architectural education curriculum. Using existing literature, this study begins with the benefits of integrating CAD into architectural education and the responsibilities of different stakeholders in the implementation process. It also examines issues related to the negative use of information technology and the perceived negative impact of CAD use on design creativity. Using a survey method, data from the architecture department of University was collected to serve as a case study on how the issues raised were being addressed. The article draws conclusions on what ensures successful ethical implementation. Millions of people around the world suffer from hepatitis C, one of the world's deadliest diseases. Interferon (IFN) is treatment options for patients with hepatitis C, but these treatments have their side effects. Our research focused on developing an oral small molecule drug that targets hepatitis C virus (HCV) proteins and has fewer side effects. Our current study aims to develop a drug based on a small molecule antiviral drug specific for the hepatitis C virus (HCV). Drug development using laboratory experiments is not only expensive, but also time-consuming to conduct these experiments. Instead, in this in silicon study, we used computational techniques to propose a specific antiviral drug for the protein domains of found in the hepatitis C virus. This study used homology modeling and abs initio modeling to generate the 3D structure of the proteins, then identifying pockets in the proteins. Acceptable lagans for pocket drugs have been developed using the de novo drug design method. Pocket geometry is taken into account when designing ligands. Among the various lagans generated, a new specific for each of the HCV protein domains has been proposed.Keywords: drug design, anti-viral drug, in-silicon drug design, hepatitis C virus (HCV) CAD (Computer Aided Design), CAD education, education improvement, small-size contractor automatic pharmacy, PLC, control system, management system, communication
Procedia PDF Downloads 833023 Synthesis and Characterization of New Thermotropic Monomers – Containing Phosphorus
Authors: Diana Serbezeanu, Ionela-Daniela Carja, Tachita Vlad-Bubulac, Sergiu Sova
Abstract:
New phosphorus-containing monomers having methoxy end functional groups were prepared from methyl 4-hydroxybenzoate and two different dichlorides with phosphorus, namely phenyl phosphonic dichloride and phenyl dichlorophosphate. The structures of the monomers were confirmed by FTIR and NMR spectroscopy. The assignments for the 1H, 13C and 31P chemical shifts are based on 1D and 2D NMR homo- and heteronuclear correlations (H,H-COSY (Correlation Spectroscopy), H,C-HMQC (Heteronuclear Multiple Quantum Correlation and H,C-HMBC (Heteronuclear Multiple Bond Correlation)) and 31P-13C couplings. The monomers exhibited good solubility in common organic solvents. Dimethyl sulfoxide was to be a good solvent to grow crystals of considerable size which were investigated by X-ray analysis. One of these two new monomers presented thermotropic liquid crystalline behaviour, as revealed by differential scanning calorimetry (DSC), polarized light microscopy (PLM) and X-ray diffraction (XRD). The transition temperature from crystal to liquid crystalline state (K→LC) was 143°C and from the LC to isotropic state (LC→I) was 167°C. Upon heating, bis(4-(methoxycarbonyl)phenyl formed fine textures, difficult to be ascribed to smectic or nematic phases. Upon cooling from the isotropic state, bis(4-(methoxycarbonyl)phenyl exhibited a mosaic-type texture. X-ray diffraction measurements at small angles (SAXS) of bis(4-(methoxycarbonyl)phenyl showed two peaks at 1.8 Å and 3.5 Å, respectively suggesting organization at supramolecular level.Keywords: phosphorus-containing monomers, polarized light microscopy, structure investigation, thermotropic liquid crystalline properties
Procedia PDF Downloads 2993022 Assessing Digestive Enzymes Inhibitory Properties of Anthocyanins and Procyanidins from Apple, Red Grape, Cinnamon
Authors: Pinar Ercan, Sedef N. El
Abstract:
