Search results for: dynamic compression properties
3214 Lightweight Concrete Fracture Energy Derived by Inverse Analysis
Authors: Minho Kwon, Seonghyeok Lee, Wooyoung Jung
Abstract:
In recent years, with increase of construction of skyscraper structures, the study of concrete materials to improve their weight and performance has been emerging as a key of research area. Typically, the concrete structures has disadvantage of increasing the weight due to its mass in comparison to the strength of the materials. Therefore, in order to improve such problems, the light-weight aggregate concrete and high strength concrete materials have been studied during the past decades. On the other hand, the study of light-weight aggregate concrete materials has lack of data in comparison to the concrete structure using high strength materials, relatively. Consequently, this study presents the performance characteristics of light-weight aggregate concrete materials due to the material properties and strength. Also, this study conducted the experimental tests with respect to normal and lightweight aggregate materials, in order to indentify the tensile crack failure of the concrete structures. As a result, the Crack Mouth Opening Displacement (CMOD) from the experimental tests was constructed and the fracture energy using inverse problem analysis was developed from the force-CMOD relationship in this study, respectively.Keywords: lightweight aggregate concrete, crack mouth opening displacement, inverse analysis, fracture energy
Procedia PDF Downloads 3553213 Virtual Approach to Simulating Geotechnical Problems under Both Static and Dynamic Conditions
Authors: Varvara Roubtsova, Mohamed Chekired
Abstract:
Recent studies on the numerical simulation of geotechnical problems show the importance of considering the soil micro-structure. At this scale, soil is a discrete particle medium where the particles can interact with each other and with water flow under external forces, structure loads or natural events. This paper presents research conducted in a virtual laboratory named SiGran, developed at IREQ (Institut de recherche d’Hydro-Quebec) for the purpose of investigating a broad range of problems encountered in geotechnics. Using Discrete Element Method (DEM), SiGran simulated granular materials directly by applying Newton’s laws to each particle. The water flow was simulated by using Marker and Cell method (MAC) to solve the full form of Navier-Stokes’s equation for non-compressible viscous liquid. In this paper, examples of numerical simulation and their comparisons with real experiments have been selected to show the complexity of geotechnical research at the micro level. These examples describe transient flows into a porous medium, interaction of particles in a viscous flow, compacting of saturated and unsaturated soils and the phenomenon of liquefaction under seismic load. They also provide an opportunity to present SiGran’s capacity to compute the distribution and evolution of energy by type (particle kinetic energy, particle internal elastic energy, energy dissipated by friction or as a result of viscous interaction into flow, and so on). This work also includes the first attempts to apply micro discrete results on a macro continuum level where the Smoothed Particle Hydrodynamics (SPH) method was used to resolve the system of governing equations. The material behavior equation is based on the results of simulations carried out at a micro level. The possibility of combining three methods (DEM, MAC and SPH) is discussed.Keywords: discrete element method, marker and cell method, numerical simulation, multi-scale simulations, smoothed particle hydrodynamics
Procedia PDF Downloads 3003212 Elaboration and Characterization of PVDF/TiO2 Nanocomposites
Authors: F. Z. Benabid, S. Kridi, F. Zouai, D. Benachour
Abstract:
The aim of present work is to characterize the PVDF/TiO2 blends as nanocomposites, and study the effect of TiO2 on properties of different compositions and the evaluation of the effectiveness of the method used for filler treatment. Nanocomposite samples were synthesized by molten route in an internal mixer. The TiO2 nanoparticles were treated with stearic acid in order to obtain a good dispersion, and the demonstration of the effectiveness of the treatment on the morphology and roughness of the nanofiller was established by microstructural analysis by FTIR and AFM. The various developed nanocomposite compositions were characterized by different methods; i.e. FTIR, XRD, SEM and optical microscopy. Rheological, dielectric and mechanical studies were also performed. The results showed a remarkable increase in the crystallinity of the PVDF/neat TiO2 nanocomposite containing 1 wt% loading of filler, due to the nucleation effect of TiO2 nanoparticles. A good dispersion was obtained in PVDF/treated TiO2 nanocomposites. The rheological study showed an increase in the fluidity in all developed nanocomposite compositions, involved by the orientation of TiO2 nanoparticles in the flow direction. The dielectric study revealed an increase in electrical conductivity in PVDF/neat TiO2 nanocomposites. However, in PVDF/ treated TiO2 nanocomposites, the electrical conductivity was decreased by the addition of 0.5 and 2 wt% loading of filler.Keywords: nanocomposites, PVDF, TiO2, comixing, mechanical treatment
Procedia PDF Downloads 3153211 Estimation of Source Parameters Using Source Parameters Imaging Method From Digitised High Resolution Airborne Magnetic Data of a Basement Complex
Authors: O. T. Oluriz, O. D. Akinyemi, J. A.Olowofela, O. A. Idowu, S. A. Ganiyu
Abstract:
This study was carried out using aeromagnetic data which record variation in the magnitude of the earth magnetic field in order to detect local changes in the properties of the underlying geology. The aeromagnetic data (Sheet No. 261) was acquired from the archives of Nigeria Geological Survey Agency of Nigeria, obtained in 2009. The study present estimation of source parameters within an area of about 3,025 square kilometers on geographic latitude to and longitude to within Ibadan and it’s environs in Oyo State, southwestern Nigeria. The area under study belongs to part of basement complex in southwestern Nigeria. Estimation of source parameters of aeromagnetic data was achieve through the application of source imaging parameters (SPI) techniques that provide delineation, depth, dip contact, susceptibility contrast and mineral potentials of magnetic signatures within the region. The depth to the magnetic sources in the area ranges from 0.675 km to 4.48 km. The estimated depth limit to shallow sources is 0.695 km and depth to deep sources is 4.48 km. The apparent susceptibility values of the entire study area obtained ranges from 0.01 to 0.005 [SI]. This study has shown that the magnetic susceptibility within study area is controlled mainly by super paramagnetic minerals.Keywords: aeromagnetic, basement complex, meta-sediment, precambrian
Procedia PDF Downloads 4283210 Developing an Empirical Relationship to Predict Tensile Strength and Micro Hardness of Friction Stir Welded Aluminium Alloy Joints
Authors: Gurmeet Singh Cheema, Gurjinder Singh, Amardeep Singh Kang
Abstract:
