Search results for: plate boundary conditions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11436

Search results for: plate boundary conditions

1836 Automatic Furrow Detection for Precision Agriculture

Authors: Manpreet Kaur, Cheol-Hong Min

Abstract:

The increasing advancement in the robotics equipped with machine vision sensors applied to precision agriculture is a demanding solution for various problems in the agricultural farms. An important issue related with the machine vision system concerns crop row and weed detection. This paper proposes an automatic furrow detection system based on real-time processing for identifying crop rows in maize fields in the presence of weed. This vision system is designed to be installed on the farming vehicles, that is, submitted to gyros, vibration and other undesired movements. The images are captured under image perspective, being affected by above undesired effects. The goal is to identify crop rows for vehicle navigation which includes weed removal, where weeds are identified as plants outside the crop rows. The images quality is affected by different lighting conditions and gaps along the crop rows due to lack of germination and wrong plantation. The proposed image processing method consists of four different processes. First, image segmentation based on HSV (Hue, Saturation, Value) decision tree. The proposed algorithm used HSV color space to discriminate crops, weeds and soil. The region of interest is defined by filtering each of the HSV channels between maximum and minimum threshold values. Then the noises in the images were eliminated by the means of hybrid median filter. Further, mathematical morphological processes, i.e., erosion to remove smaller objects followed by dilation to gradually enlarge the boundaries of regions of foreground pixels was applied. It enhances the image contrast. To accurately detect the position of crop rows, the region of interest is defined by creating a binary mask. The edge detection and Hough transform were applied to detect lines represented in polar coordinates and furrow directions as accumulations on the angle axis in the Hough space. The experimental results show that the method is effective.

Keywords: furrow detection, morphological, HSV, Hough transform

Procedia PDF Downloads 234
1835 Improved Non-Ideal Effects in AlGaN/GaN-Based Ion-Sensitive Field-Effect Transistors

Authors: Wei-Chou Hsu, Ching-Sung Lee, Han-Yin Liu

Abstract:

This work uses H2O2 oxidation technique to improve the pH sensitivity of the AlGaN/GaN-based ion-sensitive field-effect transistors (ISFETs). 10-nm-thick Al2O3 was grown on the surface of the AlGaN. It was found that the pH sensitivity was improved from 41.6 mV/pH to 55.2 mV/pH. Since the H2O2-grown Al2O3 was served as a passivation layer and the problem of Fermi-level pinning was suppressed for the ISFET with the H2O2 oxidation process. Hysteresis effect in the ISFET with the H2O2 treatment also became insignificant. The hysteresis effect was observed by dipping the ISFETs into different pH value solutions and comparing the voltage difference between the initial and final conditions. The hysteresis voltage (Vhys) of the ISFET with the H2O2 oxidation process was improved from 8.7 mV to 4.8 mV. The hysteresis effect is related to the buried binding sites which are related to the material defects like threading dislocations in the AlGaN/GaN heterostructure which was grown by the hetero-epitaxy technique. The H2O2-grown Al2O3 passivate these material defects and the Al2O3 has less material defects. The long-term stability of the ISFET is estimated by the drift effect measurement. The drift measurement was conducted by dipping the ISFETs into a specific pH value solution for 12 hours and the ISFETs were operating at a specific quiescent point. The drift rate is estimated by the drift voltage divided by the total measuring time. It was found that the drift rate of the ISFET was improved from 10.1 mV/hour to 1.91 mV/hour in the pH 7 solution, from 14.06 mV/hour to 6.38 mV/pH in the pH 2 solution, and from 12.8 mV/hour to 5.48 mV/hour in the pH 12 solution. The drift effect results from the capacitance variation in the electric double layer. The H2O2-grown Al2O3 provides an additional capacitance connection in series with the electric double layer. Therefore, the capacitance variation of the electric double layer became insignificant. Generally, the H2O2 oxidation process is a simple, fast, and cost-effective method for the AlGaN/GaN-based ISFET. Furthermore, the performance of the AlGaN/GaN ISFET was improved effectively and the non-ideal effects were suppressed.

Keywords: AlGaN/GaN, Al2O3, hysteresis effect, drift effect, reliability, passivation, pH sensors

Procedia PDF Downloads 331
1834 Arsenic (III) Removal by Zerovalent Iron Nanoparticles Synthesized with the Help of Tea Liquor

Authors: Tulika Malviya, Ritesh Chandra Shukla, Praveen Kumar Tandon

Abstract:

Traditional methods of synthesis are hazardous for the environment and need nature friendly processes for the treatment of industrial effluents and contaminated water. Use of plant parts for the synthesis provides an efficient alternative method. In this paper, we report an ecofriendly and nonhazardous biobased method to prepare zerovalent iron nanoparticles (ZVINPs) using the liquor of commercially available tea. Tea liquor as the reducing agent has many advantages over other polymers. Unlike other polymers, the polyphenols present in tea extract are nontoxic and water soluble at room temperature. In addition, polyphenols can form complexes with metal ions and thereafter reduce the metals. Third, tea extract contains molecules bearing alcoholic functional groups that can be exploited for reduction as well as stabilization of the nanoparticles. Briefly, iron nanoparticles were prepared by adding 2.0 g of montmorillonite K10 (MMT K10) to 5.0 mL of 0.10 M solution of Fe(NO3)3 to which an equal volume of tea liquor was then added drop wise over 20 min with constant stirring. The color of the mixture changed from whitish yellow to black, indicating the formation of iron nanoparticles. The nanoparticles were adsorbed on montmorillonite K10, which is safe and aids in the separation of hazardous arsenic species simply by filtration. Particle sizes ranging from 59.08±7.81 nm were obtained which is confirmed by using different instrumental analyses like IR, XRD, SEM, and surface area studies. Removal of arsenic was done via batch adsorption method. Solutions of As(III) of different concentrations were prepared by diluting the stock solution of NaAsO2 with doubly distilled water. The required amount of in situ prepared ZVINPs supported on MMT K10 was added to a solution of desired strength of As (III). After the solution had been stirred for the preselected time, the solid mass was filtered. The amount of arsenic [in the form of As (V)] remaining in the filtrate was measured using ion chromatograph. Stirring of contaminated water with zerovalent iron nanoparticles supported on montmorillonite K10 for 30 min resulted in up to 99% removal of arsenic as As (III) from its solution at both high and low pH (2.75 and 11.1). It was also observed that, under similar conditions, montmorillonite K10 alone provided only <10% removal of As(III) from water. Adsorption at low pH with precipitation at higher pH has been proposed for As(III) removal.

Keywords: arsenic removal, montmorillonite K10, tea liquor, zerovalent iron nanoparticles

Procedia PDF Downloads 132
1833 Construction of Ovarian Cancer-on-Chip Model by 3D Bioprinting and Microfluidic Techniques

Authors: Zakaria Baka, Halima Alem

Abstract:

Cancer is a major worldwide health problem that has caused around ten million deaths in 2020. In addition, efforts to develop new anti-cancer drugs still face a high failure rate. This is partly due to the lack of preclinical models that recapitulate in-vivo drug responses. Indeed conventional cell culture approach (known as 2D cell culture) is far from reproducing the complex, dynamic and three-dimensional environment of tumors. To set up more in-vivo-like cancer models, 3D bioprinting seems to be a promising technology due to its ability to achieve 3D scaffolds containing different cell types with controlled distribution and precise architecture. Moreover, the introduction of microfluidic technology makes it possible to simulate in-vivo dynamic conditions through the so-called “cancer-on-chip” platforms. Whereas several cancer types have been modeled through the cancer-on-chip approach, such as lung cancer and breast cancer, only a few works describing ovarian cancer models have been described. The aim of this work is to combine 3D bioprinting and microfluidic technics with setting up a 3D dynamic model of ovarian cancer. In the first phase, alginate-gelatin hydrogel containing SKOV3 cells was used to achieve tumor-like structures through an extrusion-based bioprinter. The desired form of the tumor-like mass was first designed on 3D CAD software. The hydrogel composition was then optimized for ensuring good and reproducible printability. Cell viability in the bioprinted structures was assessed using Live/Dead assay and WST1 assay. In the second phase, these bioprinted structures will be included in a microfluidic device that allows simultaneous testing of different drug concentrations. This microfluidic dispositive was first designed through computational fluid dynamics (CFD) simulations for fixing its precise dimensions. It was then be manufactured through a molding method based on a 3D printed template. To confirm the results of CFD simulations, doxorubicin (DOX) solutions were perfused through the dispositive and DOX concentration in each culture chamber was determined. Once completely characterized, this model will be used to assess the efficacy of anti-cancer nanoparticles developed in the Jean Lamour institute.