The goals of this study were to determine the total anthocyanin and procyanidin contents and their in vitro bioaccessibilities of apple, red grape and cinnamon by a static in vitro digestion method reported by the COST FA1005 Action INFOGEST, as well as in vitro inhibitory effects of these food samples on starch and lipid digestive enzymes. While the highest total anthocyanin content was found in red grape (164.76 ± 2.51 mg/100 g), the highest procyanidin content was found in cinnamon (6432.54±177.31 mg/100 g) among the selected food samples (p<0.05). The anthocyanin bioaccessibilities were found as 10.23±1 %, 8.23±0.64 %, and 8.73±0.70 % in apple, red grape, and cinnamon, respectively. The procyanidin bioaccessibilities of apple, red grape, and cinnamon were found as 17.57±0.71 %, 14.08±0.74 % and 18.75±1.49 %, respectively. The analyzed apple, red grape and cinnamon showed the inhibitory activity against α-glucosidase (IC50 544.27±21.94, 445.63±15.67, 1592±17.58 μg/mL, respectively), α-amylase (IC50 38.41±7.26, 56.12±3.60, 3.54±0.86 μg/mL, respectively), and lipase (IC50 52.65±2.05, 581.70±54.14, 49.63±2.72 μg/mL, respectively). Red grape sample showed the highest inhibitory activity against α-glucosidase, cinnamon showed the highest inhibitory activity against α-amylase and lipase according to IC50 (concentration of inhibitor required to produce a 50% inhibition of the initial rate of reaction) and Catechin equivalent inhibition capacity (CEIC50) values. This study reported that apple, grape and cinnamon samples can inhibit the activity of digestive enzymes in vitro. The consumption of these samples would be used in conjunction with a low-calorie diet for body weight management.Keywords: anthocyanin, α-amylase, α-glucosidase, lipase, procyanidin
Procedia PDF Downloads 1813021 UKIYO-E: User Knowledge Improvement Based on Youth Oriented Entertainment, Art Appreciation Support by Interacting with Picture
Authors: Haruya Tamaki, Tsugunosuke Sakai, Ryuichi Yoshida, Ryohei Egusa, Shigenori Inagaki, Etsuji Yamaguchi, Fusako Kusunoki, Miki Namatame, Masanori Sugimoto, Hiroshi Mizoguchi
Abstract:
Art appreciation is important as part of children education. Art appreciation can enrich sensibility and creativity. To enrich sensibility and creativity, the children have to learning knowledge of picture such as social and historical backgrounds and author intention. High learning effect can acquire by actively learning. In short, it is important that encourage learning of the knowledge about pictures actively. It is necessary that children feel like interest to encourage learning of the knowledge about pictures actively. In a general art museum, comments on pictures are done through writing. Thus, we expect that this method cannot arouse the interest of the children in pictures, because children feel like boring. In brief, learning about the picture information is difficult. Therefore, we are developing an art-appreciation support system that will encourage learning of the knowledge about pictures actively by children feel like interest. This system uses that Interacting with Pictures to learning of the knowledge about pictures. To Interacting with Pictures, children have to utterance by themselves. We expect that will encourage learning of the knowledge about pictures actively by Interacting with Pictures. To more actively learning, children can choose who talking with by information that location and movement of the children. This system must be able to acquire real-time knowledge of the location, movement, and voice of the children. We utilize the Microsoft’s Kinect v2 sensor and its library, namely, Kinect for Windows SDK and Speech Platform SDK v11 for this purpose. By using these sensor and library, we can determine the location, movement, and voice of the children. As the first step of this system, we developed ukiyo-e game that use ukiyo-e to appreciation object. Ukiyo-e is a traditional Japanese graphic art that has influenced the western society. Therefore, we believe that the ukiyo-e game will be appreciated. In this study, we applied talking to pictures to learn information about the pictures because we believe that learning information about the pictures by talking to the pictures is more interesting than commenting on the pictures using only texts. However, we cannot confirm if talking to the pictures is more interesting than commenting using texts only. Thus, we evaluated through EDA measurement whether the user develops an interest in the pictures while talking to them using voice recognition or by commenting on the pictures using texts only. Hence, we evaluated that children have interest to picture while talking to them using voice recognition through EDA measurement. In addition, we quantitatively evaluate that enjoyed this game or not and learning information about the pictures for primary schoolchildren. In this paper, we summarize these two evaluation results.Keywords: actively learning, art appreciation, EDA, Kinect V2