Aluminium alloy 6061 is a medium to high strength heat-treatable alloy which has very good corrosion resistance and very good weldability. Friction Stir Welding was developed and this technique has attracted considerable interest from the aerospace and automotive industries since it is able to produce defect free joints particularly for light metals i.e aluminum alloy and magnesium alloy. In the friction stir welding process, welding parameters such as tool rotational speed, welding speed and tool shoulder diameter play a major role in deciding the weld quality. In this research work, an attempt has been made to understand the effect of tool rotational speed, welding speed and tool shoulder diameter on friction stir welded AA6061 aluminium alloy joints. Statistical tool such as central composite design is used to develop the mathematical relationships. The mathematical model was developed to predict mechanical properties of friction stir welded aluminium alloy joints at the 95% confidence level.Keywords: aluminium alloy, friction stir welding, central composite design, mathematical relationship
Procedia PDF Downloads 5003209 An Investigation of Interdisciplinary Techniques for Assessment of Water Quality in an Industrial Area
Authors: Priti Saha, Biswajit Paul
Abstract:
Rapid urbanization and industrialization have increased the demand of groundwater. However, the present era has evident an enormous level of groundwater pollution. Therefore, water quality assessment is paramount importance to evaluate its suitability for drinking, irrigation and industrial use. This study focus to evaluate the groundwater quality of an industrial city in eastern India through interdisciplinary techniques. The multi-purpose Water Quality Index (WQI) assess the suitability for drinking as well as irrigation of forty sampling locations, where 2.5% and 15% of sampling locations have excellent water quality (WQI:0-25) as well as 15% and 40% have good quality (WQI:25-50), which represents its suitability for drinking and irrigation respectively. However, the industrial water quality was assessed through Ryznar Stability Index (LSI), which affirmed that only 2.5% of sampling locations have neither corrosive nor scale forming properties (RSI: 6.2-6.8). These techniques with the integration of geographical information system (GIS) for spatial assessment indorsed its effectiveness to identify the regions where the water bodies are suitable to use for drinking, irrigation as well as industrial activities. Further, the sources of these contaminants were identified through factor analysis (FA), which revealed that both the geogenic as well as anthropogenic sources were responsible for groundwater pollution. This research demonstrates the effectiveness of statistical and GIS techniques for the analysis of environmental contaminants.Keywords: groundwater, water quality analysis, water quality index, WQI, factor analysis, FA, spatial assessment
Procedia PDF Downloads 1913208 Microfluidic Plasmonic Device for the Sensitive Dual LSPR-Thermal Detection of the Cardiac Troponin Biomarker in Laminal Flow
Authors: Andreea Campu, Ilinica Muresan, Simona Cainap, Simion Astilean, Monica Focsan
Abstract:
Acute myocardial infarction (AMI) is the most severe cardiovascular disease, which has threatened human lives for decades, thus a continuous interest is directed towards the detection of cardiac biomarkers such as cardiac troponin I (cTnI) in order to predict risk and, implicitly, fulfill the early diagnosis requirements in AMI settings. Microfluidics is a major technology involved in the development of efficient sensing devices with real-time fast responses and on-site applicability. Microfluidic devices have gathered a lot of attention recently due to their advantageous features such as high sensitivity and specificity, miniaturization and portability, ease-of-use, low-cost, facile fabrication, and reduced sample manipulation. The integration of gold nanoparticles into the structure of microfluidic sensors has led to the development of highly effective detection systems, considering the unique properties of the metallic nanostructures, specifically the Localized Surface Plasmon Resonance (LSPR), which makes them highly sensitive to their microenvironment. In this scientific context, herein, we propose the implementation of a novel detection device, which successfully combines the efficiency of gold bipyramids (AuBPs) as signal transducers and thermal generators with the sample-driven advantages of the microfluidic channels into a miniaturized, portable, low-cost, specific, and sensitive test for the dual LSPR-thermographic cTnI detection. Specifically, AuBPs with longitudinal LSPR response at 830 nm were chemically synthesized using the seed-mediated growth approach and characterized in terms of optical and morphological properties. Further, the colloidal AuBPs were deposited onto pre-treated silanized glass substrates thus, a uniform nanoparticle coverage of the substrate was obtained and confirmed by extinction measurements showing a 43 nm blue-shift of the LSPR response as a consequence of the refractive index change. The as-obtained plasmonic substrate was then integrated into a microfluidic “Y”-shaped polydimethylsiloxane (PDMS) channel, fabricated using a Laser Cutter system. Both plasmonic and microfluidic elements were plasma treated in order to achieve a permanent bond. The as-developed microfluidic plasmonic chip was further coupled to an automated syringe pump system. The proposed biosensing protocol implicates the successive injection inside the microfluidic channel as follows: p-aminothiophenol and glutaraldehyde, to achieve a covalent bond between the metallic surface and cTnI antibody, anti-cTnI, as a recognition element, and target cTnI biomarker. The successful functionalization and capture of cTnI was monitored by LSPR detection thus, after each step, a red-shift of the optical response was recorded. Furthermore, as an innovative detection technique, thermal determinations were made after each injection by exposing the microfluidic plasmonic chip to 785 nm laser excitation, considering that the AuBPs exhibit high light-to-heat conversion performances. By the analysis of the thermographic images, thermal curves were obtained, showing a decrease in the thermal efficiency after the anti-cTnI-cTnI reaction was realized. Thus, we developed a microfluidic plasmonic chip able to operate as both LSPR and thermal sensor for the detection of the cardiac troponin I biomarker, leading thus to the progress of diagnostic devices.Keywords: gold nanobipyramids, microfluidic device, localized surface plasmon resonance detection, thermographic detection
Procedia PDF Downloads 1283207 Materiality of Gender Roles in Gede City State
Authors: David Maina Muthegethi
Abstract:
For decades, archaeological work of Swahili Civilization has mainly concentrated on exploration of economic and political dynamics of City states. This paper moves further and explore how gender roles were formed, maintained, negotiated and re-negotiated through time and space in Gede City. Unlike other Swahili city states, Gede was located around two miles away from the shores of Indian Ocean. Nonetheless, the city was characterized by security walls, stone houses, mosques and tombs typical of Swahili City states such as Kilwa. The study employed several methods of data collection namely: archival research, survey, re-examination of collected materials and excavation of Gede archaeological site. Since, the study aimed to examine gender roles across different social class, a total of three houses were excavated based on their social hierarchy. Thus, the houses were roughly categorized as belonging to elites, middle class and lower class. The house were located in the inner wall, second inner wall and the outer wall of Gede City respectively. Key findings shows that gender roles differed considerably along classes in Gede archaeological site. For instance, the women of the elite and middle class were active participants in Gede international trade through production and consumption of imported goods. This participation corresponded with commercialization of Gede households especially in elite’ areas where they hosted international traders. On the other hand, the middle class houses, women concentrated on running of light industries aimed at supplying goods for the urban community. Thus, they were able to afford exotic goods as their elites counterparts. Lastly, the gender roles of lower class entailed subsistence gender roles with little participation in Gede formal commerce. Interestingly, gender roles in Gede were dynamic in nature and response to cultural diffusion, spread of Islam, intensification of trade, diversification of subsistence patterns and urbanization. Therefore, this findings, demonstrate centrality of gender in reconstruction of social lives of Swahili Civilization.Keywords: gender roles, Islam, Swahili civilization, urbanization
Procedia PDF Downloads 923206 Vapor Phase Transesterification of Dimethyl Malonate with Phenol over Cordierite Honeycomb Coated with Zirconia and Its Modified Forms
Authors: Prathap S. Raghavendra, Mohamed S. Z. Shamshuddin, Thimmaraju N. Venkatesh
Abstract:
The transesterification of dimethyl malonate (DMM) with phenol has been studied in vapour phase over cordierite honeycomb coated with solid acid catalysts such as ZrO2,Mo(VI)/ZrO2 and SO42-/ZrO2. The catalytic materials were prepared honeycomb coated and powder forms and characterized for their total surface acidity by NH3-TPD and crystalinity by powder XRD methods. Phenyl methyl malonate (PMM) and diphenyl malonate (DPM) were obtained as the reaction products. A good conversion of DMM (up to 82%) of MPM with 95% selectivity was observed when the reactions were carried out at a catalyst bed temperature of 200 °C and flow-rate of 10 mL/h in presence of Mo(VI)/ZrO2 as catalyst. But over SO42-/ZrO2 catalyst, the yield of DPM was found to be higher. The results have been interpreted based on the variation of acidic properties and powder XRD phases of zirconia on incorporation of Mo(VI) or SO42– ions. Transesterification reactions were also carried out over powder forms of the catalytic materials and the yield of the desired phenyl ester products were compared with that of the HC coated catalytic materials. The solid acids were found to be reusable when used for at least 5 reaction cycles.Keywords: cordierite honeycomb, methyl phenyl malonate, vapour phase transesterification, zirconia
Procedia PDF Downloads 3143205 Development of β-Ti Alloy Powders for Additive Manufacturing for Application in Patient-Specific Orthopedic Implants
Authors: Eugene Ivanov, Eduardo del-Rio, Igor Kapchenko, Maija Nystrӧm, Juha Kotila
Abstract:
Series of low modulus beta Ti alloy billets and powders can be produced in commercial quantities using a combination of electron beam melting (EBM) and EIGA atomization processes. In the present study, TNZT alloy powder was produced and processed in the EOSINT M290 laser sintering system to produce parts for mechanical testing. Post heat treatments such as diffusion annealing to reduce internal stresses or hot isostatic pressing to remove closed pores were not applied. The density can visually be estimated to be > 99,9 %. According to EDS study Nb, Zr, and Ta are distributed homogeneously throughout the printed sample. There are no indications for any segregation or chemical inhomogeneity, i.e. variation of the element distribution. These points to the fact that under the applied experimental conditions the melt generated by the laser rapidly cools down in the SLM (Selective Laser Melting) process. The selective laser sintering yielded dense structures with relatively good surface quality. The mechanical properties, especially the elongation (24%) along with tensile strength ( > 500MPa) and modulus of elasticity (~60GPa), were found to be promising compared to titanium alloys in general.Keywords: beta titanium alloys, additive manufacturing, powder, implants
Procedia PDF Downloads 2263204 Stabilizing Additively Manufactured Superalloys at High Temperatures
Authors: Keivan Davami, Michael Munther, Lloyd Hackel
Abstract:
The control of properties and material behavior by implementing thermal-mechanical processes is based on mechanical deformation and annealing according to a precise schedule that will produce a unique and stable combination of grain structure, dislocation substructure, texture, and dispersion of precipitated phases. The authors recently developed a thermal-mechanical technique to stabilize the microstructure of additively manufactured nickel-based superalloys even after exposure to high temperatures. However, the mechanism(s) that controls this stability is still under investigation. Laser peening (LP), also called laser shock peening (LSP), is a shock based (50 ns duration) post-processing technique used for extending performance levels and improving service life of critical components by developing deep levels of plastic deformation, thereby generating high density of dislocations and inducing compressive residual stresses in the surface and deep subsurface of components. These compressive residual stresses are usually accompanied with an increase in hardness and enhance the material’s resistance to surface-related failures such as creep, fatigue, contact damage, and stress corrosion cracking. While the LP process enhances the life span and durability of the material, the induced compressive residual stresses relax at high temperatures (>0.5Tm, where Tm is the absolute melting temperature), limiting the applicability of the technology. At temperatures above 0.5Tm, the compressive residual stresses relax, and yield strength begins to drop dramatically. The principal reason is the increasing rate of solid-state diffusion, which affects both the dislocations and the microstructural barriers. Dislocation configurations commonly recover by mechanisms such as climbing and recombining rapidly at high temperatures. Furthermore, precipitates coarsen, and grains grow; virtually all of the available microstructural barriers become ineffective.Our results indicate that by using “cyclic” treatments with sequential LP and annealing steps, the compressive stresses survive, and the microstructure is stable after exposure to temperatures exceeding 0.5Tm for a long period of time. When the laser peening process is combined with annealing, dislocations formed as a result of LPand precipitates formed during annealing have a complex interaction that provides further stability at high temperatures. From a scientific point of view, this research lays the groundwork for studying a variety of physical, materials science, and mechanical engineering