Keywords: 3D bioprinting, ovarian cancer, cancer-on-chip models, microfluidic techniques

Procedia PDF Downloads 201
1832 New Insights into Ethylene and Auxin Interplay during Tomato Ripening

Authors: Bruna Lima Gomes, Vanessa Caroline De Barros Bonato, Luciano Freschi, Eduardo Purgatto

Abstract:

Plant hormones are long known to be tightly associated with fruit development and are involved in controlling various aspects of fruit ripening. For fleshy fruits, ripening is characterized for changes in texture, color, aroma and other parameters that markedly contribute to its quality. Ethylene is one of the major players regulating the ripening-related processes, but emerging evidences suggest that auxin is also part of this dynamic control. Thus, the aim of this study was providing new insights into the auxin role during ripening and the hormonal interplay between auxin and ethylene. For that, tomato fruits (Micro-Tom) were collected at mature green stage and separated in four groups: one for indole-3-acetic acid (IAA) treatment, one for ethylene, one for a combination of IAA and ethylene, and one for control. Hormone solution was injected through the stylar apex, while mock samples were injected with buffer only. For ethylene treatments, fruits were exposed to gaseous hormone. Then, fruits were left to ripen under standard conditions and to assess ripening development, hue angle was reported as color indicator and ethylene production was measured by gas chromatography. The transcript levels of three ripening-related ethylene receptors (LeETR3, LeETR4 and LeETR6) were evaluated by RT-qPCR. Results showed that ethylene treatment induced ripening, stimulated ethylene production, accelerated color changes and induced receptor expression, as expected. Nonetheless, auxin treatment showed the opposite effect once fruits remained green for longer time than control group and ethylene perception has changed, taking account the reduced levels of receptor transcripts. Further, treatment with both hormones revealed that auxin effect in delaying ripening was predominant, even with higher levels of ethylene. Altogether, the data suggest that auxin modulates several aspects of the tomato fruit ripening modifying the ethylene perception. The knowledge about hormonal control of fruit development will help design new strategies for effective manipulation of ripening regarding fruit quality and brings a new level of complexity on fruit ripening regulation.

Keywords: ethylene, auxin, fruit ripening, hormonal crosstalk

Procedia PDF Downloads 465
1831 Mechanical Responses to Hip Versus Knee Induced Muscle Fatigue in Patellofemoral Pain Syndrome

Authors: Eman Ahmed Ahmed, Ghada Abdelmoneim Mohamed, Hamada Ahmed Hamada, Nagui Sobhi Nassif

Abstract:

Impaired skeletal muscle endurance may be an important causal factor in the development of patellofemoral pain syndrome (PFPS). However, there is lack of information regarding the effect of hip versus knee muscle fatigue on isokinetic parameters, and myoelectric activity of hip and knee muscles in these patients. Purpose: The study was conducted to investigate the effect of hip abductors versus knee extensors fatigue protocol on knee proprioception, hip and knee muscle strength and their myoelectric activity in patients with PFPS. Methods: Fifteen female patients with PFPS participated in the study. They were tested randomly under two fatiguing conditions; hip abductors and knee extensors fatigue protocols. Isolated muscle fatigue of two muscles was induced isokinetically on the affected side in a two separate sessions with a rest interval of at least three days. After determining peak torque, patients performed continuous maximal concentric-eccentric contraction of the selected muscle until the torque output dropped below 50% of peak torque value for 3 consecutive repetitions. Knee proprioception, eccentric hip abductors' peak torque, eccentric knee extensors' peak torque, EMG ratio of vastus medialis obliquus (VMO) / vastus lateralis (VL), and EMG activity of gluteus medius (GM) muscle, were recorded before and immediately after each fatigue protocol using the Biodex Isokinetic system and EMG Myosystem. Results: Two-way within subject MANOVA revealed that eccentric knee extensors’ peak torque decreased significantly after hip abductors fatigue protocol compared to pre fatigue condition (p<0.05). On the other hand, there was no statistically significant difference in the eccentric hip abductors’ peak torque after admitting knee extensors fatigue protocol (p > 0.05). Moreover, no significant difference was found in knee proprioception, EMG ratio of VMO/VL, and EMG activity of GM muscle, after either hip or knee fatigue protocol (p>0.05). Conclusion: A hip focused rehabilitation program may be beneficial in improving knee function through correcting faulty kinematics and hence decrease knee loading in patients with PFPS.

Keywords: electromyography, knee proprioception, mechanical responses, muscle fatigue, patellofemoral pain syndrome

Procedia PDF Downloads 313
1830 A Case Study on an Integrated Analysis of Well Control and Blow out Accident

Authors: Yasir Memon

Abstract:

The complexity and challenges in the offshore industry are increasing more than the past. The oil and gas industry is expanding every day by accomplishing these challenges. More challenging wells such as longer and deeper are being drilled in today’s environment. Blowout prevention phenomena hold a worthy importance in oil and gas biosphere. In recent, so many past years when the oil and gas industry was growing drilling operation were extremely dangerous. There was none technology to determine the pressure of reservoir and drilling hence was blind operation. A blowout arises when an uncontrolled reservoir pressure enters in wellbore. A potential of blowout in the oil industry is the danger for the both environment and the human life. Environmental damage, state/country regulators, and the capital investment causes in loss. There are many cases of blowout in the oil the gas industry caused damage to both human and the environment. A huge capital investment is being in used to stop happening of blowout through all over the biosphere to bring damage at the lowest level. The objective of this study is to promote safety and good resources to assure safety and environmental integrity in all operations during drilling. This study shows that human errors and management failure is the main cause of blowout therefore proper management with the wise use of precautions, prevention methods or controlling techniques can reduce the probability of blowout to a minimum level. It also discusses basic procedures, concepts and equipment involved in well control methods and various steps using at various conditions. Furthermore, another aim of this study work is to highlight management role in oil gas operations. Moreover, this study analyze the causes of Blowout of Macondo well occurred in the Gulf of Mexico on April 20, 2010, and deliver the recommendations and analysis of various aspect of well control methods and also provides the list of mistakes and compromises that British Petroleum and its partner were making during drilling and well completion methods and also the Macondo well disaster happened due to various safety and development rules violation. This case study concludes that Macondo well blowout disaster could be avoided with proper management of their personnel’s and communication between them and by following safety rules/laws it could be brought to minimum environmental damage.