Procedia PDF Downloads 2853020 Evaluation of Neuroprotective Potential of Olea europaea and Malus domestica in Experimentally Induced Stroke Rat Model
Authors: Humaira M. Khan, Kanwal Asif
Abstract:
Ischemic stroke is a neurological disorder with a complex pathophysiology associated with motor, sensory and cognitive deficits. Major approaches developed to treat acute ischemic stroke fall into two categories, thrombolysis and neuroprotection. The objectives of this study were to evaluate the neuroprotective and anti-thrombolytic effects of Olea europaea (olive oil) and Malus domestica (apple cider vinegar) and their combination in rat stroke model. Furthermore, histopathological analysis was also performed to assess the severity of ischemia among treated and reference groups. Male albino rats (12 months age) weighing 300- 350gm were acclimatized and subjected to middle cerebral artery occlusion method for stroke induction. Olea europaea and Malus domestica was administered orally in dose of 0.75ml/kg and 3ml/kg and combination was administered at dose of 0.375ml/kg and 1.5ml/kg prophylactically for consecutive 21 days. Negative control group was dosed with normal saline whereas piracetam (250mg/kg) was administered as reference. Neuroprotective activity of standard piracetam, Olea europaea, Malus domestica and their combination was evaluated by performing functional outcome tests i.e. Cylinder, pasta, ladder run, pole and water maize tests. Rats were subjected to surgery after 21 days of treatment for analysis from stroke recovery. Olea europaea and Malus domestica in individual doses of 0.75ml/kg and 3ml/kg respectively showed neuroprotection by significant improvement in ladder run test (121.6± 0.92;128.2 ± 0.73) as compare to reference (125.4 ± 0.74). Both test doses showed significant neuroprotection as compare to reference (9.60 ± 0.50) in pasta test (8.40 ± 0.24;9.80 ± 0.37) whereas with cylinder test, experimental groups showed significant increase in movements (6.60 ± 0.24; 8.40 ± 0.24) in contrast to reference (7.80 ± 0.37).There was a decrease in percentage time taken f to reach the hidden maize in water maize test (56.80 ± 0.58;61.80 ± 0.66) at doses 0.75ml/kg and 3ml/kg respectively as compare to piracetam (59.40 ± 1.07). Olea europaea and Malus domestica individually showed significant reduction in duration of mobility (127.0 ± 0.44; 123.0 ± 0.44) in pole test as compare to piracetam (124.0 ± 0.70). Histopathological analysis revealed the significant extent of protection from ischemia after prophylactic treatments. Hence it is concluded that Olea europaea and Malus domestica are effective neuroprotective agents alone as compare to their combination.Keywords: ischemia, Malus domestica, neuroprotection, Olea europaea
Procedia PDF Downloads 1263019 Laboratory Investigation of Fly Ash Based Geopolymer Stabilized Recycled Asphalt Pavement as a Base Material
Authors: Menglim Hoy, Suksun Horpibulsuk, Arul Arulrajah
Abstract:
The results of laboratory investigation of recycled asphalt pavement (RAP) – fly ash (FA) based geopolymer as a base material is presented in this paper. An alkaline activator, the mixture of NaOH and Na₂SiO₃, is used to synthesis RAP-FA based geopolymer. RAP-FA with water (RAP-FA blend) prepared as a control material. The strength develops and the strength against wet-dry was determined by the unconfined compression strength (UCS) test, then the microstructural properties were examined by scanning electron microscopy (SEM) and X-ray Diffraction (XRD) analysis. The toxicity characteristic leaching procedure (TCLP) test is conducted to measure its leachability of heavy metal. The results show both the RAP-FA blend and geopolymer can be used as a base course as its UCS values meet the minimum strength requirement specified by the Department of Highway, Thailand. The durability test results show the UCS of these materials increases with increasing the number of wet-dry cycles, reaching its peak at six wet-dry cycles. The XRD and SEM analyses indicate strength development of the RAP-FA blend occurs due to chemical reaction between a high Calcium in RAP with a high Silica and Alumina in FA led to producing calcium aluminate hydrate formation. The strength development of the RAP-FA geopolymer occurred resulted from the polymerization reaction. The TCLP results demonstrate there is no environmental risk of these stabilized materials. Furthermore, FA based geopolymer can reduce the leachability of heavy metal in the RAP-FA blend.Keywords: recycled asphalt pavement, geopolymer, heavy metal, microstructure