concepts. This research could lead to metals operating at higher sustained temperatures enabling improved system efficiencies. The strengthening of metals by a variety of means (alloying, work hardening, and other processes) has been of interest for a wide range of applications. However, the mechanistic understanding of the often complex processes of interactionsbetween dislocations with solute atoms and with precipitates during plastic deformation have largely remained scattered in the literature. In this research, the elucidation of the actual mechanisms involved in the novel cyclic LP/annealing processes as a scientific pursuit is investigated through parallel studies of dislocation theory and the implementation of advanced experimental tools. The results of this research help with the validation of a novel laser processing technique for high temperature applications. This will greatly expand the applications of the laser peening technology originally devised only for temperatures lower than half of the melting temperature.Keywords: laser shock peening, mechanical properties, indentation, high temperature stability
Procedia PDF Downloads 1483203 Chemical Profile of Extra Virgin Olive Oil from Frantoio Cultivar Growing in Calabria, Italy
Authors: Monica Rosa Loizzo, Tiziana Falco, Marco Bonesi, Maria Concetta Tenuta, Mariarosaria Leporini, Rosa Tundis
Abstract:
Extra Virgin Olive Oil (EVOO) is a major source of fat in the Mediterranean diet and its nutritional properties are the main reason for the increment of its consumption all over the world in recent years. In terms of olive oil production, Italy ranks the second in the world. EVOO is obtained exclusively by physical methods from the fruit of Olea europea L. Frantoio cv is spread in all the Italian territory. The aim of this work is to identify the phenolic and fatty acids profile of EVOO from Frantoio cv growing in different area of Calabria (Italy). The phenolic profile was obtained by HPLC coupled to a diode array detector and mass spectrometry. Analyses revealed the presence of phenolic alcohols, phenolic acid, several secoiridoids, and two flavones as main components. Hydroxytyrosol and tyrosol are present in reasonable content. Fatty acids were monitored by gas chromatography. Oleic acid was the most abundant compounds. A moderate level of linoleic acid, in accordance with the general observations for oils derived from Mediterranean countries, was also found.Keywords: extra virgin olive oils, frantoio cv, phenolic compounds, fatty acids
Procedia PDF Downloads 3613202 Speckle-Based Phase Contrast Micro-Computed Tomography with Neural Network Reconstruction
Authors: Y. Zheng, M. Busi, A. F. Pedersen, M. A. Beltran, C. Gundlach
Abstract:
X-ray phase contrast imaging has shown to yield a better contrast compared to conventional attenuation X-ray imaging, especially for soft tissues in the medical imaging energy range. This can potentially lead to better diagnosis for patients. However, phase contrast imaging has mainly been performed using highly brilliant Synchrotron radiation, as it requires high coherence X-rays. Many research teams have demonstrated that it is also feasible using a laboratory source, bringing it one step closer to clinical use. Nevertheless, the requirement of fine gratings and high precision stepping motors when using a laboratory source prevents it from being widely used. Recently, a random phase object has been proposed as an analyzer. This method requires a much less robust experimental setup. However, previous studies were done using a particular X-ray source (liquid-metal jet micro-focus source) or high precision motors for stepping. We have been working on a much simpler setup with just small modification of a commercial bench-top micro-CT (computed tomography) scanner, by introducing a piece of sandpaper as the phase analyzer in front of the X-ray source. However, it needs a suitable algorithm for speckle tracking and 3D reconstructions. The precision and sensitivity of speckle tracking algorithm determine the resolution of the system, while the 3D reconstruction algorithm will affect the minimum number of projections required, thus limiting the temporal resolution. As phase contrast imaging methods usually require much longer exposure time than traditional absorption based X-ray imaging technologies, a dynamic phase contrast micro-CT with a high temporal resolution is particularly challenging. Different reconstruction methods, including neural network based techniques, will be evaluated in this project to increase the temporal resolution of the phase contrast micro-CT. A Monte Carlo ray tracing simulation (McXtrace) was used to generate a large dataset to train the neural network, in order to address the issue that neural networks require large amount of training data to get high-quality reconstructions.Keywords: micro-ct, neural networks, reconstruction, speckle-based x-ray phase contrast
Procedia PDF Downloads 2573201 Effect of Wind and Humidity on Microwave Links in Al-Khoms City-Libya
Authors: Mustafa S. Agha, Asma M. Eshahriy
Abstract:
The propagation of electromagnetic waves in millimeter band is severely affected by rain, and dust particles in terms of attenuation and de-polarization. The computations of dust and/or sand storms require knowledge of electrical properties of the scattering particles and climate conditions at the studied region in the west north region of Libya. (Al -Khoms) To compute the effect of dust and sand particles on the propagation of electromagnetic waves, it is required to collect the sand particles carried out by the wind, measure the particles size distribution (PSD), calculate the concentration, and carry chemical analysis of the contents, then the dielectric constant can be calculated. The main object of this paper is to study the effect of sand and dust storms on wireless communication, such as microwave links, in the north region of Libya (Al -Khoms) of Libya (Nagaza stations, Al-khoms center stations, Al-khoms gateway stations) by determining of the attenuation loss per unit length and cross-polarization discrimination (XPD) change due to the effect of sand and dust storms on wireless communication systems (GSM signal). The result showed that there is some consideration that has to be taken into account in the communication power budget .Keywords: attenuation, scattering, transmission loss, electromagnetic waves
Procedia PDF Downloads 4303200 Corporate Social Responsibility and Financial Performance Complementarity in Multinational Enterprises of the EU and India: A Socio-Political Approach
Authors: Moses Pinto, Ana Paula Monte
Abstract:
The present research analyses the interactions between various categories of corporate social responsibility (CSR) that mediate the relationship between CSR and financial performance in Multinational Enterprises (MNE) in light of the present socio-political factors prevalent in the countries under observation. In the research it has been hypothesized that the absence of consensus in the empirical literature on the CSR–financial performance relationship may be explained by the existence of synergies (Complementarities) between the different CSR components. Upon investigation about whether such relationships exist, a final unbalanced panel sample of 1000 observations taken from 100 Multinational Enterprises per year functioning in the Schengen countries and one south east Asian country namely: India, over the span of 10 years i.e. from the year 2008 to 2018 has been analyzed. The empirical analysis used in the research methodology employs dynamic Panel Data in time series specifically, the system Generalized Method of Moments (GMM) which had been used to detect the varying degrees of relationships between the CSR and financial performance parameters in the background of the socio-political factors prevailing in the countries at the time and also taking into account the bilateral treaty obligations between the countries under observation. The econometric model has employed the financial ratio namely the Return on Assets (ROA) as an indicator of financial performance in order to gauge the internal performance and valuation of a firm as opposed to the Tobin’s Q that provides for the external evaluation of a firm’s financial performance which may not always be accurate. The various CSR dimensions have demonstrated significant correlations to the ‘ROA’ which include some negatively associated correlations and one positively associated correlation that is highly significant throughout the analysis of the observations, namely the correlation between the ‘ROA’ and the CSR dimension: ‘Environment’. The results provide a deeper insight in the synergistic CSR activities that managers could adapt into their Firm’s CSR strategy in order to enhance the ‘ROA’ and also to understand which interactions between the CSR dimensions can be adapted together due to their positively correlated association with each other and the ROA. The future lines of research would be inclined to investigate the effects of socio-political factors on the ROA of the MNEs through better designed econometric models.Keywords: CSR, financial performance, complementarity, sociopolitical factors
Procedia PDF Downloads 1253199 Inflammatory Alleviation on Microglia Cells by an Apoptotic Mimicry
Authors: Yi-Feng Kao, Huey-Jine Chai, Chin-I Chang, Yi-Chen Chen, June-Ru Chen
Abstract:
Microglia is a macrophage that resides in brain, and overactive microglia may result in brain neuron damage or inflammation. In this study, the phospholipids was extracted from squid skin and manufactured into a liposome (SQ liposome) to mimic apoptotic body. We then evaluated anti-inflammatory effects of SQ liposome on mouse microglial cell line (BV-2) by lipopolysaccharide (LPS) induction. First, the major phospholipid constituents in the squid skin extract were including 46.2% of phosphatidylcholine, 18.4% of phosphatidylethanolamine, 7.7% of phosphatidylserine, 3.5% of phosphatidylinositol, 4.9% of Lysophosphatidylcholine and 19.3% of other phospholipids by HPLC-UV analysis. The contents of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in the squid skin extract were 11.8 and 28.7%, respectively. The microscopic images showed that microglia cells can engulf apoptotic cells or SQ-liposome. In cell based studies, there was no cytotoxicity to BV-2 as the concentration of SQ-liposome was less than 2.5 mg/mL. The LPS induced pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), were significant suppressed (P < 0.05) by pretreated 0.03~2.5mg/ml SQ liposome. Oppositely, the anti-inflammatory cytokines transforming growth factor-beta (TGF-β) and interleukin-10 (IL-10) secretion were enhanced (P < 0.05). The results suggested that SQ-liposome possess anti-inflammatory properties on BV-2 and may be a good strategy for against neuro-inflammatory disease.Keywords: apoptotic mimicry, neuroinflammation, microglia, squid processing by-products
Procedia PDF Downloads 4803198 Studying the Load Sharing and Failure Mechanism of Hybrid Composite Joints Using Experiment and Finite Element Modeling
Authors: Seyyed Mohammad Hasheminia, Heoung Jae Chun, Jong Chan Park, Hong Suk Chang
Abstract:
Composite joints have been getting attention recently due to their high specific mechanical strength to weight ratio that is crucial for structures such as aircrafts and automobiles. In this study on hybrid joints, quasi-static experiments and finite element analysis were performed to investigate the failure mechanism of hybrid composite joint with respect to the joint properties such as the adhesive material, clamping force, and joint geometry. The outcomes demonstrated that the stiffness of the adhesive is the most imperative design parameter. In this investigation, two adhesives with various stiffness values were utilized. Regarding the joints utilizing the adhesive with the lower stiffness modulus, it was observed that the load was exchanged promptly through the adhesive since it was shared more proficiently between the bolt and adhesive. This phenomenon permitted the hybrid joints with low-modulus adhesive to support more prominent loads before failure when contrasted with the joints that utilize the stiffer adhesive. In the next step, the stress share between the bond and bolt as a function of various design parameters was studied using a finite element model in which it was understood that the geometrical parameters such as joint overlap and width have a significant influence on the load sharing between the bolt and the adhesive.Keywords: composite joints, composite materials, hybrid joints, single-lap joint
Procedia PDF Downloads 4033197 Color Conversion Films with CuInS2/ZnS Quantum Dots Embedded Polystyrene Nanofibers by Electrospinning Process
Authors: Wonkyung Na, Namhun Kim, Heeyeop Chae
Abstract:
Quantum dots (QDs) are getting attentions due to their excellent optical properties in display, solar cell, biomolecule detection and lighting applications. Energy band gap can be easilty controlled by controlling their size and QDs are proper to apply in light-emitting-diode(LED) and lighting application, especially. Typically cadmium (Cd) containing QDs show a narrow photoluminescence (PL) spectrum and high quantum yield. However, Cd is classified as a hazardous materials and the use of Cd is being tightly regulated under 100ppm level in many countries.InP and CuInS2 (CIS) are being investigated as Cd-free QD materials and it is recently demonstrated that the performance of those Cd-free QDs is comparable to their Cd-based rivals.Due to a broad emission spectrum, CuInS2 QDs are also proper to be applied to white LED.4 For the lighting applications, the QD should be made in forms of color conversion films. Various film processes are reported with QDs in polymer matrixes. In this work, we synthesized the CuInS2 (CIS) QDs and QD embedded polystyrene color conversion films were fabricated for white color emission with electro-spinning process. As a result, blue light from blue LED is converted to white light with high color rendering index (CRI) of 72 by the color conversion films.Keywords: CuInS2/ZnS, electro-spinning, color conversion films, white light emitting diodes
Procedia PDF Downloads 8123196 Presence and Absence: The Use of Photographs in Paris, Texas
Authors: Yi-Ting Wang, Wen-Shu Lai
Abstract:
The subject of this paper is the photography in the 1983 film Paris, Texas, directed by Wim Wenders. Wenders is well known as a film director as well as a photographer. We have found that photography is shown as a photographic element in many of his films. Some of these photographs serve as details within the films, while others play important roles that are relevant to the story. This paper aims to consider photographs in film as a specific type of text, which is the output of both still photography and the film itself. In the film Paris, Texas, three sets of important photographs appear whose symbolic meanings are as dialectical as their text types. The relationship between the existence of these photos and the storyline is both dependent and isolated. The film’s images fly by and progress into other images, while the photos in the film serve a unique narrative function by stopping the continuously flowing images thus provide the viewer a space for imagination and contemplation. They are more than just artistic forms; they also contained multiple meanings. The photographs in Paris, Texas play the role of both presence and absence according to their shifting meanings. There are references to their presence: photographs exist between film time and narrative time, so in terms of the interaction between the characters in the film, photographs are a common symbol of the beginning and end of the characters’ journeys. In terms of the audience, the film’s photographs are a link in the viewing frame structure, through which the creative motivation of the film director can be explored. Photographs also point to the absence of certain objects: the scenes in the photos represent an imaginary map of emotion. The town of Paris, Texas is therefore isolated from the physical presence of the photograph, and is far more abstract than the reality in the film. This paper embraces the ambiguous nature of photography and demonstrates its presence and absence in film with regard to the meaning of text. However, it is worth reflecting that the temporary nature of the interpretation of the film’s photographs is far greater than any other type of photographic text: the characteristics of the text cause the interpretation results to change along with the variations in the interpretation process, which makes their meaning a dynamic process. The photographs’ presence or absence in the context of Paris, Texas also demonstrates the presence and absence of the creator, time, the truth, and the imagination. The film becomes more complete as a result of the revelation of the photographs, while the intertextual connection between these two forms simultaneously provides multiple possibilities for the interpretation of the photographs in the film.Keywords: film, Paris, Texas, photography, Wim Wenders
Procedia PDF Downloads 3173195 Experimental and Graphical Investigation on Oil Recovery by Buckley-Leveret Theory
Authors: Khwaja Naweed Seddiqi, Zabihullah Mahdi, Shigeo Honma
Abstract:
Recently increasing oil production from petroleum reservoirs is one of the most important issues in the global energy sector. So, in this paper, the recovery of oil by the waterflooding technique from petroleum reservoir are considered. To investigate the aforementioned phenomena, the relative permeability of two immiscible fluids in sand is measured in the laboratory based on the steady-state method. Two sorts of oils, kerosene and heavy oil, and water are pumped simultaneously into a vertical sand column with different pumping ratio. From the change in fractional discharge measured at the outlet, a method for determining the relative permeability is developed focusing on the displacement mechanism in sand. Then, displacement mechanism of two immiscible fluids in the sand is investigated under the Buckley-Leveret frontal displacement theory and laboratory experiment. Two sorts of experiments, one is the displacement of pore water by oil, the other is the displacement of pore oil by water, are carried out. It is revealed that the relative permeability curves display tolerably different shape owing to the properties of oils, and produce different amount of residual oils and irreducible water saturation.Keywords: petroleum reservoir engineering, relative permeability, two-phase flow, immiscible displacement in porous media, steady-state method, waterflooding
Procedia PDF Downloads 2463194 Religious Discrimination Against Small Business Owners: Evidence from the 1875 Cadastral Survey of Istanbul
Authors: Burak Unveren, Ecem Uygun, Özdemi̇r Teke
Abstract:
A large body of literature documents how the Ottoman Empire's economic decline in relation to Western Europe was exacerbated by the unequal legal treatment of its subjects based on creed. Motivated by this debate, we empirically explore whether property taxes collected from businesses in Istanbul discriminated against or favored non-Muslims after the cadastral survey of the capital in 1875. The survey was conducted to determine the property taxes. And the process was potentially susceptible to the biased views of the surveyors who calculated the taxes payable via their subjective appraisals of all real properties. According to our results, in contrast to widely held beliefs regarding 19th-century Istanbul, the number of Muslim shop owners is higher than that of non-Muslims. Moreover, we find evidence for taxes collected from non-Muslim shop and store owners to be higher compared to Muslims, even after controlling for all physical features (e.g., size, location, etc.). These results directly pertain to the fiscal capacity of the Ottoman state and its economic divergence from Europe in the 19th century. Surprisingly, the data also indicates no statistically different tax differentials between male and female property owners.Keywords: economic history, taxation, small business, discrimination
Procedia PDF Downloads 693193 Cardenolides from the Egyptian Cultivar: Acokanthera spectabilis Leaves Inducing Apoptosis through Arresting Hepatocellular Carcinoma Growth at G2/M
Authors: Maha Soltan, Amal Z. Hassan, Howaida I. Abd-Alla, Atef G. Hanna
Abstract:
Two naturally known cardenolides; acovenoside A and acobioside A were isolated from the Egyptian cultivar; Acokanthera spectabilis leaves. It is an ornamental and poisonous plant that has been traditionally claimed for their medicinal properties against infectious microbes, killing worms and curing some inflammations at little amounts. We examined the growth inhibition effects of both cardenolides against four types of human cancer cell lines using Sulphorhodamine B assay. In addition, the clonogenic assay was also performed for testing the growth inhibiting power of the isolated compounds. An in vitro mechanistic investigation was further accomplished against hepatocellular carcinoma HepG2 cell line. Microscopic examination, colorimetric ELISA and flow cytometry techniques were our tools of proving at least part of the anticancer pathway of the tested compounds. Both compounds were able to inhibit the growth of 4 human cancer cell lines at less than 100 nM. In addition, they were able to activate the executioner Caspase-3 and apoptosis was then induced as a consequence of cell growth arrest at G2/M. An attention must be payed to those bioactive agents particularly when giving their activity against cancer cells at considerable small values while presenting safe therapeutic margins as indicated by literature.Keywords: anticancer, cardenolides, Caspase-3, apoptosis
Procedia PDF Downloads 1473192 Cyclic Stress and Masing Behaviour of Modified 9Cr-1Mo at RT and 300 °C