Keywords: energy, environment, oil and gas industry, Macondo well accident

Procedia PDF Downloads 190
1829 Design and Modeling of Human Middle Ear for Harmonic Response Analysis

Authors: Shende Suraj Balu, A. B. Deoghare, K. M. Pandey

Abstract:

The human middle ear (ME) is a delicate and vital organ. It has a complex structure that performs various functions such as receiving sound pressure and producing vibrations of eardrum and propagating it to inner ear. It consists of Tympanic Membrane (TM), three auditory ossicles, various ligament structures and muscles. Incidents such as traumata, infections, ossification of ossicular structures and other pathologies may damage the ME organs. The conditions can be surgically treated by employing prosthesis. However, the suitability of the prosthesis needs to be examined in advance prior to the surgery. Few decades ago, this issue was addressed and analyzed by developing an equivalent representation either in the form of spring mass system, electrical system using R-L-C circuit or developing an approximated CAD model. But, nowadays a three-dimensional ME model can be constructed using micro X-Ray Computed Tomography (μCT) scan data. Moreover, the concern about patient specific integrity pertaining to the disease can be examined well in advance. The current research work emphasizes to develop the ME model from the stacks of μCT images which are used as input file to MIMICS Research 19.0 (Materialise Interactive Medical Image Control System) software. A stack of CT images is converted into geometrical surface model to build accurate morphology of ME. The work is further extended to understand the dynamic behaviour of Harmonic response of the stapes footplate and umbo for different sound pressure levels applied at lateral side of eardrum using finite element approach. The pathological condition Cholesteatoma of ME is investigated to obtain peak to peak displacement of stapes footplate and umbo. Apart from this condition, other pathologies, mainly, changes in the stiffness of stapedial ligament, TM thickness and ossicular chain separation and fixation are also explored. The developed model of ME for pathologies is validated by comparing the results available in the literatures and also with the results of a normal ME to calculate the percentage loss in hearing capability.

Keywords: computed tomography (μCT), human middle ear (ME), harmonic response, pathologies, tympanic membrane (TM)

Procedia PDF Downloads 178
1828 New Advanced Medical Software Technology Challenges and Evolution of the Regulatory Framework in Expert Software, Artificial Intelligence, and Machine Learning

Authors: Umamaheswari Shanmugam, Silvia Ronchi

Abstract:

Software, artificial intelligence, and machine learning can improve healthcare through innovative and advanced technologies that can use the large amount and variety of data generated during healthcare services every day; one of the significant advantages of these new technologies is the ability to get experience and knowledge from real-world use and to improve their performance continuously. Healthcare systems and institutions can significantly benefit because the use of advanced technologies improves the efficiency and efficacy of healthcare. Software-defined as a medical device, is stand-alone software that is intended to be used for patients for one or more of these specific medical intended uses: - diagnosis, prevention, monitoring, prediction, prognosis, treatment or alleviation of a disease, any other health conditions, replacing or modifying any part of a physiological or pathological process–manage the received information from in vitro specimens derived from the human samples (body) and without principal main action of its principal intended use by pharmacological, immunological or metabolic definition. Software qualified as medical devices must comply with the general safety and performance requirements applicable to medical devices. These requirements are necessary to ensure high performance and quality and protect patients' safety. The evolution and the continuous improvement of software used in healthcare must consider the increase in regulatory requirements, which are becoming more complex in each market. The gap between these advanced technologies and the new regulations is the biggest challenge for medical device manufacturers. Regulatory requirements can be considered a market barrier, as they can delay or obstacle the device's approval. Still, they are necessary to ensure performance, quality, and safety. At the same time, they can be a business opportunity if the manufacturer can define the appropriate regulatory strategy in advance. The abstract will provide an overview of the current regulatory framework, the evolution of the international requirements, and the standards applicable to medical device software in the potential market all over the world.

Keywords: artificial intelligence, machine learning, SaMD, regulatory, clinical evaluation, classification, international requirements, MDR, 510k, PMA, IMDRF, cyber security, health care systems

Procedia PDF Downloads 92
1827 Bridging Healthcare Information Systems and Customer Relationship Management for Effective Pandemic Response

Authors: Sharda Kumari

Abstract:

As the Covid-19 pandemic continues to leave its mark on the global business landscape, companies have had to adapt to new realities and find ways to sustain their operations amid social distancing measures, government restrictions, and heightened public health concerns. This unprecedented situation has placed considerable stress on both employees and employers, underscoring the need for innovative approaches to manage the risks associated with Covid-19 transmission in the workplace. In response to these challenges, the pandemic has accelerated the adoption of digital technologies, with an increasing preference for remote interactions and virtual collaboration. Customer relationship management (CRM) systems have risen to prominence as a vital resource for organizations navigating the post-pandemic world, providing a range of benefits that include acquiring new customers, generating insightful consumer data, enhancing customer relationships, and growing market share. In the context of pandemic management, CRM systems offer three primary advantages: (1) integration features that streamline operations and reduce the need for multiple, costly software systems; (2) worldwide accessibility from any internet-enabled device, facilitating efficient remote workforce management during a pandemic; and (3) the capacity for rapid adaptation to changing business conditions, given that most CRM platforms boast a wide array of remotely deployable business growth solutions, a critical attribute when dealing with a dispersed workforce in a pandemic-impacted environment. These advantages highlight the pivotal role of CRM systems in helping organizations remain resilient and adaptive in the face of ongoing global challenges.

Keywords: healthcare, CRM, customer relationship management, customer experience, digital transformation, pandemic response, patient monitoring, patient management, healthcare automation, electronic health record, patient billing, healthcare information systems, remote workforce, virtual collaboration, resilience, adaptable business models, integration features, CRM in healthcare, telehealth, pandemic management

Procedia PDF Downloads 103
1826 Finite Element Analysis of Mechanical Properties of Additively Manufactured 17-4 PH Stainless Steel

Authors: Bijit Kalita, R. Jayaganthan

Abstract:

Additive manufacturing (AM) is a novel manufacturing method which provides more freedom in design, manufacturing near-net-shaped parts as per demand, lower cost of production, and expedition in delivery time to market. Among various metals, AM techniques, Laser Powder Bed Fusion (L-PBF) is the most prominent one that provides higher accuracy and powder proficiency in comparison to other methods. Particularly, 17-4 PH alloy is martensitic precipitation hardened (PH) stainless steel characterized by resistance to corrosion up to 300°C and tailorable strengthening by copper precipitates. Additively manufactured 17-4 PH stainless steel exhibited a dendritic/cellular solidification microstructure in the as-built condition. It is widely used as a structural material in marine environments, power plants, aerospace, and chemical industries. The excellent weldability of 17-4 PH stainless steel and its ability to be heat treated to improve mechanical properties make it a good material choice for L-PBF. In this study, the microstructures of martensitic stainless steels in the as-built state, as well as the effects of process parameters, building atmosphere, and heat treatments on the microstructures, are reviewed. Mechanical properties of fabricated parts are studied through micro-hardness and tensile tests. Tensile tests are carried out under different strain rates at room temperature. In addition, the effect of process parameters and heat treatment conditions on mechanical properties is critically reviewed. These studies revealed the performance of L-PBF fabricated 17–4 PH stainless-steel parts under cyclic loading, and the results indicated that fatigue properties were more sensitive to the defects generated by L-PBF (e.g., porosity, microcracks), leading to the low fracture strains and stresses under cyclic loading. Rapid melting, solidification, and re-melting of powders during the process and different combinations of processing parameters result in a complex thermal history and heterogeneous microstructure and are necessary to better control the microstructures and properties of L-PBF PH stainless steels through high-efficiency and low-cost heat treatments.