Procedia PDF Downloads 983018 Development and Characterization of a Composite Material for Ceiling Board Construction Applications in Ethiopia
Authors: Minase Yitbarek Mengistu, Abrham Melkamu, Dawit Yisfaw, Bisrat Belihu, Abdulhakim Lalega
Abstract:
This research was aimed at reducing and recycling waste paper and sawdust from our environment, thereby reducing environmental pollution resulting from the management/disposal of these waste materials. In this research, some mechanical properties of composite ceiling board materials made from waste paper, sawdust, and pineapple leaf fibers were investigated to determine their suitability for use in low-cost construction work. The ceiling board was obtained from the waste of paper, sawdust chips, and pineapple leaf fibers by manual mechanical bonding techniques using dissolved polystyrene films as a binding agent. The results obtained showed that the water absorption values of between 6 % and 8.1 %; as well as density values of 500 kg/mm3 and 611.1 kg/mm3.From our result, the better one is a ratio of pineapple leaf fiber 25%, sawdust 40%, binder 25%, and waste paper 10%. The composite ceiling boards were successfully nailed with firm grips. These values obtained were compared with those of the conventional ceiling boards and it was observed that these composite materials can be used for internal low-cost construction work and Insulation (acoustic and thermal) performance. It is highly recommended that small and medium enterprises be encouraged to venture into waste recycling and the production of these composite ceiling materials to create jobs for skilled and unskilled labor that are locally available.Keywords: composite material, environment, textile, ceiling board
Procedia PDF Downloads 723017 Experimental Evaluation of Foundation Settlement Mitigations in Liquefiable Soils using Press-in Sheet Piling Technique: 1-g Shake Table Tests
Authors: Md. Kausar Alam, Ramin Motamed
Abstract:
The damaging effects of liquefaction-induced ground movements have been frequently observed in past earthquakes, such as the 2010-2011 Canterbury Earthquake Sequence (CES) in New Zealand and the 2011 Tohoku earthquake in Japan. To reduce the consequences of soil liquefaction at shallow depths, various ground improvement techniques have been utilized in engineering practice, among which this research is focused on experimentally evaluating the press-in sheet piling technique. The press-in sheet pile technique eliminates the vibration, hammering, and noise pollution associated with dynamic sheet pile installation methods. Unfortunately, there are limited experimental studies on the press-in sheet piling technique for liquefaction mitigation using 1g shake table tests in which all the controlling mechanisms of liquefaction-induced foundation settlement, including sand ejecta, can be realistically reproduced. In this study, a series of moderate scale 1g shake table experiments were conducted at the University of Nevada, Reno, to evaluate the performance of this technique in liquefiable soil layers. First, a 1/5 size model was developed based on a recent UC San Diego shaking table experiment. The scaled model has a density of 50% for the top crust, 40% for the intermediate liquefiable layer, and 85% for the bottom dense layer. Second, a shallow foundation is seated atop an unsaturated sandy soil crust. Third, in a series of tests, a sheet pile with variable embedment depth is inserted into the liquefiable soil using the press-in technique surrounding the shallow foundations. The scaled models are subjected to harmonic input motions with amplitude and dominant frequency properly scaled based on the large-scale shake table test. This study assesses the performance of the press-in sheet piling technique in terms of reductions in the foundation movements (settlement and tilt) and generated excess pore water pressures. In addition, this paper discusses the cost-effectiveness and carbon footprint features of the studied mitigation measures.Keywords: excess pore water pressure, foundation settlement, press-in sheet pile, soil liquefaction
Procedia PDF Downloads 973016 Heat Transfer Process Parameter Optimization in SI/Ge Using TAGUCHI Method
Authors: Evln Ranga Charyulu, S. P. Venu Madhavarao, S. Udaya kumar, S. V. S. S. N. V. G. Krishna Murthy