Authors: Preeti Verma, P. Chellapandi, N.C. Santhi Srinivas, Vakil Singh
Abstract:
Modified 9Cr-1Mo steel is widely used for structural components like heat exchangers, pressure vessels and steam generator in the nuclear reactors. It is also found to be a candidate material for future metallic fuel sodium cooled fast breeder reactor because of its high thermal conductivity, lower thermal expansion coefficient, micro structural stability, high irradiation void swelling resistance and higher resistance to stress corrosion cracking in water-steam systems compared to austenitic stainless steels. The components of steam generators that operate at elevated temperatures are often subjected to repeated thermal stresses as a result of temperature gradients which occur on heating and cooling during start-ups and shutdowns or during variations in operating conditions of a reactor. These transient thermal stresses give rise to LCF damage. In the present investigation strain controlled low cycle fatigue tests were conducted at room temperature and 300 °C in normalized and tempered condition using total strain amplitudes in the range from ±0.25% to ±0.5% at strain rate of 10-2 s-1. Cyclic Stress response at high strain amplitudes (±0.31% to ±0.5%) showed initial softening followed by hardening upto a few cycles and subsequent softening till failure. The extent of softening increased with increase in strain amplitude and temperature. Depends on the strain amplitude of the test the stress strain hysteresis loops displayed Masing behaviour at higher strain amplitudes and non-Masing at lower strain amplitudes at both the temperatures. It is quite opposite to the usual Masing and Non-Masing behaviour reported earlier for different materials. Low cycle fatigue damage was evaluated in terms of plastic strain and plastic strain energy approach at room temperature and 300 °C. It was observed that the plastic strain energy approach was found to be more closely matches with the experimental fatigue lives particularly, at 300 °C where dynamic strain aging was observed.Keywords: Modified 9Cr-mo steel, low cycle fatigue, Masing behavior, cyclic softening
Procedia PDF Downloads 4433191 Conformal Noble Metal High-Entropy Alloy Nanofilms by Atomic Layer Deposition for Enhanced Hydrogen Evolution Reaction/Oxygen Evolution Reaction Electrocatalysis Applications
Authors: Jing Lin, Zou Yiming, Goei Ronn, Li Yun, Amanda Ong Jiamin, Alfred Tok Iing Yoong
Abstract:
High-entropy alloy (HEA) coatings comprise multiple (five or more) principal elements that give superior mechanical, electrical, and thermal properties. However, the current synthesis methods of HEA coating still face huge challenges in facile and controllable preparation, as well as conformal integration, which seriously restricts their potential applications. Herein, we report a controllable synthesis of conformal quinary HEA coating consisting of noble metals (Rh, Ru, Ir, Pt, and Pd) by using the atomic layer deposition (ALD) with a post-annealing approach. This approach realizes low temperature (below 200 °C), precise control (nanoscale), and conformal synthesis (over complex substrates) of HEA coating. Furthermore, the resulting quinary HEA coating shows promising potential as a platform for catalysis, exhibiting substantially enhanced electrocatalytic hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performances as compared to other noble metal-based structures such as single metal coating or multi-layered metal composites.Keywords: high-entropy alloy, thin-film, catalysis, water splitting, atomic layer deposition
Procedia PDF Downloads 1223190 Research on Energy Field Intervening in Lost Space Renewal Strategy
Authors: Tianyue Wan
Abstract:
Lost space is the space that has not been used for a long time and is in decline, proposed by Roger Trancik. And in his book Finding Lost Space: Theories of Urban Design, the concept of lost space is defined as those anti-traditional spaces that are unpleasant, need to be redesigned, and have no benefit to the environment and users. They have no defined boundaries and do not connect the various landscape elements in a coherent way. With the rapid development of urbanization in China, the blind areas of urban renewal have become a chaotic lost space that is incompatible with the rapid development of urbanization. Therefore, lost space needs to be reconstructed urgently under the background of infill development and reduction planning in China. The formation of lost space is also an invisible division of social hierarchy. This paper tries to break down the social class division and the estrangement between people through the regeneration of lost space. Ultimately, it will enhance vitality, rebuild a sense of belonging, and create a continuous open public space for local people. Based on the concept of lost space and energy field, this paper clarifies the significance of the energy field in the lost space renovation. Then it introduces the energy field into lost space by using the magnetic field in physics as a prototype. The construction of the energy field is support by space theory, spatial morphology analysis theory, public communication theory, urban diversity theory and city image theory. Taking Wuhan’s Lingjiao Park of China as an example, this paper chooses the lost space on the west side of the park as the research object. According to the current situation of this site, the energy intervention strategies are proposed from four aspects: natural ecology, space rights, intangible cultural heritage and infrastructure configuration. And six specific lost space renewal methods are used in this work, including “riveting”, “breakthrough”, “radiation”, “inheritance”, “connection” and “intersection”. After the renovation, space will be re-introduced into the active crow. The integration of activities and space creates a sense of place, improve the walking experience, restores the vitality of the space, and provides a reference for the reconstruction of lost space in the city.Keywords: dynamic vitality intervention, lost space, space vitality, sense of place
Procedia PDF Downloads 1103189 Numerical Study of Natural Convection Heat Transfer in a Two-Dimensional Vertical Conical PartiallyAnnular Space
Authors: Belkacem Ould Said, Nourddine Retiel, Abdelilah Benazza, Mohamed Aichouni
Abstract:
In this paper, a numerical study of two-dimensional steady flow has been made of natural convection in a differentially heated vertical conical partially annular space. The heat transfer is assumed to take place by natural convection. The inner and outer surfaces of annulus are maintained at uniform wall temperature. The annulus is filled with air. The CFD FLUENT12.0 code is used to solve the governing equations of mass, momentum and energy using constant properties and the Boussinesq approximation for density variation. The streamlines and the isotherms of the fluid are presented for different annuli with different boundary conditions and Rayleigh numbers. Emphasis is placed on the influences of the height of the inner vertical cone on the flow and the temperature fields. In addition, the effects on the heat transfer are discussed for various values of physical parameters of the fluid and geometric parameters of the annulus. The heat transfer on the hot walls of the annulus is also calculated in order to make comparisons between the cylinder annulus for boundary conditions and several Rayleigh numbers. A good agreement of Nusselt number has been found between the present predictions and reference from the literature data.Keywords: natural convection, heat transfer, numerical simulation, conical partially, annular space