Keywords: 17–4 PH stainless steel, laser powder bed fusion, selective laser melting, microstructure, additive manufacturing

Procedia PDF Downloads 121
1825 Determining Water Use Efficiency of Mung Bean (Vigna radiata L.) under Arid Climatic Conditions

Authors: Awais Ahmad, Mostafa Muhammad Selim, Ali Abdullah Alderfasi

Abstract:

Water limitation is undoubtedly a critical environmental constraint limiting the crop production under arid and semiarid areas. Mung bean is susceptible to both drought and water logging stresses. Therefore, present study was conducted to assess the water deficit stress consequences of yield components and water use efficiency in Mung bean. A field experiment was conducted at Educational Farm, Crop Production Department, College of Food and Agricultural Sciences, Kind Saud University, Saudi Arabia. Trail comprised of four irrigation levels — total amount of irrigation divided into irrigation intervals — (3, 5, 7 and 9 days interval) and three Mung bean genotypes; Kawmay-1, VC-2010 and King from Egypt, Thailand and China respectively. Experiment was arranged under split plot design having irrigation as main while genotype as subplot treatment, and replicated thrice. Plant height, 100 seed weight, biological yield, seed yield, harvest index and water use efficiency were recorded at harvesting. Results revealed that decrease in irrigation have significantly hampered all the studied parameters. Mung bean genotypes have also shown significant differences for all parameters, whereas irrigation genotype interaction was highly significant for seed yield, harvest index and water use efficiency (WUE) while it was significant for biological yield. Plant height and 100 seed weight were recorded non-significant for irrigation genotype interaction. A statistically highly significant correlation among recorded parameters was observed. Minimum irrigation interval (3 days) significantly produced maximum values while VC-2010 comparatively performed better under low irrigation levels. It was concluded that Mung bean may be successfully adopted under Saudi Arabian climate but it needs high water or frequent irrigation, however, genotypic differences are a hope to develop some improved varieties with high water use efficiency.

Keywords: mung bean, irrigation intervals, water use efficiency, genotypes, yield

Procedia PDF Downloads 275
1824 Analyses of Copper Nanoparticles Impregnated Wood and Its Fungal Degradation Performance

Authors: María Graciela Aguayo, Laura Reyes, Claudia Oviedo, José Navarrete, Liset Gómez, Hugo Torres

Abstract:

Most wood species used in construction deteriorate when exposed to environmental conditions that favor wood-degrading organisms’ growth. Therefore, chemical protection by impregnation allows more efficient use of forest resources extending the wood useful life. A wood protection treatment which has attracted considerable interest in the scientific community during the last decade is wood impregnation with nano compounds. Radiata pine is the main wood species used in the Chilean construction industry, with total availability of 8 million m³ sawn timber. According to the requirements of the American Wood Protection Association (AWPA) and the Chilean Standards (NCh) radiata pine timber used in construction must be protected due to its low natural durability. In this work, the impregnation with copper nanoparticles (CuNP) was studied in terms of penetration and its protective effect against wood rot fungi. Two concentrations: 1 and 3 g/L of NPCu were applied by impregnation on radiata pine sapwood. Test penetration under AWPA A3-91 standard was carried out, and wood decay tests were performed according to EN 113, with slight modifications. The results of penetration for 1 g/L CuNP showed an irregular total penetration, and the samples impregnated with 3 g/L showed a total penetration with uniform concentration (blue color in all cross sections). The impregnation wood mass losses due to fungal exposure were significantly reduced, regardless of the concentration of the solution or the fungus. In impregnated wood samples, exposure to G. trabeum resulted ML values of 2.70% and 1.19% for 1 g/L and 3 g/L CuNP, respectively, and exposure to P. placenta resulted in 4.02% and 0.70%-ML values for 1 g/L and 3 g/L CuNP, respectively. In this study, the penetration analysis confirmed a uniform distribution inside the wood, and both concentrations were effective against the tested fungi, giving mass loss values lower than 5%. Therefore, future research in wood preservatives should focus on new nanomaterials that are more efficient and environmentally friendly. Acknowledgments: CONICYT FONDEF IDeA I+D 2019, grant number ID19I10122.

Keywords: copper nanoparticles, fungal degradation, radiata pine wood, wood preservation

Procedia PDF Downloads 204
1823 Increased Energy Efficiency and Improved Product Quality in Processing of Lithium Bearing Ores by Applying Fluidized-Bed Calcination Systems

Authors: Edgar Gasafi, Robert Pardemann, Linus Perander

Abstract:

For the production of lithium carbonate or hydroxide out of lithium bearing ores, a thermal activation (calcination/decrepitation) is required for the phase transition in the mineral to enable an acid respectively soda leaching in the downstream hydrometallurgical section. In this paper, traditional processing in Lithium industry is reviewed, and opportunities to reduce energy consumption and improve product quality and recovery rate will be discussed. The conventional process approach is still based on rotary kiln calcination, a technology in use since the early days of lithium ore processing, albeit not significantly further developed since. A new technology, at least for the Lithium industry, is fluidized bed calcination. Decrepitation of lithium ore was investigated at Outotec’s Frankfurt Research Centre. Focusing on fluidized bed technology, a study of major process parameters (temperature and residence time) was performed at laboratory and larger bench scale aiming for optimal product quality for subsequent processing. The technical feasibility was confirmed for optimal process conditions on pilot scale (400 kg/h feed input) providing the basis for industrial process design. Based on experimental results, a comprehensive Aspen Plus flow sheet simulation was developed to quantify mass and energy flow for the rotary kiln and fluidized bed system. Results show a significant reduction in energy consumption and improved process performance in terms of temperature profile, product quality and plant footprint. The major conclusion is that a substantial reduction of energy consumption can be achieved in processing Lithium bearing ores by using fluidized bed based systems. At the same time and different from rotary kiln process, an accurate temperature and residence time control is ensured in fluidized-bed systems leading to a homogenous temperature profile in the reactor which prevents overheating and sintering of the solids and results in uniform product quality.

Keywords: calcination, decrepitation, fluidized bed, lithium, spodumene

Procedia PDF Downloads 235
1822 Second Language Perception of Japanese /Cju/ and /Cjo/ Sequences by Mandarin-Speaking Learners of Japanese

Authors: Yili Liu, Honghao Ren, Mariko Kondo

Abstract:

In the field of second language (L2) speech learning, it is well-known that that learner’s first language (L1) phonetic and phonological characteristics will be transferred into their L2 production and perception, which lead to foreign accent. For L1 Mandarin learners of Japanese, the confusion of /u/ and /o/ in /CjV/ sequences has been observed in their utterance frequently. L1 transfer is considered to be the cause of this issue, however, other factors which influence the identification of /Cju/ and /Cjo/ sequences still under investigation. This study investigates the perception of Japanese /Cju/ and /Cjo/ units by L1 Mandarin learners of Japanese. It further examined whether learners’ proficiency, syllable position, phonetic features of preceding consonants and background noise affect learners’ performance in perception. Fifty-two Mandarin-speaking learners of Japanese and nine native Japanese speakers were recruited to participate in an identification task. Learners were divided into beginner, intermediate and advanced level according to their Japanese proficiency. The average correct rate was used to evaluate learners’ perceptual performance. Furthermore, the comparison of the correct rate between learners’ groups and the control group was conducted as well to examine learners’ nativelikeness. Results showed that background noise tends to pose an adverse effect on distinguishing /u/ and /o/ in /CjV/ sequences. Secondly, Japanese proficiency has no influence on learners’ perceptual performance in the quiet and in background noise. Then all learners did not reach a native-like level without the distraction of noise. Beginner level learners performed less native-like, although higher level learners appeared to have achieved nativelikeness in the multi-talker babble noise. Finally, syllable position tends to affect distinguishing /Cju/ and /Cjo/ only under the noisy condition. Phonetic features of preceding consonants did not impact learners’ perception in any listening conditions. Findings in this study can give an insight into a further understanding of Japanese vowel acquisition by L1 Mandarin learners of Japanese. In addition, this study indicates that L1 transfer is not the only explanation for the confusion of /u/ and /o/ in /CjV/ sequences, factors such as listening condition and syllable position are also needed to take into consideration in future research. It also suggests the importance of perceiving speech in a noisy environment, which is close to the actual conversation required more attention to pedagogy.