Abstract:
With the advent of new nanometer process technologies, it is possible to integrate billion transistors on a single substrate. When more and more functionality included there is the possibility of multi-million transistors switching simultaneously consuming more power and dissipating more power along with more leakage of current into the substrate of porous silicon or germanium material. These results in substrate heating and thermal noise generation coupled to signals of interest. The heating process is represented by coupled nonlinear partial differential equations in porous silicon and germanium. By identifying heat sources and heat fluxes may results in designing of ultra-low power circuits. The PDEs are solved by finite difference scheme assuming that boundary layer equations in porous silicon and germanium. Local heat fluxes along the vertical isothermal surface immersed in porous SI/Ge are considered. The parameters considered for optimization are thermal diffusivity, thermal expansion coefficient, thermal diffusion ratio, permeability, specific heat at constant temperatures, Rayleigh number, amplitude of wavy surface, mass expansion coefficient. The diffusion of heat was caused by the concentration gradient. Thermal physical properties are homogeneous and isotropic. By using L8, TAGUCHI method the parameters are optimized.Keywords: heat transfer, pde, taguchi optimization, SI/Ge
Procedia PDF Downloads 3383015 A Radiofrequency Based Navigation Method for Cooperative Robotic Communities in Surface Exploration Missions
Authors: Francisco J. García-de-Quirós, Gianmarco Radice
Abstract:
When considering small robots working in a cooperative community for Moon surface exploration, navigation and inter-nodes communication aspects become a critical issue for the mission success. For this approach to succeed, it is necessary however to deploy the required infrastructure for the robotic community to achieve efficient self-localization as well as relative positioning and communications between nodes. In this paper, an exploration mission concept in which two cooperative robotic systems co-exist is presented. This paradigm hinges on a community of reference agents that provide support in terms of communication and navigation to a second agent community tasked with exploration goals. The work focuses on the role of the agent community in charge of the overall support and, more specifically, will focus on the positioning and navigation methods implemented in RF microwave bands, which are combined with the communication services. An analysis of the different methods for range and position calculation are presented, as well as the main limiting factors for precision and resolution, such as phase and frequency noise in RF reference carriers and drift mechanisms such as thermal drift and random walk. The effects of carrier frequency instability due to phase noise are categorized in different contributing bands, and the impact of these spectrum regions are considered both in terms of the absolute position and the relative speed. A mission scenario is finally proposed, and key metrics in terms of mass and power consumption for the required payload hardware are also assessed. For this purpose, an application case involving an RF communication network in UHF Band is described, in coexistence with a communications network used for the single agents to communicate within the both the exploring agents as well as the community and with the mission support agents. The proposed approach implements a substantial improvement in planetary navigation since it provides self-localization capabilities for robotic agents characterized by very low mass, volume and power budgets, thus enabling precise navigation capabilities to agents of reduced dimensions. Furthermore, a common and shared localization radiofrequency infrastructure enables new interaction mechanisms such as spatial arrangement of agents over the area of interest for distributed sensing.Keywords: cooperative robotics, localization, robot navigation, surface exploration
Procedia PDF Downloads 2943014 The Relationship between Vitamin D and Vitamin B12 Concentrations in Cataract Patients (Senile vs Diabetic)
Authors: Ali Showail Ali Alasmari
Abstract:
Introduction: Cataract is the loss of transparency of the lens inside the eye. It is the most common cause of visual loss and blindness worldwide. This study provides a systemic review of the recent findings on the association of vitamin D, and vitamin B12, and their possible role in preventing cataracts in senile (S) and diabetic mellitus (DM) patient groups. Objective: This study was intended to establish and investigate if there is any role between vitamin D and vitamin B12? Secondly, the connection between serum level of vitamin D and vitamin B12 in cataract incidence senile (s) vs. diabetic mellitus (DM) cataract patient groups. Furthermore, to evaluate and analyze cataract occurrence regarding vitamin D and vitamin B12 levels with other risk factors. Finally, to evaluate lens opacities pre and post treatment with vitamin D and vitaminB12 linked to age and visual acuity loss in both senile(S) and diabetic mellitus (DM) cataract patients’ groups. Methods: This study conducted at the ophthalmology clinic at Muhyail General Hospital. Select a prospective case-control to study the effect of vitamin D and Vit B12 on senile(S) cataracts that caused by age and diabetic mellitus (DM)cataract patients; then we compare these two groups. This study prospectively enrolled a total of 50 samples, 25 with senile cataract and 25 with diabetic cataract, from ophthalmology clinic at Muhyail General Hospital. Measuring 25-hydroxy vitamin D and vitamin B12 level concentrations in the assigned samples. Analyses were performed using SAS (statistical analysis software) program. Results: The most important finding in this study was that the senile(s) cataract patients’ group greatly benefited by the combination therapy of vitamin D, and Vitamin B12 reached (28.5±1.50 and 521.1±21.10) respectively; on the contrary, the diabetic cataract patient group hardly shows any significant improvement (21.5 ± 1.00 and 197.2 ± 7.20) respectively. This is because of the Metformin, the first line drug for treating diabetes, has been reported to potentially decrease vitamin B-12 status. This epigenetic modification was correlated with the diabetic mellitus (DM) cataract patients’ group not responding. Vitamin B12 deficiency also leads to an impairment of the conversion of methylmalonyl-CoA to succinyl-CoA, which has been associated with insulin resistance. There was no significant difference between the age, body mass index (BMI), the mean of Vit-D pre-treatments, and the mean values of Hemoglobin A1C of both senile (S) and diabetic mellitus (DM) cataract patient groups. On other hand, there was a highly significant difference between the mean values of glucose levels in both senile (S) and diabetic mellitus (DM) cataract patient groups. Conclusion: Here we conclude that diabetic mellitus (DM) cataract patient group hardly benefited from this combination therapy vitamin D and vitamin B12; on the other hand senile patient group (s) benefited a lot from the therapy.Keywords: cataract patients, senile, diabetes mellitus, vitamin B12, vitamin D, Muhyail General Hospital, Saudi Arabia
Procedia PDF Downloads 1043013 Thermal Analysis and Experimental Procedure of Integrated Phase Change Material in a Storage Tank
Authors: Chargui Ridha, Agrebi Sameh
Abstract:
The integration of phase change materials (PCM) for the storage of thermal energy during the period of sunshine before being released during the night is a complement of free energy to improve the system formed by a solar collector, tank storage, and a heat exchanger. This paper is dedicated to the design of a thermal storage tank based on a PCM-based heat exchanger. The work is divided into two parts: an experimental part using paraffin as PCM was carried out within the Laboratory of Thermal Processes of Borj Cedria in order to improve the performance of the system formed by the coupling of a flat solar collector and a thermal storage tank and to subsequently determine the influence of PCM on the whole system. This phase is based on the measurement instrumentation, namely, a differential scanning calorimeter (DSC) and the thermal analyzer (hot disk: HOT DISK) in order to determine the physical properties of the paraffin (PCM), which has been chosen. The second phase involves the detailed design of the PCM heat exchanger, which is incorporated into a thermal storage tank and coupled with a solar air collector installed at the Research and Technology Centre of Energy (CRTEn). A numerical part based on the TRANSYS and Fluent software, as well as the finite volume method, was carried out for the storage reservoir systems in order to determine the temperature distribution in each chosen system.Keywords: phase change materials, storage tank, heat exchanger, flat plate collector