Procedia PDF Downloads 3083188 The Impact of Geopolitical Risks and the Oil Price Fluctuations on the Kuwaiti Financial Market
Authors: Layal Mansour
Abstract:
The aim of this paper is to identify whether oil price volatility or geopolitical risks can predict future financial stress periods or economic recessions in Kuwait. We construct the first Financial Stress Index for Kuwait (FSIK) that includes informative vulnerable indicators of the main financial sectors: the banking sector, the equities market, and the foreign exchange market. The study covers the period from 2000 to 2020, so it includes the two recent most devastating world economic crises with oil price fluctuation: the Covid-19 pandemic crisis and Ukraine-Russia War. All data are taken by the central bank of Kuwait, the World Bank, IMF, DataStream, and from Federal Reserve System St Louis. The variables are computed as the percentage growth rate, then standardized and aggregated into one index using the variance equal weights method, the most frequently used in the literature. The graphical FSIK analysis provides detailed information (by dates) to policymakers on how internal financial stability depends on internal policy and events such as government elections or resignation. It also shows how monetary authorities or internal policymakers’ decisions to relieve personal loans or increase/decrease the public budget trigger internal financial instability. The empirical analysis under vector autoregression (VAR) models shows the dynamic causal relationship between the oil price fluctuation and the Kuwaiti economy, which relies heavily on the oil price. Similarly, using vector autoregression (VAR) models to assess the impact of the global geopolitical risks on Kuwaiti financial stability, results reveal whether Kuwait is confronted with or sheltered from geopolitical risks. The Financial Stress Index serves as a guide for macroprudential regulators in order to understand the weakness of the overall Kuwaiti financial market and economy regardless of the Kuwaiti dinar strength and exchange rate stability. It helps policymakers predict future stress periods and, thus, address alternative cushions to confront future possible financial threats.Keywords: Kuwait, financial stress index, causality test, VAR, oil price, geopolitical risks
Procedia PDF Downloads 813187 Evaluation of Liquefaction Potential of Fine Grained Soil: Kerman Case Study
Authors: Reza Ziaie Moayed, Maedeh Akhavan Tavakkoli
Abstract:
This research aims to investigate and evaluate the liquefaction potential in a project in Kerman city based on different methods for fine-grained soils. Examining the previous damages caused by recent earthquakes, it has been observed that fine-grained soils play an essential role in the level of damage caused by soil liquefaction. But, based on previous investigations related to liquefaction, there is limited attention to evaluating the cyclic resistance ratio for fine-grain soils, especially with the SPT method. Although using a standard penetration test (SPT) to find the liquefaction potential of fine-grain soil is not common, it can be a helpful method based on its rapidness, serviceability, and availability. In the present study, the liquefaction potential has been first determined by the soil’s physical properties obtained from laboratory tests. Then, using the SPT test and its available criterion for evaluating the cyclic resistance ratio and safety factor of liquefaction, the correction of effecting fine-grained soils is made, and then the results are compared. The results show that using the SPT test for liquefaction is more accurate than using laboratory tests in most cases due to the contribution of different physical parameters of soil, which leads to an increase in the ultimate N₁(60,cs).Keywords: liquefaction, cyclic resistance ratio, SPT test, clay soil, cohesion soils
Procedia PDF Downloads 1013186 Development of Nanostructrued Hydrogel for Spatial and Temporal Controlled Release of Active Compounds
Authors: Shaker Alsharif, Xavier Banquy
Abstract:
Controlled drug delivery technology represents one of the most rapidly advancing areas of science in which chemists and chemical engineers are contributing to human health care. Such delivery systems provide numerous advantages compared to conventional dosage forms including improved efficacy, and improved patient compliance and convenience. Such systems often use synthetic polymers as carriers for the drugs. As a result, treatments that would not otherwise be possible are now in conventional use. The role of bilayered vesicles as efficient carriers for drugs, vaccines, diagnostic agents and other bioactive agents have led to a rapid advancement in the liposomal drug delivery system. Moreover, the site avoidance and site-specific drug targeting therapy could be achieved by formulating a liposomal product, so as to reduce the cytotoxicity of many potent therapeutic agents. Our project focuses on developing and building hydrogel with nanoinclusion of liposomes loaded with active compounds such as proteins and growth factors able to release them in a controlled fashion. In order to achieve that, we synthesize several liposomes of two different phospholipids concentrations encapsulating model drug. Then, formulating hydrogel with specific mechanical properties embedding the liposomes to manage the release of active compound.Keywords: controlled release, hydrogel, liposomes, active compounds
Procedia PDF Downloads 4443185 Effect of Surface-Modification of Indium Tin Oxide Particles on Their Electrical Conductivity
Authors: Y. Kobayashi, T. Kurosaka, K. Yamamura, T. Yonezawa, K. Yamasaki
Abstract:
The present work reports an effect of surface- modification of indium tin oxide (ITO) particles with chemicals on their electronic conductivity properties. Examined chemicals were polyvinyl alcohol (nonionic polymer), poly(diallyl dimethyl ammonium chloride) (cationic polymer), poly(sodium 4-styrene-sulfonate) (anionic polymer), (2-aminopropyl) trimethoxy silane (APMS) (silane coupling agent with amino group), and (3-mercaptopropyl) trimethoxy silane (MPS) (silane coupling agent with thiol group). For all the examined chemicals, volume resistivities of surface-modified ITO particles did not increase much when they were aged in air at 80 oC, compared to a volume resistivity of un-surface-modified ITO particles. Increases in volume resistivities of ITO particles surface-modified with the silane coupling agents were smaller than those with the polymers, since hydrolysis of the silane coupling agents and condensation of generated silanol and OH groups on ITO particles took place to provide efficient immobilization of them on particles. The APMS gave an increase in volume resistivity smaller than the MPS, since a larger solubility in water of APMS providing a larger amount of APMS immobilized on particles.Keywords: indium tin oxide, particles, surface-modification, volume resistivity
Procedia PDF Downloads 252