Keywords: background noise, Chinese learners of Japanese, /Cju/ and /Cjo/ sequences, second language perception

Procedia PDF Downloads 162
1821 The Portuguese Legal Instruments to Combat the Improper Use of the Contract Service

Authors: Ana Lambelho

Abstract:

Nowadays is very common that an activity may be performed independently or dependently. In Portugal, the Labour Law exclusively protects the dependent labour relations. The independent work is regulated by civil law, where the autonomy of the will is the main principle. For companies is more advantageous to hire people under a service agreement since, in that case, the relation is not submitted to the limits established in Labour law and collective bargaining. This practice has nothing wrong, if the performance of work is, in fact, made autonomously. The problem is the increased frequency of the celebration of service agreements to hide a legal relation of subordination. Aware of this and regarding the huge difficulty to demonstrate the existence of subordinated work (that often runs against the employee), the Portuguese legislator devoted some legislative rules in order to facilitate the evidence of legal subordination and, on the other hand, to avoid the misuse of the provision of service agreements. This study focuses precisely on the analysis of this solution, namely the so-called presumption of ‘laboralidade’ and on the lawsuit to recognize the existence of a labour contract. The presumption of the existence of a labour contract is present in the Portuguese legal system since 2003, and received, with the 2009 Labour Code, a new redaction that, according to the doctrine and the jurisprudence, finally approached it to a legal presumption, with the consequent reversal of the burden of proof and, in consequence, made easier to proof the legal subordination, because the employee will just have to plead and prove the existence of two of the elements described in the law to use this presumption. Another change in the Portuguese legal framework is related with the competencies of the Authority for Working Conditions (AWC): now, if during an inspection, the Authority finds a situation that seems to be an undeclared employment situation, it may access the company and, if it does not regularize voluntarily the situation, AWC has a duty to communicate to the public prosecutor, who will begin the lawsuit for the recognition of the existence of an employment contract. To defend the public interest, the action to recognize the existence of an employment contract will follow its terms, even against the employee will. Although the existence of these mechanisms does not solve by itself the problem of evasion of labour law and false ‘green receipts’, it is undeniable that it is an important step in combating fraud in this field.

Keywords: independent work, labour contract, Portugal, service agreement

Procedia PDF Downloads 328
1820 Comparison of Risk Analysis Methodologies Through the Consequences Identification in Chemical Accidents Associated with Dangerous Flammable Goods Storage

Authors: Daniel Alfonso Reséndiz-García, Luis Antonio García-Villanueva

Abstract:

As a result of the high industrial activity, which arises from the search to satisfy the needs of products and services for society, several chemical accidents have occurred, causing serious damage to different sectors: human, economic, infrastructure and environmental losses. Historically, with the study of this chemical accidents, it has been determined that the causes are mainly due to human errors (inexperienced personnel, negligence, lack of maintenance and deficient risk analysis). The industries have the aim to increase production and reduce costs. However, it should be kept in mind that the costs involved in risk studies, implementation of barriers and safety systems is much cheaper than paying for the possible damages that could occur in the event of an accident, without forgetting that there are things that cannot be replaced, such as human lives.Therefore, it is of utmost importance to implement risk studies in all industries, which provide information for prevention and planning. The aim of this study is to compare risk methodologies by identifying the consequences of accidents related to the storage of flammable, dangerous goods for decision making and emergency response.The methodologies considered in this study are qualitative and quantitative risk analysis and consequence analysis. The latter, by means of modeling software, which provides radius of affectation and the possible scope and magnitude of damages.By using risk analysis, possible scenarios of occurrence of chemical accidents in the storage of flammable substances are identified. Once the possible risk scenarios have been identified, the characteristics of the substances, their storage and atmospheric conditions are entered into the software.The results provide information that allows the implementation of prevention, detection, control, and combat elements for emergency response, thus having the necessary tools to avoid the occurrence of accidents and, if they do occur, to significantly reduce the magnitude of the damage.This study highlights the importance of risk studies applying tools that best suited to each case study. It also proves the importance of knowing the risk exposure of industrial activities for a better prevention, planning and emergency response.

Keywords: chemical accidents, emergency response, flammable substances, risk analysis, modeling

Procedia PDF Downloads 97
1819 Possibilities of Postmortem CT to Detection of Gas Accumulations in the Vessels of Dead Newborns with Congenital Sepsis

Authors: Uliana N. Tumanova, Viacheslav M. Lyapin, Vladimir G. Bychenko, Alexandr I. Shchegolev, Gennady T. Sukhikh

Abstract:

It is well known that the gas formed as a result of postmortem decomposition of tissues can be detected already 24-48 hours after death. In addition, the conditions of keeping and storage of the corpse (temperature and humidity of the environment) significantly determine the rate of occurrence and development of posthumous changes. The presence of sepsis is accompanied by faster postmortem decomposition and decay of the organs and tissues of the body. The presence of gas in the vessels and cavities can be revealed fully at postmortem CT. Radiologists must certainly report on the detection of intraorganic or intravascular gas, wich was detected at postmortem CT, to forensic experts or pathologists before the autopsy. This gas can not be detected during autopsy, but it can be very important for establishing a diagnosis. To explore the possibility of postmortem CT for the evaluation of gas accumulations in the newborns' vessels, who died from congenital sepsis. Researched of 44 newborns bodies (25 male and 19 female sex, at the age from 6 hours to 27 days) after 6 - 12 hours of death. The bodies were stored in the refrigerator at a temperature of +4°C in the supine position. Grouped 12 bodies of newborns that died from congenital sepsis. The control group consisted of 32 bodies of newborns that died without signs of sepsis. Postmortem CT examination was performed at the GEMINI TF TOF16 device, before the autopsy. The localizations of gas accumulations in the vessels were determined on the CT tomograms. The sepsis diagnosis was on the basis of clinical and laboratory data and autopsy results. Gases in the vessels were detected in 33.3% of cases in the group with sepsis, and in the control group - in 34.4%. A group with sepsis most often the gas localized in the heart and liver vessels - 50% each, of observations number with the detected gas in the vessels. In the heart cavities, aorta and mesenteric vessels - 25% each. In control most often gas was detected in the liver (63.6%) and abdominal cavity (54.5%) vessels. In 45.5% the gas localized in the cavities, and in 36.4% in the vessels of the heart. In the cerebral vessels and in the aorta gas was detected in 27.3% and 9.1%, respectively. Postmortem CT has high diagnostic capabilities to detect free gas in vessels. Postmortem changes in newborns that died from sepsis do not affect intravascular gas production within 6-12 hours. Radiation methods should be used as a supplement to the autopsy, including as a kind of ‘guide’, with the indication to the forensic medical expert of certain changes identified during CT studies, for better definition of pathological processes during the autopsy. Postmortem CT can be recommend as a first stage of autopsy.

Keywords: congenital sepsis, gas, newborn, postmortem CT

Procedia PDF Downloads 148
1818 Structural Strength Evaluation and Wear Prediction of Double Helix Steel Wire Ropes for Heavy Machinery

Authors: Krunal Thakar

Abstract:

Wire ropes combine high tensile strength and flexibility as compared to other general steel products. They are used in various application areas such as cranes, mining, elevators, bridges, cable cars, etc. The earliest reported use of wire ropes was for mining hoist application in 1830s. Over the period, there have been substantial advancement in the design of wire ropes for various application areas. Under operational conditions, wire ropes are subjected to varying tensile loads and bending loads resulting in material wear and eventual structural failure due to fretting fatigue. The conventional inspection methods to determine wire failure is only limited to outer wires of rope. However, till date, there is no effective mathematical model to examine the inter wire contact forces and wear characteristics. The scope of this paper is to present a computational simulation technique to evaluate inter wire contact forces and wear, which are in many cases responsible for rope failure. Two different type of ropes, IWRC-6xFi(29) and U3xSeS(48) were taken for structural strength evaluation and wear prediction. Both ropes have a double helix twisted wire profile as per JIS standards and are mainly used in cranes. CAD models of both ropes were developed in general purpose design software using in house developed formulation to generate double helix profile. Numerical simulation was done under two different load cases (a) Axial Tension and (b) Bending over Sheave. Different parameters such as stresses, contact forces, wear depth, load-elongation, etc., were investigated and compared between both ropes. Numerical simulation method facilitates the detailed investigation of inter wire contact and wear characteristics. In addition, various selection parameters like sheave diameter, rope diameter, helix angle, swaging, maximum load carrying capacity, etc., can be quickly analyzed.