Procedia PDF Downloads 943012 Experiences of Community Midwives Receiving Helping Baby Breathe Training Through the Low Dose High-frequency Approach in Gujrat, Pakistan
Authors: Anila Naz, Arusa Lakhani, Kiran Mubeen, Yasmeen Amarsi
Abstract:
Pakistan's neonatal mortality rate has the highest proportion in the South Asian region and it is higher in the rural areas as compared to the urban areas. Poor resuscitation techniques and lack of basic newborn resuscitation skills in birth attendants, are contributing factors towards neonatal deaths. Based on the significant outcomes of the Helping Baby Breath (HBB) training, a similar training was implemented for Community Midwives (CMWs) in a low resource setting in Gujrat, Pakistan, to improve their knowledge and skills. The training evaluation was conducted and participant feedback was obtained through both qualitative and quantitative methods. The findings of the quantitative assessment of the training evaluation will be published elsewhere. This paper presents the qualitative evaluation of the training. Objective: The objective of the study was to determine the perceptions of HBB trained CMWs about the effectiveness of the HBB training, and the challenges faced in the implementation of HBB skills for newborn resuscitation, at their work settings. The qualitative descriptive design was used in this study. The purposive sampling technique was chosen to recruit midwives and key informants as participants of the training. Interviews were conducted by using a semi-structured interview guide. The study included a total of five interviews: two focus group interviews for CMWs (10 in each group), and three individual interviews of key informants. The content analysis of the qualitative data yielded three themes: the effectiveness of training, challenges, and suggestions. The findings revealed that the HBB training was effective for the CMWs in terms of its usability, regarding improvement in newborn resuscitation knowledge and skills. Moreover, it enhanced confidence and satisfaction in CMWs. However, less volume of patients was a challenge for a few CMWs with regards to practicing their skills. Due to the inadequate number of patients and less opportunities of practice for several CMWs, they required such trainings frequently, in order to maintain their competency. The CMWs also recommended that HBB training should be part of the Midwifery program curriculum. Moreover, similar trainings were also recommended for other healthcare providers working in low resource settings, including doctors and nurses.Keywords: neonatal resuscitation technique, helping baby breathe, community midwives, training evaluation
Procedia PDF Downloads 953011 Fabrication and Characterization of Dissolvable Microneedle Patches Using Different Compositions and Ratios of Hyaluronic Acid and Zinc Oxide Nanoparticles
Authors: Dada Kolawole Segun
Abstract:
Transdermal drug delivery has gained popularity as a non-invasive method for controlled drug release compared to traditional delivery routes. Dissolvable transdermal patches have emerged as a promising platform for delivering a variety of drugs due to their ease of use. The objective of this research was to create and characterize dissolvable transdermal patches using various compositions and ratios of hyaluronic acid and zinc oxide nanoparticles. A micromolding technique was utilized to fabricate the patches, which were subsequently characterized using scanning electron microscopy, atomic force microscopy, and tensile strength testing. In vitro drug release studies were conducted to evaluate the drug release kinetics of the patches. The study found that the mechanical strength and dissolution properties of the patches were influenced by the hyaluronic acid and zinc oxide nanoparticle ratios used in the fabrication process. Moreover, the patches demonstrated controlled delivery of model drugs through the skin, highlighting their potential for transdermal drug delivery applications. The results suggest that dissolvable transdermal patches can be tailored to meet specific requirements for drug delivery applications using different compositions and ratios of hyaluronic acid and zinc oxide nanoparticles. This development has the potential to improve treatment outcomes and patient compliance in various therapeutic areas.Keywords: transdermal drug delivery, characterization, skin permeation, biodegradable materials
Procedia PDF Downloads 90