Keywords: steel wire ropes, numerical simulation, material wear, structural strength, axial tension, bending over sheave

Procedia PDF Downloads 155
1817 Comparing Productivity of the Foreign versus Local Construction Workers Based on Their Level of Technical Training and Cultural Characteristics: Case Study of Kish Island, Iran

Authors: Mansour Rezvani, Mohammad Mahdi Mortaheb

Abstract:

This study considers the employment of foreign workforce in Kish Free Trade and Industrial Zone and aims to investigate the productivity of foreign construction labours as compared to their local counterpart. Moreover, this study compares work skills and experience of foreign and local Iranian construction workers to optimize construction working conditions. The results and findings have been effectively applied to develop a training program to optimize and promote Iranian workforce productivity and effectiveness in construction industry in comparison with foreign workforce. It is hoped that the accumulated findings contribute to decrease demand for foreign workers and skills shortages in construction sectors. Therefore, job vacancies for local residents in Kish and other looking for job people in main lands will be increased. The method of collecting data has been conducted by distributing a questionnaire and interviewing most foreign construction workers, local Iranian construction works and the project managers of five mega projects in Kish Island including Mica mall, Basak, Persian, Damoon and Sarina mall. All data have been analyzed by SPSS and Excel software. A topic-related survey was conducted through a structured questionnaire including 54 employers, 20 contractors and 13 consultants. About 56 factors were identified. After implementing the context validity test, 52 factors were stated in 52 questions based on five major groups consist of: (1) economical, (2) social and cultural, (3) individual, (4) technical, (5) organizational, environmental and legal. Based on the quantified Relative Importance Index, the ten most important factors, ten less important factors, and three most important categories were identified. To date, there is not any comprehensive study that explores the important critical factors in mega construction projects on Kish Island to identify the major problems to decrease demand for foreign workers.

Keywords: cultural characteristics, foreign worker, local construction workers, productivity, technical training

Procedia PDF Downloads 148
1816 Computational System for the Monitoring Ecosystem of the Endangered White Fish (Chirostoma estor estor) in the Patzcuaro Lake, Mexico

Authors: Cesar Augusto Hoil Rosas, José Luis Vázquez Burgos, José Juan Carbajal Hernandez

Abstract:

White fish (Chirostoma estor estor) is an endemic species that habits in the Patzcuaro Lake, located in Michoacan, Mexico; being an important source of gastronomic and cultural wealth of the area. Actually, it have undergone an immense depopulation of individuals, due to the high fishing, contamination and eutrophication of the lake water, resulting in the possible extinction of this important species. This work proposes a new computational model for monitoring and assessment of critical environmental parameters of the white fish ecosystem. According to an Analytical Hierarchy Process, a mathematical model is built assigning weights to each environmental parameter depending on their water quality importance on the ecosystem. Then, a development of an advanced system for the monitoring, analysis and control of water quality is built using the virtual environment of LabVIEW. As results, we have obtained a global score that indicates the condition level of the water quality in the Chirostoma estor ecosystem (excellent, good, regular and poor), allowing to provide an effective decision making about the environmental parameters that affect the proper culture of the white fish such as temperature, pH and dissolved oxygen. In situ evaluations show regular conditions for a success reproduction and growth rates of this species where the water quality tends to have regular levels. This system emerges as a suitable tool for the water management, where future laws for white fish fishery regulations will result in the reduction of the mortality rate in the early stages of development of the species, which represent the most critical phase. This can guarantees better population sizes than those currently obtained in the aquiculture crop. The main benefit will be seen as a contribution to maintain the cultural and gastronomic wealth of the area and for its inhabitants, since white fish is an important food and economical income of the region, but the species is endangered.

Keywords: Chirostoma estor estor, computational system, lab view, white fish

Procedia PDF Downloads 327
1815 Pistacia Lentiscus: A Plant With Multiple Virtues for Human Health

Authors: Djebbar Atmani, Aghiles Karim Aissat, Nadjet Debbache-Benaida, Nassima Chaher-Bazizi, Dina Atmani-Kilani, Meriem Rahmani-Berboucha, Naima Saidene, Malika Benloukil, Lila Azib

Abstract:

Medicinal plants are believed to be an important source for the discovery of potential antioxidant, anti-inflammatory and anti-diabetic substances. The present study was designed to investigate the neuroprotective, anti-inflammatory, anti-diabetic and anti-hyperuricemic potential of Pistacia lentiscus, as well as the identification of active compounds. The antioxidant potential of plant extracts against known radicals was measured using various standard in vitro methods. Anti-inflammatory activity was determined using the paw edema model in mice and by measuring the secretion of the pro-inflammatory cytokine, whereas the anti-diabetic effect was assessed in vivo on streptozotocin-induced diabetic rats and in vitro by inhibition of alpha-amylase. The anti-hyperuricemic activity was evaluated using the xanthine oxidase assay, whereas neuroprotective activity was investigated using an Aluminum-induced toxicity test. Pistacia lentiscus extracts and fractions exhibited high scavenging capacity against DPPH, NO. and ABTS+ radicals in a dose-dependent manner and restored blood glucose levels, in vivo, to normal values, in agreement with the in vitro anti-diabetic effect. Oral administration of plant extracts significantly decreased carrageenan-induced mice paw oedema, similar to the standard drug, diclofenac, was effective in reducing IL-1β levels in cell culture and induced a significant increase in urinary volume in mice, associated to a promising anti-hyperuricemic activity. Plant extracts showed good neuroprotection and restoration of cognitive functions in mice. HPLC-MS and NMR analyses allowed the identification of known and new phenolic compounds that could be responsible for the observed activities. Therefore, Pistacia lentiscus could be beneficial in the treatment of inflammatory conditions and diabetes complications and the enhancement of cognitive functions.

Keywords: Pistacia lentiscus, anti-inflammatory, antidiabetic, flavanols, neuroprotective

Procedia PDF Downloads 140
1814 Exergetic Optimization on Solid Oxide Fuel Cell Systems

Authors: George N. Prodromidis, Frank A. Coutelieris

Abstract:

Biogas can be currently considered as an alternative option for electricity production, mainly due to its high energy content (hydrocarbon-rich source), its renewable status and its relatively low utilization cost. Solid Oxide Fuel Cell (SOFC) stacks convert fuel’s chemical energy to electricity with high efficiencies and reveal significant advantages on fuel flexibility combined with lower emissions rate, especially when utilize biogas. Electricity production by biogas constitutes a composite problem which incorporates an extensive parametric analysis on numerous dynamic variables. The main scope of the presented study is to propose a detailed thermodynamic model on the optimization of SOFC-based power plants’ operation based on fundamental thermodynamics, energy and exergy balances. This model named THERMAS (THERmodynamic MAthematical Simulation model) incorporates each individual process, during electricity production, mathematically simulated for different case studies that represent real life operational conditions. Also, THERMAS offers the opportunity to choose a great variety of different values for each operational parameter individually, thus allowing for studies within unexplored and experimentally impossible operational ranges. Finally, THERMAS innovatively incorporates a specific criterion concluded by the extensive energy analysis to identify the most optimal scenario per simulated system in exergy terms. Therefore, several dynamical parameters as well as several biogas mixture compositions have been taken into account, to cover all the possible incidents. Towards the optimization process in terms of an innovative OPF (OPtimization Factor), presented here, this research study reveals that systems supplied by low methane fuels can be comparable to these supplied by pure methane. To conclude, such an innovative simulation model indicates a perspective on the optimal design of a SOFC stack based system, in the direction of the commercialization of systems utilizing biogas.

Keywords: biogas, exergy, efficiency, optimization

Procedia PDF Downloads 373
1813 Intensified Electrochemical H₂O₂ Synthesis and Highly Efficient Pollutant Removal Enabled by Nickel Oxides with Surface Engineered Facets and Vacancies

Authors: Wenjun Zhang, Thao Thi Le, Dongyup Shin, Jong Min Kim

Abstract:

Electrochemical hydrogen peroxide (H₂O₂) synthesis holds significant promise for decentralized environmental remediation through the electro-Fenton process. However, challenges persist, such as the absence of robust electrocatalysts for the selective two-electron oxygen reduction reaction (2e⁻ ORR) and the high cost and sluggish kinetics of conventional electro-Fenton systems in treating highly concentrated wastewater. This study introduces an efficient water treatment system for removing substantial quantities of organic pollutants using an advanced electro-Fenton system coupled with a high-valent NiO catalyst. By employing a precipitation method involving crystal facet and cation vacancy engineering, a trivalent Ni (Ni³⁺)-rich NiO catalyst with a (111)-domain-exposed crystal facet, named {111}-NivO, was synthesized. This catalyst exhibited a remarkable 96% selectivity and a high mass activity of 59 A g⁻¹ for H₂O₂ production, outperforming all previously reported Ni-based catalysts. Furthermore, an advanced electro-Fenton system, integrated with a flow cell for electrochemical H₂O₂ production, was utilized to achieve 100% removal of 50 ppm bisphenol A (BPA) in 200 mL of wastewater under heavy-duty conditions, reaching a superior rapid degradation rate (4 min, k = 1.125 min⁻¹), approximately 102 times faster than the conventional electro-Fenton system. The hyper-efficiency is attributed to the continuous and appropriate supply of H₂O₂, the provision of O₂, and the timely recycling of the electrolyte under high current density operation. This catalyst also demonstrated a 93% removal of total organic carbon after 2 hours of operation and can be applied for efficient removal of highly concentrated phenol pollutants from aqueous systems, which opens new avenues for wastewater treatment.

Keywords: hydrogen peroxide production, nickel oxides, crystal facet and cation vacancy engineering, wastewater treatment, flow cell, electro-Fenton

Procedia PDF Downloads 62
1812 Microfacies Analysis and Paleoenvironmental Trends of the Paleocene Farrud and Mabruk Reservoirs, Concession 11, West Sirte Basin, Libya

Authors: Nisreen Agha

Abstract:

Investigation of representative core samples under the petrological microscope reveals common petrographic and mineralogical characteristics with distinct faunal assemblages, allowing establishing of the microfacies associations and deducing the paleoenvironmental trends of the Paleocene Farrud and Mabruk rock units. Recognition of the early and post-diagenetic processes, particularly dolomitization and micritization, as well as dissolution and precipitation of spary drusy calcite as a new morphism process affecting the reservoir rocks, is established. The microfacies trends detected from the investigation of 46 core samples from Farrud member (Lower Paleocene) representing six wells; QQQ1-11, GG1-11, LLL1-11, RRR1-11, RRR40-11, and RRR45-11 indicate that the deposition was started within the realm of shallow supratidal and intertidal subenvironments followed by deeper environments of the shelf bays with maximum sea level during inner shelf environment where fossiliferous bioclastic packstone dominated. The microfacies associations determined in 8 core samples from two wells LLL1and RRR40 representing Mabruk Member (Upper Paleocene), indicate paleoenvironmental trends marked by sea level fluctuations accompanied with a relatively marine shelf bay conditions intervened with short-lived shallow intertidal and supratidal warm coastal sedimentation. As a result, dolostone, evaporitic dismicrites, and gypsiferous dolostone of supratidal characters were deposited. They reflect rapid oscillation of the sea level marked by drop land-ward shift of the sea shore deposition prevailed by supratidal gypsiferous dolostone and numerous ferruginous materials as clouds straining many parts of dolomite and surrounded the micritized fossils. This situation ends the deposition of the Farrud Member in most of the studied wells. On the other hand, the facies in the northern part of the Concession -11 field indicates deposition in a deeper marine setting than in the southern facies.

Keywords: Farrud and Mabruk members, paleocene, microfacies associations, diagenesis, sea level oscillation, depositional environments

Procedia PDF Downloads 82
1811 Efficacy of Coconut Shell Pyrolytic Oil Distillate in Protecting Wood Against Bio-Deterioration

Authors: K. S. Shiny, R. Sundararaj

Abstract:

Coconut trees (Cocos nucifera L.) are grown in many parts of India and world because of its multiple utilities. During pyrolysis, coconut shells yield oil, which is a dark thick liquid. Upon simple distillation it produces a more or less colourless liquid, termed coconut shell pyrolytic oil distillate (CSPOD). This manuscript reports and discusses the use of coconut shell pyrolytic oil distillate as a potential wood protectant against bio-deterioration. Since botanical products as ecofriendly wood protectant is being tested worldwide, the utilization of CPSOD as wood protectant is of great importance. The efficacy of CSPOD as wood protectant was evaluated as per Bureau of Indian Standards (BIS) in terms of its antifungal, antiborer, and termiticidal activities. Specimens of Rubber wood (Hevea brasiliensis) in six replicate each for two treatment methods namely spraying and dipping (48hrs) were employed. CSPOD was found to impart total protection against termites for six months compared to control under field conditions. For assessing the efficacy of CSPOD against fungi, the treated blocks were subjected to the attack of two white rot fungi Tyromyces versicolor (L.) Fr. and Polyporus sanguineus (L.) G. Mey and two brown rot fungi, Polyporus meliae (Undrew.) Murrill. and Oligoporus placenta (Fr.) Gilb. & Ryvarden. Results indicated that treatment with CSPOD significantly protected wood from the damage caused by the decay fungi. Efficacy of CSPOD against wood borer Lyctus africanus Lesne was carried out using six pairs of male and female beetles and it gave promising results in protecting the treated wood blocks when compared to control blocks. As far as the treatment methods were concerned, dip treatment was found to be more effective when compared to spraying. The results of the present investigation indicated that CSPOD is a promising botanical compound which has the potential to replace synthetic wood protectants. As coconut shell, pyrolytic oil is a waste byproduct of coconut shell charcoal industry, its utilization as a wood preservative will expand the economic returns from such industries.

Keywords: coconut shell pyrolytic oil distillate, eco-friendly wood protection, termites, wood borers, wood decay fungi

Procedia PDF Downloads 372
1810 In-House Fatty Meal Cholescintigraphy as a Screening Tool in Patients Presenting with Dyspepsia

Authors: Avani Jain, S. Shelley, M. Indirani, Shilpa Kalal, Jaykanth Amalachandran

Abstract:

Aim: To evaluate the prevalence of gall bladder dysfunction in patients with dyspepsia using In-House fatty meal cholescintigraphy. Materials & Methods: This study is a prospective cohort study. 59 healthy volunteers with no dyspeptic complaints and negative ultrasound and endoscopy were recruited in study. 61 patients having complaint of dyspepsia for duration of more than 6 months were included. All of them underwent 99mTc-Mebrofenin fatty meal cholescintigraphy following a standard protocol. Dynamic acquisitions were acquired for 120 minutes with an In-House fatty meal being given at 45th minute. Gall bladder emptying kinetics was determined with gall bladder ejection fractions (GBEF) calculated at 30minutes, 45minutes and at 60 minutes (30min, 45min & 60 min). Standardization of fatty meal was done for volunteers. Receiver operating characteristic (ROC) analysis was used assess the diagnostic accuracy of 3 time points (30min, 45min & 60 min) used for measuring gall bladder emptying. On the basis of cut off derived from volunteers, the patients were assessed for gall bladder dysfunction. Results: In volunteers, the GBEF at 30 min was 74.42±8.26 % (mean ±SD), at 45 min was 82.61 ± 6.5 % and at 60 min was 89.37±4.48%, compared to patients where at 30min it was 33.73±22.87%, at 45 min it was 43.03±26.97% and at 60 min it was 51.85±29.60%. The lower limit of GBEF in volunteers at 30 min was 60%, 45 min was 69% and at 60 min was 81%. ROC analysis showed that area under curve was largest for 30 min GBEF (0.952; 95% CI = 0.914-0.989) and that all the 3 measures were statistically significant (p < 0.005). Majority of the volunteers had 74% of gall bladder emptying by 30 minutes; hence it was taken as an optimum cutoff time to assess gall bladder contraction. > 60% GBEF at 30 min post fatty meal was considered as normal and < 60% GBEF as indicative of gall bladder dysfunction. In patients, various causes for dyspepsia were identified: GB dysfunction (63.93%), Peptic ulcer (8.19 %), Gastroesophageal reflux disease (8.19%), Gastritis (4.91%). In 18.03% of cases GB dysfunction coexisted with other gastrointestinal conditions. The diagnosis of functional dyspepsia was made in 14.75% of cases. Conclusions: Gall bladder dysfunction contributes significantly to the causation of dyspepsia. It could coexist with various other gastrointestinal diseases. Fatty meal was well tolerated and devoid of any side effects. Many patients who are labeled as functional dyspeptics could actually have gall bladder dysfunction. Hence as an adjunct to ultrasound and endoscopy, fatty meal cholescintigraphy can also be used as a screening modality in characterization of dyspepsia.

Keywords: in-house fatty meal, choescintigraphy, dyspepsia, gall bladder ejection fraction, functional dyspepsia

Procedia PDF Downloads 509
1809 Effect of Different Sterilization Processes on Drug Loaded Silicone-Hydrogel

Authors: Raquel Galante, Marina Braga, Daniela Ghisleni, Terezinha J. A. Pinto, Rogério Colaço, Ana Paula Serro

Abstract:

The sensitive nature of soft biomaterials, such as hydrogels, renders their sterilization a particularly challenging task for the biomedical industry. Widely used contact lenses are now studied as promising platforms for topical corneal drug delivery. However, to the best of the authors knowledge, the influence of sterilization methods on these systems has yet to be evaluated. The main goal of this study was to understand how different pairs drug-hydrogel would interact under an ozone-based sterilization method in comparison with two conventional processes (steam heat and gamma irradiation). For that, Si-Hy containing hydroxylethyl methacrylate (HEMA) and [tris(trimethylsiloxy)silyl]propyl methacrylate (TRIS) was produced and soaked in different drug solutions, commonly used for the treatment of ocular diseases (levofloxacin, chlorhexidine, diclofenac and timolol maleate). The drug release profiles and main material properties were evaluated before and after the sterilization. Namely, swelling capacity was determined by water uptake studies, transparency was accessed by UV-Vis spectroscopy, surface topography/morphology by scanning electron microscopy (SEM) and mechanical properties by performing tensile tests. The drug released was quantified by high performance liquid chromatography (HPLC). The effectiveness of the sterilization procedures was assured by performing sterility tests. Ozone gas method led to a significant reduction of drug released and to the formation of degradation products specially for diclofenac and levofloxacin. Gamma irradiation led to darkening of the loaded Si-Hys and to the complete degradation of levofloxacin. Steam heat led to smoother surfaces and to a decrease of the amount of drug released, however, with no formation of degradation products. This difference in the total drug released could be the related to drug/polymer interactions promoted by the sterilization conditions in presence of the drug. Our findings offer important insights that, in turn, could be a useful contribution to the safe development of actual products.

Keywords: drug delivery, silicone hydrogels, sterilization, gamma irradiation, steam heat, ozone gas

Procedia PDF Downloads 312
1808 Study of Rehydration Process of Dried Squash (Cucurbita pepo) at Different Temperatures and Dry Matter-Water Ratios

Authors: Sima Cheraghi Dehdezi, Nasser Hamdami

Abstract:

Air-drying is the most widely employed method for preserving fruits and vegetables. Most of the dried products must be rehydrated by immersion in water prior to their use, so the study of rehydration kinetics in order to optimize rehydration phenomenon has great importance. Rehydration typically composes of three simultaneous processes: the imbibition of water into dried material, the swelling of the rehydrated products and the leaching of soluble solids to rehydration medium. In this research, squash (Cucurbita pepo) fruits were cut into 0.4 cm thick and 4 cm diameter slices. Then, squash slices were blanched in a steam chamber for 4 min. After cooling to room temperature, squash slices were dehydrated in a hot air dryer, under air flow 1.5 m/s and air temperature of 60°C up to moisture content of 0.1065 kg H2O per kg d.m. Dehydrated samples were kept in polyethylene bags and stored at 4°C. Squash slices with specified weight were rehydrated by immersion in distilled water at different temperatures (25, 50, and 75°C), various dry matter-water ratios (1:25, 1:50, and 1:100), which was agitated at 100 rpm. At specified time intervals, up to 300 min, the squash samples were removed from the water, and the weight, moisture content and rehydration indices of the sample were determined.The texture characteristics were examined over a 180 min period. The results showed that rehydration time and temperature had significant effects on moisture content, water absorption capacity (WAC), dry matter holding capacity (DHC), rehydration ability (RA), maximum force and stress in dried squash slices. Dry matter-water ratio had significant effect (p˂0.01) on all squash slice properties except DHC. Moisture content, WAC and RA of squash slices increased, whereas DHC and texture firmness (maximum force and stress) decreased with rehydration time. The maximum moisture content, WAC and RA and the minimum DHC, force and stress, were observed in squash slices rehydrated into 75°C water. The lowest moisture content, WAC and RA and the highest DHC, force and stress, were observed in squash slices immersed in water at 1:100 dry matter-water ratio. In general, for all rehydration conditions of squash slices, the highest water absorption rate occurred during the first minutes of process. Then, this rate decreased. The highest rehydration rate and amount of water absorption occurred in 75°C.

Keywords: dry matter-water ratio, squash, maximum force, rehydration ability

Procedia PDF Downloads 314
1807 Study of Unsteady Behaviour of Dynamic Shock Systems in Supersonic Engine Intakes

Authors: Siddharth Ahuja, T. M. Muruganandam

Abstract:

An analytical investigation is performed to study the unsteady response of a one-dimensional, non-linear dynamic shock system to external downstream pressure perturbations in a supersonic flow in a varying area duct. For a given pressure ratio across a wind tunnel, the normal shock's location can be computed as per one-dimensional steady gas dynamics. Similarly, for some other pressure ratio, the location of the normal shock will change accordingly, again computed using one-dimensional gas dynamics. This investigation focuses on the small-time interval between the first steady shock location and the new steady shock location (corresponding to different pressure ratios). In essence, this study aims to shed light on the motion of the shock from one steady location to another steady location. Further, this study aims to create the foundation of the Unsteady Gas Dynamics field enabling further insight in future research work. According to the new pressure ratio, a pressure pulse, generated at the exit of the tunnel which travels and perturbs the shock from its original position, setting it into motion. During such activity, other numerous physical phenomena also happen at the same time. However, three broad phenomena have been focused on, in this study - Traversal of a Wave, Fluid Element Interactions and Wave Interactions. The above mentioned three phenomena create, alter and kill numerous waves for different conditions. The waves which are created by the above-mentioned phenomena eventually interact with the shock and set it into motion. Numerous such interactions with the shock will slowly make it settle into its final position owing to the new pressure ratio across the duct, as estimated by one-dimensional gas dynamics. This analysis will be extremely helpful in the prediction of inlet 'unstart' of the flow in a supersonic engine intake and its prominence with the incoming flow Mach number, incoming flow pressure and the external perturbation pressure is also studied to help design more efficient supersonic intakes for engines like ramjets and scramjets.

Keywords: analytical investigation, compression and expansion waves, fluid element interactions, shock trajectory, supersonic flow, unsteady gas dynamics, varying area duct, wave interactions

Procedia PDF Downloads 221